首页 > 最新文献

Drug Delivery最新文献

英文 中文
Drug delivery in leptomeningeal disease: Navigating barriers and beyond. 脑垂体疾病的药物输送:克服障碍,超越自我。
IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2024-07-12 DOI: 10.1080/10717544.2024.2375521
Numair Arshad, Nupur Biswas, Jaya Gill, Santosh Kesari, Shashaanka Ashili

Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.

脑膜疾病(LMD)是指癌细胞渗入脑膜。脑膜是指蛛网膜和桥脑这两层膜。LMD 的弥漫性给有效诊断和成功治疗带来了挑战。此外,主要表型(固体肿块或自由漂浮的细胞)对给药系统的有效性也有影响。目前的标准治疗方法是鞘内给药,但这与治疗相关并发症增多、患者依从性低和药物分布不理想有关。另一种方法是全身给药,然后药物必须穿过液体屏障才能到达其在脑膜腔内的目的地。然而,众所周知,这种途径会造成脱靶效应,并在中枢神经系统内的目标部位产生低于治疗浓度的药物。脂质体阿糖胞苷等新型给药系统的开发改善了对脑膜转移性疾病的给药,但要有效针对这一具有挑战性的疾病,仍有许多工作要做。在这篇综述中,我们将讨论与药物渗透相关的脑膜解剖学、治疗 LMD 的传统和先进给药方法。我们还讨论了不同临床试验确定的未来方向。
{"title":"Drug delivery in leptomeningeal disease: Navigating barriers and beyond.","authors":"Numair Arshad, Nupur Biswas, Jaya Gill, Santosh Kesari, Shashaanka Ashili","doi":"10.1080/10717544.2024.2375521","DOIUrl":"10.1080/10717544.2024.2375521","url":null,"abstract":"<p><p>Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2375521"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a novel SupraChoroidal-to-Optic-NervE (SCONE) drug delivery system. 开发新型脉络膜上-视神经(SCONE)给药系统。
IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2024-07-15 DOI: 10.1080/10717544.2024.2379369
Bryce Chiang, Kathleen Heng, Kyeongwoo Jang, Roopa Dalal, Yaping Joyce Liao, David Myung, Jeffrey L Goldberg

Purpose: Targeted drug delivery to the optic nerve head may be useful in the preclinical study and later clinical management of optic neuropathies, however, there are no FDA-approved drug delivery systems to achieve this. The purpose of this work was to develop an optic nerve head drug delivery technique.

Methods: Different strategies to approach the optic nerve head were investigated, including standard intravitreal and retroorbital injections. A novel SupraChoroidal-to-Optic-NervE (SCONE) delivery was optimized by creating a sclerotomy and introducing a catheter into the suprachoroidal space. Under direct visualization, the catheter was guided to the optic nerve head. India ink was injected. The suprachoroidal approach was performed in New Zealand White rabbit eyes in vivo (25 animals total). Parameters, including microneedle size and design, catheter design, and catheter tip angle, were optimized ex vivo and in vivo.

Results: Out of the candidate optic nerve head approaches, intravitreal, retroorbital, and suprachoroidal approaches were able to localize India ink to within 2 mm of the optic nerve. The suprachoroidal approach was further investigated, and after optimization, was able to deposit India ink directly within the optic nerve head in up to 80% of attempts. In eyes with successful SCONE delivery, latency and amplitude of visual evoked potentials was not different than the naïve untreated eye.

Conclusions: SCONE delivery can be used for targeted drug delivery to the optic nerve head of rabbits without measurable toxicity measured anatomically or functionally. Successful development of this system may yield novel opportunities to study optic nerve head-specific drug delivery in animal models, and paradigm-shifting management strategies for treating optic neuropathies.

Translational relevance: Here we demonstrate data on a new method for targeted delivery to the optic nerve head, addressing a significant unmet need in therapeutics for optic neuropathies.

目的:向视神经头靶向给药可能有助于视神经病变的临床前研究和日后的临床治疗,但目前还没有经美国食品及药物管理局批准的给药系统可实现这一目标。这项工作的目的是开发一种视神经头给药技术:方法:研究了接近视神经头的不同策略,包括标准的玻璃体内注射和眶后注射。通过开硬膜外切口并将导管引入脉络膜上腔,优化了一种新颖的脉络膜上腔至视神经头(SCONE)给药方法。在直视下,导管被引导至视神经头。注入印度墨水。脉络膜上腔方法在新西兰白兔眼中进行了活体实验(共 25 只)。对包括微针尺寸和设计、导管设计和导管顶端角度在内的参数进行了体内外优化:结果:在候选的视神经头入路中,玻璃体内入路、眶后入路和脉络膜上入路能够将印度墨水定位在视神经2毫米以内。我们进一步研究了脉络膜上途径,经过优化后,80% 的尝试都能将印度墨水直接注入视神经头。在成功注射 SCONE 的眼球中,视觉诱发电位的潜伏期和振幅与未经治疗的新眼球没有差异:结论:SCONE 给药可用于向兔子的视神经头靶向给药,从解剖学或功能学角度测量都不会产生明显的毒性。该系统的成功开发可能会为研究动物模型中视神经头特异性给药带来新的机遇,并为治疗视神经病变提供改变模式的管理策略:在此,我们展示了一种向视神经头靶向给药新方法的数据,解决了视神经病变治疗中尚未满足的重大需求。
{"title":"Development of a novel SupraChoroidal-to-Optic-NervE (SCONE) drug delivery system.","authors":"Bryce Chiang, Kathleen Heng, Kyeongwoo Jang, Roopa Dalal, Yaping Joyce Liao, David Myung, Jeffrey L Goldberg","doi":"10.1080/10717544.2024.2379369","DOIUrl":"10.1080/10717544.2024.2379369","url":null,"abstract":"<p><strong>Purpose: </strong>Targeted drug delivery to the optic nerve head may be useful in the preclinical study and later clinical management of optic neuropathies, however, there are no FDA-approved drug delivery systems to achieve this. The purpose of this work was to develop an optic nerve head drug delivery technique.</p><p><strong>Methods: </strong>Different strategies to approach the optic nerve head were investigated, including standard intravitreal and retroorbital injections. A novel SupraChoroidal-to-Optic-NervE (SCONE) delivery was optimized by creating a sclerotomy and introducing a catheter into the suprachoroidal space. Under direct visualization, the catheter was guided to the optic nerve head. India ink was injected. The suprachoroidal approach was performed in New Zealand White rabbit eyes <i>in vivo</i> (25 animals total). Parameters, including microneedle size and design, catheter design, and catheter tip angle, were optimized <i>ex vivo</i> and <i>in vivo</i>.</p><p><strong>Results: </strong>Out of the candidate optic nerve head approaches, intravitreal, retroorbital, and suprachoroidal approaches were able to localize India ink to within 2 mm of the optic nerve. The suprachoroidal approach was further investigated, and after optimization, was able to deposit India ink directly within the optic nerve head in up to 80% of attempts. In eyes with successful SCONE delivery, latency and amplitude of visual evoked potentials was not different than the naïve untreated eye.</p><p><strong>Conclusions: </strong>SCONE delivery can be used for targeted drug delivery to the optic nerve head of rabbits without measurable toxicity measured anatomically or functionally. Successful development of this system may yield novel opportunities to study optic nerve head-specific drug delivery in animal models, and paradigm-shifting management strategies for treating optic neuropathies.</p><p><strong>Translational relevance: </strong>Here we demonstrate data on a new method for targeted delivery to the optic nerve head, addressing a significant unmet need in therapeutics for optic neuropathies.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2379369"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC467098/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-shell gold nanoparticles functionalized with methotrexate: a novel nanotherapeutic approach for improved antitumoral and antioxidant activity and enhanced biocompatibility. 甲氨蝶呤功能化多壳金纳米粒子:一种提高抗肿瘤和抗氧化活性以及生物相容性的新型纳米治疗方法。
IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2024-08-17 DOI: 10.1080/10717544.2024.2388624
Denisse-Iulia Bostiog, Natalia Simionescu, Adina Coroaba, Ioana C Marinas, Mariana C Chifiriuc, Gratiela Gradisteanu Pircalabioru, Stelian S Maier, Mariana Pinteala

Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features. Stable phosphine-coated AuNPs were synthesized and functionalized with tailored polyethylene glycol (PEG) and short-branched polyethyleneimine (PEI) moieties, followed by MTX covalent binding. Physicochemical characterization by UV-vis and Fourier-transform infrared spectroscopy (FTIR) spectroscopy, dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spectroscopy (XPS) confirmed the synthesis at each step. The antioxidant activity of functionalized AuNPs was determined using DPPH radical scavenging assay, ferric ions' reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) assays. Biocompatibility and cytotoxicity were assessed using MTT and LDH assays on HaCaT human keratinocytes and CAL27 squamous cell carcinoma. MTX functionalized AuNPs demonstrated enhanced antioxidant activity and a pronounced cytotoxic effect on the tumoral cells compared to their individual components, highlighting their potential for improving cancer therapy.

甲氨蝶呤(MTX)是一种叶酸拮抗剂,常用于癌症治疗,其特点是水溶性差、皮肤渗透性低。利用功能化金纳米粒子(AuNPs)等药物递送系统可以缓解这些问题。本研究旨在开发具有 MTX 功能的多壳 AuNPs,以提高 MTX 的抗肿瘤、抗氧化和生物相容性。研究人员合成了稳定的膦包被 AuNPs,并用定制的聚乙二醇(PEG)和短支链聚乙烯亚胺(PEI)分子进行功能化,然后与 MTX 共价结合。通过紫外-可见光光谱、傅立叶变换红外光谱、动态光散射、扫描透射电子显微镜和 X 射线光电子能谱等方法进行的物理化学表征证实了每一步的合成过程。利用 DPPH 自由基清除试验、铁离子还原抗氧化能力(FRAP)和铜离子还原抗氧化能力(CUPRAC)试验测定了功能化 AuNPs 的抗氧化活性。在 HaCaT 人角质细胞和 CAL27 鳞状细胞癌上使用 MTT 和 LDH 试验评估了生物相容性和细胞毒性。与单个成分相比,MTX 功能化 AuNPs 表现出更强的抗氧化活性和对肿瘤细胞的明显细胞毒性作用,凸显了其改善癌症治疗的潜力。
{"title":"Multi-shell gold nanoparticles functionalized with methotrexate: a novel nanotherapeutic approach for improved antitumoral and antioxidant activity and enhanced biocompatibility.","authors":"Denisse-Iulia Bostiog, Natalia Simionescu, Adina Coroaba, Ioana C Marinas, Mariana C Chifiriuc, Gratiela Gradisteanu Pircalabioru, Stelian S Maier, Mariana Pinteala","doi":"10.1080/10717544.2024.2388624","DOIUrl":"10.1080/10717544.2024.2388624","url":null,"abstract":"<p><p>Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features. Stable phosphine-coated AuNPs were synthesized and functionalized with tailored polyethylene glycol (PEG) and short-branched polyethyleneimine (PEI) moieties, followed by MTX covalent binding. Physicochemical characterization by UV-vis and Fourier-transform infrared spectroscopy (FTIR) spectroscopy, dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spectroscopy (XPS) confirmed the synthesis at each step. The antioxidant activity of functionalized AuNPs was determined using DPPH radical scavenging assay, ferric ions' reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) assays. Biocompatibility and cytotoxicity were assessed using MTT and LDH assays on HaCaT human keratinocytes and CAL27 squamous cell carcinoma. MTX functionalized AuNPs demonstrated enhanced antioxidant activity and a pronounced cytotoxic effect on the tumoral cells compared to their individual components, highlighting their potential for improving cancer therapy.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2388624"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving anti-oxidant stress treatment of subarachnoid hemorrhage through self-assembled nanoparticles of oleanolic acid. 通过齐墩果酸自组装纳米颗粒改善蛛网膜下腔出血的抗氧化治疗。
IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2024-08-21 DOI: 10.1080/10717544.2024.2388735
Youdong Zhou, Hengyu Wang, Xinyi Zhu, Qingyu Zhao, Gang Deng, Yong Li, Qianxue Chen

Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular disease, with early brain injury (EBI) being the main cause of high mortality and severe neurological dysfunction. Oxidative stress plays a crucial role in the pathogenesis of EBI. In this study, we synthesized antioxidant stress nanoparticles based on self-assembled oleanolic acid (OA) using the solvent volatilization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques were employed to analyze and understand the self-assembly mechanism of oleic acid nanoparticles (OA NPs). The TUNEL assay, Nissl staining, and brain water content measurements were conducted to investigate the impact of OA NPs on cortical neuronal injury. Additionally, Western blot analysis was performed to investigate the antioxidant stress mechanism of OA NPs. The result showed that OA NPs exhibited a spherical structure with an average diameter of 168 nm. The application of OA NPs in SAH has been found to contribute to the reduction of keap1 protein levels and an increase in the nuclear level of Nrf2. As a result, the transcription of antioxidant stress proteins, including HO1 and NQO1, is triggered. The activation of the antioxidant stress pathway by OA NPs ultimately leads to a decrease in neuron damage and an improvement in neurological dysfunction. In conclusion, we successfully designed and synthesized OA NPs that can efficiently target the site of SAH. These nanoparticles have demonstrated their potential as antioxidants for the treatment of SAH, offering significant clinical applications.

蛛网膜下腔出血(SAH)是一种危及生命的急性出血性脑血管疾病,早期脑损伤(EBI)是导致高死亡率和严重神经功能障碍的主要原因。氧化应激在 EBI 的发病机制中起着至关重要的作用。在这项研究中,我们采用溶剂挥发法合成了基于齐墩果酸(OA)自组装的抗氧化应激纳米颗粒。采用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)和透射电子显微镜(TEM)技术分析和了解了油酸纳米颗粒(OA NPs)的自组装机制。通过TUNEL检测、Nissl染色和脑含水量测量来研究OA NPs对大脑皮层神经元损伤的影响。此外,还进行了 Western 印迹分析,以研究 OA NPs 的抗氧化应激机制。结果表明,OA NPs呈球形结构,平均直径为168 nm。研究发现,在 SAH 中应用 OA NPs 有助于降低 keap1 蛋白水平和提高 Nrf2 的核水平。因此,包括 HO1 和 NQO1 在内的抗氧化应激蛋白的转录被触发。OA NPs 对抗氧化应激途径的激活最终导致神经元损伤的减少和神经功能障碍的改善。总之,我们成功设计并合成了能有效靶向 SAH 病变部位的 OA NPs。这些纳米粒子证明了其作为抗氧化剂治疗 SAH 的潜力,具有重要的临床应用价值。
{"title":"Improving anti-oxidant stress treatment of subarachnoid hemorrhage through self-assembled nanoparticles of oleanolic acid.","authors":"Youdong Zhou, Hengyu Wang, Xinyi Zhu, Qingyu Zhao, Gang Deng, Yong Li, Qianxue Chen","doi":"10.1080/10717544.2024.2388735","DOIUrl":"10.1080/10717544.2024.2388735","url":null,"abstract":"<p><p>Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular disease, with early brain injury (EBI) being the main cause of high mortality and severe neurological dysfunction. Oxidative stress plays a crucial role in the pathogenesis of EBI. In this study, we synthesized antioxidant stress nanoparticles based on self-assembled oleanolic acid (OA) using the solvent volatilization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques were employed to analyze and understand the self-assembly mechanism of oleic acid nanoparticles (OA NPs). The TUNEL assay, Nissl staining, and brain water content measurements were conducted to investigate the impact of OA NPs on cortical neuronal injury. Additionally, Western blot analysis was performed to investigate the antioxidant stress mechanism of OA NPs. The result showed that OA NPs exhibited a spherical structure with an average diameter of 168 nm. The application of OA NPs in SAH has been found to contribute to the reduction of keap1 protein levels and an increase in the nuclear level of Nrf2. As a result, the transcription of antioxidant stress proteins, including HO1 and NQO1, is triggered. The activation of the antioxidant stress pathway by OA NPs ultimately leads to a decrease in neuron damage and an improvement in neurological dysfunction. In conclusion, we successfully designed and synthesized OA NPs that can efficiently target the site of SAH. These nanoparticles have demonstrated their potential as antioxidants for the treatment of SAH, offering significant clinical applications.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2388735"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable polymeric insulin microneedles - a design and materials perspective review. 生物可降解聚合物胰岛素微针--设计与材料视角综述。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2023-12-26 DOI: 10.1080/10717544.2023.2296350
Melbha Starlin Chellathurai, Syed Mahmood, Zarif Mohamed Sofian, Cheng Wan Hee, Ramkanth Sundarapandian, Haja Nazeer Ahamed, C S Kandasamy, Ayah R Hilles, Najihah Mohd Hashim, Ashok Kumar Janakiraman

Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.

微针(MN)给药装置由于其简便性和适应性,比常规的传统针头注射(如疫苗接种)更容易被人们接受。因此,糖尿病等慢性病患者正在寻找可避免常规皮下注射的无痛治疗方案。胰岛素微针(INS-MNs)是一个经过深思熟虑的研究课题:(1) 克服患者的针头恐惧症;(2) 控制肽的输送;(3) 减少给药频率;(4) 简化给药程序;(5) 从而提高患者对治疗剂量方案的依从性。MN 物理性地破坏了坚硬的皮肤外层,为胰岛素(INS)通过真皮毛细血管进入全身循环创造了微小的孔隙。与硅、金属、玻璃或非生物可降解聚合物 MN 相比,生物可降解聚合物 MN 因其易于制造、大规模生产、成本效益高和生物可重复性等优点,在 INS 和疫苗递送方面具有更重要的意义。近年来,INS-MNs 已被研究用于通过透皮植入物、口腔粘膜、胃壁、肠粘膜层和结肠粘膜递送 INS,而不是通常的透皮递送。本综述重点介绍生物可降解/可溶解聚合物 INS-MN 在透皮、口腔内、胃肠道(GI)和植入给药方面的设计特点和应用。重点介绍了配制安全控释 INS-MNs 的前瞻性方法。概述了生物可降解/可溶解聚合物、其重要性、对 MN 形态的影响以及 INS 释放特性。简要讨论了生物可降解聚合物 INS-MN 技术的发展。详细阐述了生物可降解聚合物的选择、MN 的制造和评估因素以及其他设计方面的问题。
{"title":"Biodegradable polymeric insulin microneedles - a design and materials perspective review.","authors":"Melbha Starlin Chellathurai, Syed Mahmood, Zarif Mohamed Sofian, Cheng Wan Hee, Ramkanth Sundarapandian, Haja Nazeer Ahamed, C S Kandasamy, Ayah R Hilles, Najihah Mohd Hashim, Ashok Kumar Janakiraman","doi":"10.1080/10717544.2023.2296350","DOIUrl":"10.1080/10717544.2023.2296350","url":null,"abstract":"<p><p>Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2296350"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backflow reduction in local injection therapy with gelatin formulations. 使用明胶制剂进行局部注射治疗时减少回流。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2024-03-22 DOI: 10.1080/10717544.2024.2329100
Kazuki Kotani, Francois Marie Ngako Kadji, Yoshinobu Mandai, Yosuke Hiraoka

The local injection of therapeutic drugs, including cells, oncolytic viruses and nucleic acids, into different organs is an administrative route used to achieve high drug exposure at the site of action. However, after local injection, material backflow and side effect reactions can occur. Hence, this study was carried out to investigate the effect of gelatin on backflow reduction in local injection. Gelatin particles (GPs) and hydrolyzed gelatin (HG) were injected into tissue models, including versatile training tissue (VTT), versatile training tissue tumor-in type (VTT-T), and broiler chicken muscles (BCM), using needle gauges between 23 G and 33 G. The backflow material fluid was collected with filter paper, and the backflow fluid rate was determined. The backflow rate was significantly reduced with 35 μm GPs (p value < .0001) at different concentrations up to 5% and with 75 μm GPs (p value < .01) up to 2% in the tissue models. The reduction in backflow with HG of different molecular weights showed that lower-molecular-weight HG required a higher-concentration dose (5% to 30%) and that higher-molecular-weight HG required a lower-concentration dose (7% to 8%). The backflow rate was significantly reduced with the gelatin-based formulation, in regard to the injection volumes, which varied from 10 μL to 100 μL with VTT or VTT-T and from 10 μL to 200 μL with BCM. The 35 μm GPs were injectable with needles of small gauges, which included 33 G, and the 75 μm GPs and HG were injectable with 27 G needles. The backflow rate was dependent on an optimal viscosity of the gelatin solutions. An optimal concentration of GPs or HG can prevent material backflow in local injection, and further studies with active drugs are necessary to investigate the applicability in tumor and organ injections.

将治疗药物(包括细胞、溶瘤病毒和核酸)局部注射到不同器官,是在作用部位实现高药物暴露的一种管理途径。然而,局部注射后可能会出现物质回流和副作用反应。因此,本研究旨在探讨明胶对减少局部注射回流的影响。使用 23 G 至 33 G 的针规将明胶颗粒(GPs)和水解明胶(HGs)注射到组织模型中,包括多功能训练组织(VTT)、多功能训练组织肿瘤型(VTT-T)和肉鸡肌肉(BCM)。在组织模型中,不同浓度的 35 μm GPs(p 值 < .0001)和 75 μm GPs(p 值 < .01)的回流率分别明显降低到 5%和 2%(p 值 < .01)。不同分子量的 HG 可降低回流率,这表明低分子量的 HG 需要较高浓度的剂量(5% 至 30%),而高分子量的 HG 需要较低浓度的剂量(7% 至 8%)。明胶制剂的回流率明显降低,注射剂量方面,VTT 或 VTT-T 的回流率从 10 μL 到 100 μL 不等,BCM 的回流率从 10 μL 到 200 μL 不等。35 μm GPs 可使用小号针头(包括 33 G)注射,75 μm GPs 和 HG 可使用 27 G 针头注射。回流速度取决于明胶溶液的最佳粘度。最佳浓度的 GPs 或 HG 可以防止局部注射中的材料回流,有必要对活性药物进行进一步研究,以探讨其在肿瘤和器官注射中的适用性。
{"title":"Backflow reduction in local injection therapy with gelatin formulations.","authors":"Kazuki Kotani, Francois Marie Ngako Kadji, Yoshinobu Mandai, Yosuke Hiraoka","doi":"10.1080/10717544.2024.2329100","DOIUrl":"10.1080/10717544.2024.2329100","url":null,"abstract":"<p><p>The local injection of therapeutic drugs, including cells, oncolytic viruses and nucleic acids, into different organs is an administrative route used to achieve high drug exposure at the site of action. However, after local injection, material backflow and side effect reactions can occur. Hence, this study was carried out to investigate the effect of gelatin on backflow reduction in local injection. Gelatin particles (GPs) and hydrolyzed gelatin (HG) were injected into tissue models, including versatile training tissue (VTT), versatile training tissue tumor-in type (VTT-T), and broiler chicken muscles (BCM), using needle gauges between 23 G and 33 G. The backflow material fluid was collected with filter paper, and the backflow fluid rate was determined. The backflow rate was significantly reduced with 35 μm GPs (<i>p</i> value < .0001) at different concentrations up to 5% and with 75 μm GPs (<i>p</i> value < .01) up to 2% in the tissue models. The reduction in backflow with HG of different molecular weights showed that lower-molecular-weight HG required a higher-concentration dose (5% to 30%) and that higher-molecular-weight HG required a lower-concentration dose (7% to 8%). The backflow rate was significantly reduced with the gelatin-based formulation, in regard to the injection volumes, which varied from 10 μL to 100 μL with VTT or VTT-T and from 10 μL to 200 μL with BCM. The 35 μm GPs were injectable with needles of small gauges, which included 33 G, and the 75 μm GPs and HG were injectable with 27 G needles. The backflow rate was dependent on an optimal viscosity of the gelatin solutions. An optimal concentration of GPs or HG can prevent material backflow in local injection, and further studies with active drugs are necessary to investigate the applicability in tumor and organ injections.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2329100"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. 用于内分泌相关肿瘤靶向治疗的表面功能化纳米材料系统:最新进展综述。
IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2024-08-13 DOI: 10.1080/10717544.2024.2390022
Limei Liu, Miao Yang, Ziyang Chen

The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.

多学科技术在内分泌相关癌症治疗中的应用,对于发挥多学科优势、协同消灭肿瘤至关重要。由于癌细胞的恶性特征,它们有能力对化疗和放疗等传统疗法产生抗药性。然而,尽管人们一直在努力提高预后预测能力,但内分泌相关恶性肿瘤患者的总体生存率仍然相当凄惨。因此,研究创新的治疗策略势在必行。治疗策略的最新进展为各种内分泌肿瘤的治疗提供了新方法。本文探讨了纳米给药技术的进步,以及利用纳米材料通过靶向治疗精确治愈癌症的方法。本综述全面分析了联合给药策略在治疗甲状腺癌、肾上腺肿瘤和胰腺癌方面的潜力。本研究的目的是深入了解当前的治疗方法,促进新药物 DDS 的开发,提高这些疾病患者的治疗效果。通过将合成或天然物质植入纳米颗粒,可显著改善癌细胞对药物的胞内吸收,从而大大降低内分泌恶性肿瘤的发病率。
{"title":"Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements.","authors":"Limei Liu, Miao Yang, Ziyang Chen","doi":"10.1080/10717544.2024.2390022","DOIUrl":"10.1080/10717544.2024.2390022","url":null,"abstract":"<p><p>The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2390022"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of lipid particle-laden interfaces in regulating the co-delivery of two hydrophobic actives from o/w emulsions. 脂质微粒界面在调节水包水乳剂中两种疏水性活性物质的共同输送中的作用。
IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2024-11-08 DOI: 10.1080/10717544.2024.2425158
Georgia I Sakellari, Hannah Batchelor, Fotis Spyropoulos

Co-delivery strategies have become an integral active delivery approach, although understanding of how the microstructural characteristics could be deployed to achieve independently regulated active co-delivery profiles, is still an area at its infancy. Herein, the capacity to provide such control was explored by utilizing Pickering emulsions stabilized by lipid particles, namely solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). These dual functional species, regarding their concurrent Pickering stabilization and active carrying/delivery capabilities, were formulated with different solid lipid and surfactant types, and the effect on the release and co-release modulation of two hydrophobic actives separately encapsulated within the lipid particles themselves and within the emulsion droplets was investigated. Disparities between the release profiles from the particles in aqueous dispersions or at an emulsion interface, were related to the specific lipid matrix composition. Particles composed of lipids with higher oil phase compatibility of the emulsion droplets were shown to exert less control over their release regulation ability, as were particles in the presence of surfactant micelles in the continuous phase. Irrespective of their formulation characteristics, all particles provided a level of active release control from within the emulsion droplets, which was dependant on the permeability of the formed interfacial layer. Specifically, use of a bulkier particle surfactant or particle sintering at the droplet interface resulted in more sustained droplet release rates. Compared to sole release, the co-release performance remained unaffected by the co-existence of the two hydrophobic actives with the co-release behavior persisting over a storage period of 1 month.

联合给药策略已成为一种不可或缺的活性给药方法,但如何利用微结构特征来实现独立调节的活性联合给药概况仍处于起步阶段。在此,我们利用由脂质颗粒(即固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC))稳定的皮克林乳液,探索了提供这种控制的能力。这些具有双重功能的物质同时具有皮克林稳定和活性物质携带/递送能力,我们用不同类型的固体脂质和表面活性剂对它们进行了配制,并研究了分别封装在脂质颗粒本身和乳液液滴中的两种疏水性活性物质的释放和共同释放调节作用。颗粒在水分散体中或乳液界面上的释放曲线差异与特定的脂质基质成分有关。结果表明,由乳液液滴油相相容性较高的脂质组成的微粒对其释放调节能力的控制较弱,连续相中存在表面活性剂胶束的微粒也是如此。无论其配方特点如何,所有颗粒都能在一定程度上控制乳液液滴内部的活性释放,这取决于所形成的界面层的渗透性。具体来说,在液滴界面上使用体积较大的颗粒表面活性剂或颗粒烧结会使液滴释放率更持久。与单独释放相比,共释放性能不受两种疏水性活性物质共存的影响,共释放行为可在 1 个月的储存期内持续存在。
{"title":"The role of lipid particle-laden interfaces in regulating the co-delivery of two hydrophobic actives from o/w emulsions.","authors":"Georgia I Sakellari, Hannah Batchelor, Fotis Spyropoulos","doi":"10.1080/10717544.2024.2425158","DOIUrl":"10.1080/10717544.2024.2425158","url":null,"abstract":"<p><p>Co-delivery strategies have become an integral active delivery approach, although understanding of how the microstructural characteristics could be deployed to achieve independently regulated active co-delivery profiles, is still an area at its infancy. Herein, the capacity to provide such control was explored by utilizing Pickering emulsions stabilized by lipid particles, namely solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). These dual functional species, regarding their concurrent Pickering stabilization and active carrying/delivery capabilities, were formulated with different solid lipid and surfactant types, and the effect on the release and co-release modulation of two hydrophobic actives separately encapsulated within the lipid particles themselves and within the emulsion droplets was investigated. Disparities between the release profiles from the particles in aqueous dispersions or at an emulsion interface, were related to the specific lipid matrix composition. Particles composed of lipids with higher oil phase compatibility of the emulsion droplets were shown to exert less control over their release regulation ability, as were particles in the presence of surfactant micelles in the continuous phase. Irrespective of their formulation characteristics, all particles provided a level of active release control from within the emulsion droplets, which was dependant on the permeability of the formed interfacial layer. Specifically, use of a bulkier particle surfactant or particle sintering at the droplet interface resulted in more sustained droplet release rates. Compared to sole release, the co-release performance remained unaffected by the co-existence of the two hydrophobic actives with the co-release behavior persisting over a storage period of 1 month.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2425158"},"PeriodicalIF":5.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photo-crosslinkable polyester microneedles as sustained drug release systems toward hypertrophic scar treatment. 光交联聚酯微针作为药物持续释放系统用于增生性疤痕治疗。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2024-02-29 DOI: 10.1080/10717544.2024.2305818
Anna Szabó, Ignace De Decker, Sam Semey, Karel E Y Claes, Phillip Blondeel, Stan Monstrey, Jo Van Dorpe, Sandra Van Vlierberghe

Burn injuries can result in a significant inflammatory response, often leading to hypertrophic scarring (HTS). Local drug therapies e.g. corticoid injections are advised to treat HTS, although they are invasive, operator-dependent, extremely painful and do not permit extended drug release. Polymer-based microneedle (MN) arrays can offer a viable alternative to standard care, while allowing for direct, painless dermal drug delivery with tailorable drug release profile. In the current study, we synthesized photo-crosslinkable, acrylate-endcapped urethane-based poly(ε-caprolactone) (AUP-PCL) toward the fabrication of MNs. Physico-chemical characterization (1H-NMR, evaluation of swelling, gel fraction) of the developed polymer was performed and confirmed successful acrylation of PCL-diol. Subsequently, AUP-PCL, and commercially available PCL-based microneedle arrays were fabricated for comparative evaluation of the constructs. Hydrocortisone was chosen as model drug. To enhance the drug release efficiency of the MNs, Brij®35, a nonionic surfactant was exploited. The thermal properties of the MNs were evaluated via differential scanning calorimetry. Compression testing of the arrays confirmed that the MNs stay intact upon applying a load of 7 N, which correlates to the standard dermal insertion force of MNs. The drug release profile of the arrays was evaluated, suggesting that the developed PCL arrays can offer efficient drug delivery for up to two days, while the AUP-PCL arrays can provide a release up to three weeks. Finally, the insertion of MN arrays into skin samples was performed, followed by histological analysis demonstrating the AUP-PCL MNs outperforming the PCL arrays upon providing pyramidical-shaped perforations through the epidermal layer of the skin.

烧伤会导致严重的炎症反应,通常会形成增生性瘢痕(HTS)。建议采用皮质类固醇注射等局部药物疗法来治疗 HTS,但这些疗法具有创伤性、依赖操作者、极其痛苦,而且不能延长药物释放时间。基于聚合物的微针(MN)阵列可作为标准疗法的可行替代方案,同时还能直接、无痛地在皮肤上给药,并可定制药物释放曲线。在本研究中,我们合成了可光交联、丙烯酸酯末端包覆的聚氨酯基聚(ε-己内酯)(AUP-PCL),用于制造微针。对开发的聚合物进行了物理化学表征(1H-NMR、溶胀评估、凝胶分数),证实 PCL-二醇的丙烯酸化成功。随后,制备了 AUP-PCL 和市售 PCL 微针阵列,以对构建物进行比较评估。氢化可的松被选为模型药物。为了提高微针的药物释放效率,使用了非离子表面活性剂 Brij®35。通过差示扫描量热法评估了 MNs 的热性能。对阵列进行的压缩测试证实,在施加 7 N 的负荷时,MNs 保持完好无损,这与 MNs 的标准真皮插入力相关。对阵列的药物释放情况进行了评估,结果表明所开发的 PCL 阵列可提供长达两天的高效药物释放,而 AUP-PCL 阵列可提供长达三周的药物释放。最后,将 MN 阵列插入皮肤样本,然后进行组织学分析,结果表明 AUP-PCL MN 在皮肤表皮层形成金字塔形穿孔的效果优于 PCL 阵列。
{"title":"Photo-crosslinkable polyester microneedles as sustained drug release systems toward hypertrophic scar treatment.","authors":"Anna Szabó, Ignace De Decker, Sam Semey, Karel E Y Claes, Phillip Blondeel, Stan Monstrey, Jo Van Dorpe, Sandra Van Vlierberghe","doi":"10.1080/10717544.2024.2305818","DOIUrl":"10.1080/10717544.2024.2305818","url":null,"abstract":"<p><p>Burn injuries can result in a significant inflammatory response, often leading to hypertrophic scarring (HTS). Local drug therapies e.g. corticoid injections are advised to treat HTS, although they are invasive, operator-dependent, extremely painful and do not permit extended drug release. Polymer-based microneedle (MN) arrays can offer a viable alternative to standard care, while allowing for direct, painless dermal drug delivery with tailorable drug release profile. In the current study, we synthesized photo-crosslinkable, acrylate-endcapped urethane-based poly(<i>ε</i>-caprolactone) (AUP-PCL) toward the fabrication of MNs. Physico-chemical characterization (<sup>1</sup>H-NMR, evaluation of swelling, gel fraction) of the developed polymer was performed and confirmed successful acrylation of PCL-diol. Subsequently, AUP-PCL, and commercially available PCL-based microneedle arrays were fabricated for comparative evaluation of the constructs. Hydrocortisone was chosen as model drug. To enhance the drug release efficiency of the MNs, Brij®35, a nonionic surfactant was exploited. The thermal properties of the MNs were evaluated via differential scanning calorimetry. Compression testing of the arrays confirmed that the MNs stay intact upon applying a load of 7 N, which correlates to the standard dermal insertion force of MNs. The drug release profile of the arrays was evaluated, suggesting that the developed PCL arrays can offer efficient drug delivery for up to two days, while the AUP-PCL arrays can provide a release up to three weeks. Finally, the insertion of MN arrays into skin samples was performed, followed by histological analysis demonstrating the AUP-PCL MNs outperforming the PCL arrays upon providing pyramidical-shaped perforations through the epidermal layer of the skin.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2305818"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction. 撤回。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-01 Epub Date: 2022-12-28 DOI: 10.1080/10717544.2022.2157154
{"title":"Retraction.","authors":"","doi":"10.1080/10717544.2022.2157154","DOIUrl":"10.1080/10717544.2022.2157154","url":null,"abstract":"","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":" ","pages":"1"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10444309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Drug Delivery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1