Pub Date : 2024-12-01Epub Date: 2024-11-20DOI: 10.1080/10717544.2024.2430528
John D Martin, Fotios Mpekris, Vikash P Chauhan, Margaret R Martin, Megan E Walsh, Matthew D Stuber, Donald M McDonald, Fan Yuan, Triantafyllos Stylianopoulos, Rakesh K Jain
To have the desired therapeutic effect, nanomedicines and macromolecular medications must move from the site of injection to the site of action, without having adverse effects. Transvascular transport is a critical step of this navigation, as exemplified by the Enhanced Permeability and Retention (EPR) effect in solid tumors, not found in normal organs. Numerous studies have concluded that passive, diffusion- and convection-based transport predominates over active, cellular mechanisms in this effect. However, recent work using a new approach reevaluated this principle by comparing tumors with or without fixation and concluded the opposite. Here, we address the controversy generated by this new approach by reporting evidence from experimental investigations and computer simulations that separate the contributions of active and passive transport. Our findings indicate that tissue fixation reduces passive transport as well as active transport, indicating the need for new methods to distinguish the relative contributions of passive and active transport.
{"title":"Fixation alters the physical properties of tumor tissue that regulate nanomedicine transport.","authors":"John D Martin, Fotios Mpekris, Vikash P Chauhan, Margaret R Martin, Megan E Walsh, Matthew D Stuber, Donald M McDonald, Fan Yuan, Triantafyllos Stylianopoulos, Rakesh K Jain","doi":"10.1080/10717544.2024.2430528","DOIUrl":"10.1080/10717544.2024.2430528","url":null,"abstract":"<p><p>To have the desired therapeutic effect, nanomedicines and macromolecular medications must move from the site of injection to the site of action, without having adverse effects. Transvascular transport is a critical step of this navigation, as exemplified by the Enhanced Permeability and Retention (EPR) effect in solid tumors, not found in normal organs. Numerous studies have concluded that passive, diffusion- and convection-based transport predominates over active, cellular mechanisms in this effect. However, recent work using a new approach reevaluated this principle by comparing tumors with or without fixation and concluded the opposite. Here, we address the controversy generated by this new approach by reporting evidence from experimental investigations and computer simulations that separate the contributions of active and passive transport. Our findings indicate that tissue fixation reduces passive transport as well as active transport, indicating the need for new methods to distinguish the relative contributions of passive and active transport.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2430528"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-06DOI: 10.1080/10717544.2024.2391001
Wenqing Liang, Hengguo Long, Hongwei Zhang, Juqin Bai, Bo Jiang, Jiangwei Wang, Lifeng Fu, Wenyi Ming, Jiayi Zhao, Bin Zeng
A common malignant bone neoplasm in teenagers is Osteosarcoma. Chemotherapy, surgical therapy, and radiation therapy together comprise the usual clinical course of treatment for Osteosarcoma. While Osteosarcoma and other bone tumors are typically treated surgically, however, surgical resection frequently fails to completely eradicate tumors, and in turn becomes the primary reason for postoperative recurrence and metastasis, ultimately leading to a high rate of mortality. Patients still require radiation and/or chemotherapy after surgery to stop the spread of the tumor and its metastases, and both treatments have an adverse influence on the body's organ systems. In the postoperative management of osteosarcoma, bone scaffolds can load cargos (growth factors or drugs) and function as drug delivery systems (DDSs). This review describes the different kinds of bone scaffolds that are currently available and highlights key studies that use scaffolds as DDSs for the treatment of osteosarcomas. The discussion also includes difficulties and perspectives regarding the use of scaffold-based DDSs. The study may serve as a source for outlining efficient and secure postoperative osteosarcoma treatment plans.
{"title":"Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective.","authors":"Wenqing Liang, Hengguo Long, Hongwei Zhang, Juqin Bai, Bo Jiang, Jiangwei Wang, Lifeng Fu, Wenyi Ming, Jiayi Zhao, Bin Zeng","doi":"10.1080/10717544.2024.2391001","DOIUrl":"10.1080/10717544.2024.2391001","url":null,"abstract":"<p><p>A common malignant bone neoplasm in teenagers is Osteosarcoma. Chemotherapy, surgical therapy, and radiation therapy together comprise the usual clinical course of treatment for Osteosarcoma. While Osteosarcoma and other bone tumors are typically treated surgically, however, surgical resection frequently fails to completely eradicate tumors, and in turn becomes the primary reason for postoperative recurrence and metastasis, ultimately leading to a high rate of mortality. Patients still require radiation and/or chemotherapy after surgery to stop the spread of the tumor and its metastases, and both treatments have an adverse influence on the body's organ systems. In the postoperative management of osteosarcoma, bone scaffolds can load cargos (growth factors or drugs) and function as drug delivery systems (DDSs). This review describes the different kinds of bone scaffolds that are currently available and highlights key studies that use scaffolds as DDSs for the treatment of osteosarcomas. The discussion also includes difficulties and perspectives regarding the use of scaffold-based DDSs. The study may serve as a source for outlining efficient and secure postoperative osteosarcoma treatment plans.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2391001"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pain management remains among the most common and largely unmet clinical problems today. Local anesthetics play an indispensable role in pain management. The main limitation of traditional local anesthetics is the limited duration of a single injection. To address this problem, catheters are often placed or combined with other drugs in clinical practice to increase the time that local anesthetics act. However, this method does not meet the needs of clinical analgesics. Therefore, many researchers have worked to develop local anesthetic extended-release types that can be administered in a single dose. In recent years, drug extended-release systems have emerged dramatically due to their long duration and efficacy, providing more possibilities for the application of local anesthetics. This paper summarizes the types of local anesthetic drug delivery systems and their clinical applications, discusses them in the context of relevant studies on local anesthetics, and provides a summary and outlook on the development of local anesthetic extended-release agents.
{"title":"Advances in the use of local anesthetic extended-release systems in pain management.","authors":"Yulu Chen, Jingmei Xu, Ping Li, Liyang Shi, Sha Zhang, Qulian Guo, Yong Yang","doi":"10.1080/10717544.2023.2296349","DOIUrl":"10.1080/10717544.2023.2296349","url":null,"abstract":"<p><p>Pain management remains among the most common and largely unmet clinical problems today. Local anesthetics play an indispensable role in pain management. The main limitation of traditional local anesthetics is the limited duration of a single injection. To address this problem, catheters are often placed or combined with other drugs in clinical practice to increase the time that local anesthetics act. However, this method does not meet the needs of clinical analgesics. Therefore, many researchers have worked to develop local anesthetic extended-release types that can be administered in a single dose. In recent years, drug extended-release systems have emerged dramatically due to their long duration and efficacy, providing more possibilities for the application of local anesthetics. This paper summarizes the types of local anesthetic drug delivery systems and their clinical applications, discusses them in the context of relevant studies on local anesthetics, and provides a summary and outlook on the development of local anesthetic extended-release agents.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2296349"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-10DOI: 10.1080/10717544.2024.2355035
{"title":"Statement of Retraction: Bicomponent polymeric micelles for pH-controlled delivery of doxorubicin.","authors":"","doi":"10.1080/10717544.2024.2355035","DOIUrl":"10.1080/10717544.2024.2355035","url":null,"abstract":"","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2355035"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-01DOI: 10.1080/10717544.2024.2372277
Amira Motawea, Sara N Maria, Doaa N Maria, Monica M Jablonski, Mohamed Moustafa Ibrahim
Skin melanoma is considered the most dangerous form of skin cancer due to its association with high risk of metastasis, high mortality rate and high resistance to different treatment options. Genistein is a natural isoflavonoid with known chemotherapeutic activity. Unfortunately, it has low bioavailability due to its poor aqueous solubility and excessive metabolism. In the current study, genistein was incorporated into transferosomal hydrogel to improve its bioavailability. The prepared transferosomal formulations were characterized regarding: particle size; polydispersity index; zeta potential; encapsulation efficiency; TEM; FTIR; DSC; XRD; in vitro drug release; viscosity; pH; ex vivo anti-tumor activity on 3D skin melanoma spheroids and 1-year stability study at different storage temperatures. The optimized formulation has high encapsulation efficiency with an excellent particle size that will facilitate its penetration through the skin. The transfersomes have a spherical shape with sustained drug release profile. The anti-tumor activity evaluation of genistein transfersome revealed that genistein is a potent chemotherapeutic agent with enhanced penetration ability through the melanoma spheroids when incorporated into transfersomes. Stability study results demonstrate the high physical and chemical stability of our formulations. All these outcomes provide evidence that our genistein transferosomal hydrogel is a promising treatment option for skin melanoma.
{"title":"Genistein transfersome-embedded topical delivery system for skin melanoma treatment: <i>in vitro</i> and <i>ex vivo</i> evaluations.","authors":"Amira Motawea, Sara N Maria, Doaa N Maria, Monica M Jablonski, Mohamed Moustafa Ibrahim","doi":"10.1080/10717544.2024.2372277","DOIUrl":"10.1080/10717544.2024.2372277","url":null,"abstract":"<p><p>Skin melanoma is considered the most dangerous form of skin cancer due to its association with high risk of metastasis, high mortality rate and high resistance to different treatment options. Genistein is a natural isoflavonoid with known chemotherapeutic activity. Unfortunately, it has low bioavailability due to its poor aqueous solubility and excessive metabolism. In the current study, genistein was incorporated into transferosomal hydrogel to improve its bioavailability. The prepared transferosomal formulations were characterized regarding: particle size; polydispersity index; zeta potential; encapsulation efficiency; TEM; FTIR; DSC; XRD; <i>in vitro</i> drug release; viscosity; pH; <i>ex vivo</i> anti-tumor activity on 3D skin melanoma spheroids and 1-year stability study at different storage temperatures. The optimized formulation has high encapsulation efficiency with an excellent particle size that will facilitate its penetration through the skin. The transfersomes have a spherical shape with sustained drug release profile. The anti-tumor activity evaluation of genistein transfersome revealed that genistein is a potent chemotherapeutic agent with enhanced penetration ability through the melanoma spheroids when incorporated into transfersomes. Stability study results demonstrate the high physical and chemical stability of our formulations. All these outcomes provide evidence that our genistein transferosomal hydrogel is a promising treatment option for skin melanoma.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2372277"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-11DOI: 10.1080/10717544.2024.2372279
Katarzyna Krzeminska, Malgorzata Sznitowska, Magdalena Wroblewska, Eliza Wolska, Katarzyna Winnicka
The aim of this study was to develop eye-drops with cefuroxime (CEF) sodium or vancomycin (VAN) hydrochloride, antibiotics that are instable in water. Anhydrous self-emulsifying oils (SEO) are proposed as a carrier and antibiotics are suspended. In the contact with tear fluid, the formulation should transform into emulsion, with fast dissolution of an antibiotic. CEF or VAN (5% w/w) was suspended in SEO carriers prepared by dissolving surfactants (Tween 20 or Span 80 5% w/w) in Miglyol, castor oil, or olive oil. Formulations with or without sodium citrate (2% w/w) were compared. Six-months or 1-year stability tests were carried out at 40 °C. The content of CEF and VAN was evaluated using HPLC and the potency of the antibiotic was assessed with agar diffusion method. In contact with water, drug particles suspended in SEO dissolved rapidly and o/w emulsion was formed. After 1-year at 40 °C, the content of degradation products was at most 0.5% in CEF and 4.0% in VAN formulations. The agar diffusion assay has shown that CEF and VAN loaded into SEO retained its potency against the sensitive microorganisms comparable to an aqueous solution. Therefore, SEO can be used as a novel carrier for the active substances which may not require improved solubility or absorption but need to be protected from moisture. This is a formulation that can be produced on industrial scale, with no limitation of stability or drug concentration.
本研究旨在开发含有头孢呋辛钠(CEF)或盐酸万古霉素(VAN)的眼药水,这些抗生素在水中不稳定。建议使用无水自乳化油(SEO)作为载体,悬浮抗生素。在与泪液接触时,制剂应转化为乳液,抗生素可快速溶解。将 CEF 或 VAN(5% w/w)悬浮在由表面活性剂(吐温 20 或司盘 80,5% w/w)溶于 Miglyol、蓖麻油或橄榄油制备而成的 SEO 载体中。对含有或不含柠檬酸钠(2% w/w)的配方进行了比较。在 40 °C 下进行了 6 个月或 1 年的稳定性测试。使用高效液相色谱法评估了 CEF 和 VAN 的含量,并使用琼脂扩散法评估了抗生素的效力。在与水接触时,悬浮在 SEO 中的药物颗粒迅速溶解并形成水包油型乳液。在 40 °C 下放置 1 年后,降解产物的含量在 CEF 制剂中最多为 0.5%,在 VAN 制剂中最多为 4.0%。琼脂扩散试验表明,SEO 中添加的 CEF 和 VAN 对敏感微生物的效力与水溶液相当。因此,SEO 可用作活性物质的新型载体,这些活性物质可能不需要提高溶解性或吸收性,但需要防潮。这种制剂可以进行工业化生产,不受稳定性或药物浓度的限制。
{"title":"Suspensions of antibiotics in self-emulsifying oils as a novel approach to formulate eye drops with substances which undergo hydrolysis in aqueous environment.","authors":"Katarzyna Krzeminska, Malgorzata Sznitowska, Magdalena Wroblewska, Eliza Wolska, Katarzyna Winnicka","doi":"10.1080/10717544.2024.2372279","DOIUrl":"10.1080/10717544.2024.2372279","url":null,"abstract":"<p><p>The aim of this study was to develop eye-drops with cefuroxime (CEF) sodium or vancomycin (VAN) hydrochloride, antibiotics that are instable in water. Anhydrous self-emulsifying oils (SEO) are proposed as a carrier and antibiotics are suspended. In the contact with tear fluid, the formulation should transform into emulsion, with fast dissolution of an antibiotic. CEF or VAN (5% w/w) was suspended in SEO carriers prepared by dissolving surfactants (Tween 20 or Span 80 5% w/w) in Miglyol, castor oil, or olive oil. Formulations with or without sodium citrate (2% w/w) were compared. Six-months or 1-year stability tests were carried out at 40 °C. The content of CEF and VAN was evaluated using HPLC and the potency of the antibiotic was assessed with agar diffusion method. In contact with water, drug particles suspended in SEO dissolved rapidly and o/w emulsion was formed. After 1-year at 40 °C, the content of degradation products was at most 0.5% in CEF and 4.0% in VAN formulations. The agar diffusion assay has shown that CEF and VAN loaded into SEO retained its potency against the sensitive microorganisms comparable to an aqueous solution. Therefore, SEO can be used as a novel carrier for the active substances which may not require improved solubility or absorption but need to be protected from moisture. This is a formulation that can be produced on industrial scale, with no limitation of stability or drug concentration.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2372279"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-08DOI: 10.1080/10717544.2024.2425156
Andong He, Yuye Huang, Chao Cao, Xuejin Li
The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.
{"title":"Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles.","authors":"Andong He, Yuye Huang, Chao Cao, Xuejin Li","doi":"10.1080/10717544.2024.2425156","DOIUrl":"10.1080/10717544.2024.2425156","url":null,"abstract":"<p><p>The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2425156"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-01-05DOI: 10.1080/10717544.2023.2299594
Ellen K G Mhango, Benjamin R Sveinbjornsson, Bergthora S Snorradottir, Sveinbjorn Gizurarson
Lipophilic drugs require more advance formulation, especially if the intention is to make solutions or semisolid formulations. This also accounts for most antimalarial drugs. Although some of these antimalarial drugs are soluble in lipid vehicles, few of them, such as lumefantrine (LF), are also poorly soluble in oily vehicles. Trying to dissolve and formulate LF as a liquid formulation together with other antimalarial drugs is, therefore, a major task. When mixed in solution together with artemether (AR), precipitation occurs, sometimes with LF precipitating out on its own, and sometimes with AR precipitating out alongside LF. In this study, it was hypothesized that the use of fatty acids could lead to enhanced solubility in lipid formulation. Addition of the fatty acid solved the dissolution challenges, making LF soluble for over a year at room temperature (21-23 °C); but further research is needed to test the mechanism of action of the fatty acid. In addition, design of experiments (MODDE® 13) revealed that the amount of fatty acid in the formulation was the only significant factor for LF precipitation.
{"title":"Incompatibility of antimalarial drugs: challenges in formulating combination products for malaria.","authors":"Ellen K G Mhango, Benjamin R Sveinbjornsson, Bergthora S Snorradottir, Sveinbjorn Gizurarson","doi":"10.1080/10717544.2023.2299594","DOIUrl":"10.1080/10717544.2023.2299594","url":null,"abstract":"<p><p>Lipophilic drugs require more advance formulation, especially if the intention is to make solutions or semisolid formulations. This also accounts for most antimalarial drugs. Although some of these antimalarial drugs are soluble in lipid vehicles, few of them, such as lumefantrine (LF), are also poorly soluble in oily vehicles. Trying to dissolve and formulate LF as a liquid formulation together with other antimalarial drugs is, therefore, a major task. When mixed in solution together with artemether (AR), precipitation occurs, sometimes with LF precipitating out on its own, and sometimes with AR precipitating out alongside LF. In this study, it was hypothesized that the use of fatty acids could lead to enhanced solubility in lipid formulation. Addition of the fatty acid solved the dissolution challenges, making LF soluble for over a year at room temperature (21-23 °C); but further research is needed to test the mechanism of action of the fatty acid. In addition, design of experiments (MODDE<sup>®</sup> 13) revealed that the amount of fatty acid in the formulation was the only significant factor for LF precipitation.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2299594"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-05DOI: 10.1080/10717544.2024.2385376
Andrés Ramos-Valle, Henning Kirst, Mónica L Fanarraga
Targeting, safety, scalability, and storage stability of vectors are still challenges in the field of nucleic acid delivery for gene therapy. Silica-based nanoparticles have been widely studied as gene carriers, exhibiting key features such as biocompatibility, simplistic synthesis, and enabling easy surface modifications for targeting. However, the ability of the formulation to incorporate DNA is limited, which restricts the number of DNA molecules that can be incorporated into the particle, thereby reducing gene expression. Here we use polymerase chain reaction (PCR)-generated linear DNA molecules to augment the coding sequences of gene-carrying nanoparticles, thereby maximizing nucleic acid loading and minimizing the size of these nanocarriers. This approach results in a remarkable 16-fold increase in protein expression six days post-transfection in cells transfected with particles carrying the linear DNA compared with particles bearing circular plasmid DNA. The study also showed that the use of linear DNA entrapped in DNA@SiO2 resulted in a much more efficient level of gene expression compared to standard transfection reagents. The system developed in this study features simplicity, scalability, and increased transfection efficiency and gene expression over existing approaches, enabled by improved embedment capabilities for linear DNA, compared to conventional methods such as lipids or polymers, which generally show greater transfection efficiency with plasmid DNA. Therefore, this novel methodology can find applications not only in gene therapy but also in research settings for high-throughput gene expression screenings.
载体的靶向性、安全性、可扩展性和储存稳定性仍然是基因治疗核酸递送领域面临的挑战。二氧化硅基纳米颗粒作为基因载体已被广泛研究,它具有生物相容性好、合成简单、表面易于修饰等主要特点。然而,该配方结合 DNA 的能力有限,这限制了可结合到颗粒中的 DNA 分子数量,从而降低了基因表达。在这里,我们使用聚合酶链式反应(PCR)生成的线性 DNA 分子来增强基因载体纳米粒子的编码序列,从而最大限度地增加核酸载量,缩小这些纳米载体的尺寸。与携带环状质粒 DNA 的颗粒相比,这种方法能使转染后 6 天的细胞蛋白质表达量显著增加 16 倍。研究还表明,与标准转染试剂相比,使用DNA@SiO2中夹带的线性DNA能更有效地表达基因。与脂质或聚合物等传统方法相比,本研究开发的系统具有简便、可扩展、转染效率和基因表达量均高于现有方法等特点。因此,这种新方法不仅可应用于基因治疗,还可用于高通量基因表达筛选研究。
{"title":"Biodegradable silica nanoparticles for efficient linear DNA gene delivery.","authors":"Andrés Ramos-Valle, Henning Kirst, Mónica L Fanarraga","doi":"10.1080/10717544.2024.2385376","DOIUrl":"10.1080/10717544.2024.2385376","url":null,"abstract":"<p><p>Targeting, safety, scalability, and storage stability of vectors are still challenges in the field of nucleic acid delivery for gene therapy. Silica-based nanoparticles have been widely studied as gene carriers, exhibiting key features such as biocompatibility, simplistic synthesis, and enabling easy surface modifications for targeting. However, the ability of the formulation to incorporate DNA is limited, which restricts the number of DNA molecules that can be incorporated into the particle, thereby reducing gene expression. Here we use polymerase chain reaction (PCR)-generated linear DNA molecules to augment the coding sequences of gene-carrying nanoparticles, thereby maximizing nucleic acid loading and minimizing the size of these nanocarriers. This approach results in a remarkable 16-fold increase in protein expression six days post-transfection in cells transfected with particles carrying the linear DNA compared with particles bearing circular plasmid DNA. The study also showed that the use of linear DNA entrapped in DNA@SiO<sub>2</sub> resulted in a much more efficient level of gene expression compared to standard transfection reagents. The system developed in this study features simplicity, scalability, and increased transfection efficiency and gene expression over existing approaches, enabled by improved embedment capabilities for linear DNA, compared to conventional methods such as lipids or polymers, which generally show greater transfection efficiency with plasmid DNA. Therefore, this novel methodology can find applications not only in gene therapy but also in research settings for high-throughput gene expression screenings.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2385376"},"PeriodicalIF":6.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}