首页 > 最新文献

Enzyme and Microbial Technology最新文献

英文 中文
Lignin-based monophenolic model compounds in L-tyrosine derivative synthesis via tyrosine phenol lyase 通过酪氨酸苯酚裂解酶合成 L-酪氨酸衍生物中以木质素为基础的单酚模型化合物。
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-03 DOI: 10.1016/j.enzmictec.2024.110519
Idamaria Romakkaniemi, Johanna Panula-Perälä, Juha Ahola, Marja Mikola, Juha Tanskanen
Tyrosine phenol lyase (TPL) synthesises L-tyrosine derivatives from monophenols, pyruvate and ammonia. Production of such high-value aromatic chemicals from biomass-derived raw materials is of great interest. In this study, six monophenols (guaiacol, phenol, o-cresol, m-cresol, catechol and syringol) were chosen based on the structure of lignin and were studied as substrates in the enzymatic reaction. Single monophenol reactions (SMR) and binary monophenol reactions (BMR) with guaiacol were carried out. TPL-M379V was found to be selective towards guaiacol (84.5 % conv.). The highest single activity was measured towards phenol (93.9 % conv.). However, the enzyme preferred guaiacol over phenol in the BMRs. Syringol was found to be inert in the reaction, whereas catechol had an inhibitory effect on the enzymatic reaction, in addition to causing degradation of all the substrates in the medium. Doubling the guaiacol concentration in the SMR did not significantly increase the production of 3-O-methyldopa (conv. 45.9 %). However, in the binary reaction systems the total monophenol conversions were higher with guaiacol and phenol (total 62.4 %) or o-cresol (total 57.1 %). This indicates possible substrate/product specific inhibition. The study provides new data on activity, selectivity and inhibitory effects of monophenols in the synthetic reaction catalysed by TPL-M379V, especially in mixed-substrate reactions.
酪氨酸酚裂解酶(TPL)可从单酚、丙酮酸和氨中合成 L-酪氨酸衍生物。从生物质衍生原料中生产此类高价值芳香化学品具有重大意义。本研究根据木质素的结构选择了六种单酚(愈创木酚、苯酚、邻甲酚、间甲酚、儿茶酚和丁香酚)作为酶反应的底物进行研究。进行了与愈创木酚的单酚反应(SMR)和二元单酚反应(BMR)。研究发现,TPL-M379V 对愈创木酚具有选择性(84.5% 的转化率)。测得对苯酚的单一活性最高(93.9 % conv.)。然而,在 BMRs 中,该酶偏好愈创木酚而非苯酚。在反应中发现丁香酚是惰性的,而儿茶酚除了会导致培养基中所有底物的降解外,还会对酶反应产生抑制作用。将 SMR 中愈创木酚的浓度增加一倍并不能显著提高 3-O-甲基多巴的产量(conv. 45.9 %)。不过,在二元反应体系中,愈创木酚和苯酚(总转化率 62.4%)或邻甲酚(总转化率 57.1%)的单酚总转化率更高。这表明可能存在底物/产物特异性抑制。这项研究为 TPL-M379V 催化合成反应,特别是混合底物反应中单苯酚的活性、选择性和抑制作用提供了新的数据。
{"title":"Lignin-based monophenolic model compounds in L-tyrosine derivative synthesis via tyrosine phenol lyase","authors":"Idamaria Romakkaniemi,&nbsp;Johanna Panula-Perälä,&nbsp;Juha Ahola,&nbsp;Marja Mikola,&nbsp;Juha Tanskanen","doi":"10.1016/j.enzmictec.2024.110519","DOIUrl":"10.1016/j.enzmictec.2024.110519","url":null,"abstract":"<div><div>Tyrosine phenol lyase (TPL) synthesises L-tyrosine derivatives from monophenols, pyruvate and ammonia. Production of such high-value aromatic chemicals from biomass-derived raw materials is of great interest. In this study, six monophenols (guaiacol, phenol, o-cresol, m-cresol, catechol and syringol) were chosen based on the structure of lignin and were studied as substrates in the enzymatic reaction. Single monophenol reactions (SMR) and binary monophenol reactions (BMR) with guaiacol were carried out. TPL-M379V was found to be selective towards guaiacol (84.5 % conv.). The highest single activity was measured towards phenol (93.9 % conv.). However, the enzyme preferred guaiacol over phenol in the BMRs. Syringol was found to be inert in the reaction, whereas catechol had an inhibitory effect on the enzymatic reaction, in addition to causing degradation of all the substrates in the medium. Doubling the guaiacol concentration in the SMR did not significantly increase the production of 3-O-methyldopa (conv. 45.9 %). However, in the binary reaction systems the total monophenol conversions were higher with guaiacol and phenol (total 62.4 %) or o-cresol (total 57.1 %). This indicates possible substrate/product specific inhibition. The study provides new data on activity, selectivity and inhibitory effects of monophenols in the synthetic reaction catalysed by TPL-M379V, especially in mixed-substrate reactions.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"181 ","pages":"Article 110519"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein engineering of an alkaline protease from Bacillus licheniformis (BLAP) for efficient and specific chiral resolution of the racemic ethyl tetrahydrofuroate 地衣芽孢杆菌碱性蛋白酶(BLAP)的蛋白质工程,用于高效、特异性手性解析外消旋四氢糠酸乙酯。
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-03 DOI: 10.1016/j.enzmictec.2024.110523
Xinjun Yu , Yichao Li , Zhaoxia Qian, Litian Wei, Jing Xie, Meijun Tong, Yinjun Zhang
Enzymatic resolution of ethyl tetrahydrofuroate to produce (S)-2-ethyl tetrahydrofuroate and (R)-2-tetrahydrofuroic acid is a green biomanufacturing strategy. However, enzymatic activity and selectivity are still limiting factors of their industrial applications and development. In previous study, we incidentally found that a Bacillus licheniformis alkaline protease (BLAP), not a lipase, could specifically resolve ethyl tetrahydrofuroate to produce (S)-2-ethyl tetrahydrofuroate and (R)-2-tetrahydrofuroic acid. In this study, the point-saturation-mutation libraries based on the seven amino acid sites (L105, I113, P114, L115, V309, Y310, and M326) were constructed and screened using the molecular docking technology. It was found that activity of the mutant BLAPY310E reached 182.78 U/mL with high stereoselectivity, 3.14 times higher than that of the wild-type BLAP. Further simulated mutation analysis showed that the Y310E mutation increased the distance from the substrate ligand to the binding pocket from 2.3 Å to 4.5 Å, reducing steric hindrance to the active center. Under the optimal conditions and after 3.5 h of reaction catalyzed by BLAPY310E, 200 mM ethyl tetrahydrofuroate was converted to (S)-2-ethyl tetrahydrofuroate and (R)-2-tetrahydrofuroic acid with the ee values of 99.9 % and 68.63 %, respectively. The enantiomeric ratio of BLAPY310E was 105.5, which was 30.23 times higher than that of BLAP. This study advances the comprehension of protease activity and selectivity mechanisms in resolving ester substances and lays a robust foundation for the industrial production of the optically pure (S)-2-ethyl tetrahydrofuroate and (R)-2-tetrahydrofuroic acid via biological enzymatic methods.
酶解四氢糠酸乙酯生成(S)-2-四氢糠酸乙酯和(R)-2-四氢糠酸是一种绿色生物制造策略。然而,酶的活性和选择性仍是其工业应用和发展的限制因素。在之前的研究中,我们偶然发现地衣芽孢杆菌碱性蛋白酶(BLAP)而非脂肪酶能特异性地分解四氢糠酸乙酯,生成(S)-2-四氢糠酸乙酯和(R)-2-四氢糠酸。本研究构建了基于七个氨基酸位点(L105、I113、P114、L115、V309、Y310 和 M326)的点饱和突变库,并利用分子对接技术进行了筛选。结果发现,突变体BLAPY310E的活性达到182.78 U/mL,具有很高的立体选择性,是野生型BLAP的3.14倍。进一步的模拟突变分析表明,Y310E突变使底物配体到结合口袋的距离从2.3埃增加到4.5埃,减少了对活性中心的立体阻碍。在最佳条件下,BLAPY310E催化反应3.5 h后,200 mM四氢糠酸乙酯被转化为(S)-2-四氢糠酸乙酯和(R)-2-四氢糠酸,ee值分别为99.9 %和68.63 %。BLAPY310E 的对映体比率为 105.5,是 BLAP 的 30.23 倍。这项研究加深了人们对蛋白酶解析酯类物质的活性和选择性机制的理解,为通过生物酶解方法工业化生产光学纯的(S)-2-乙基四氢呋喃酸和(R)-2-四氢呋喃酸奠定了坚实的基础。
{"title":"Protein engineering of an alkaline protease from Bacillus licheniformis (BLAP) for efficient and specific chiral resolution of the racemic ethyl tetrahydrofuroate","authors":"Xinjun Yu ,&nbsp;Yichao Li ,&nbsp;Zhaoxia Qian,&nbsp;Litian Wei,&nbsp;Jing Xie,&nbsp;Meijun Tong,&nbsp;Yinjun Zhang","doi":"10.1016/j.enzmictec.2024.110523","DOIUrl":"10.1016/j.enzmictec.2024.110523","url":null,"abstract":"<div><div>Enzymatic resolution of ethyl tetrahydrofuroate to produce (<em>S</em>)-2-ethyl tetrahydrofuroate and (<em>R</em>)-2-tetrahydrofuroic acid is a green biomanufacturing strategy. However, enzymatic activity and selectivity are still limiting factors of their industrial applications and development. In previous study, we incidentally found that a <em>Bacillus licheniformis</em> alkaline protease (BLAP), not a lipase, could specifically resolve ethyl tetrahydrofuroate to produce (<em>S</em>)-2-ethyl tetrahydrofuroate and (<em>R</em>)-2-tetrahydrofuroic acid. In this study, the point-saturation-mutation libraries based on the seven amino acid sites (L105, I113, P114, L115, V309, Y310, and M326) were constructed and screened using the molecular docking technology. It was found that activity of the mutant BLAP<sup>Y310E</sup> reached 182.78 U/mL with high stereoselectivity, 3.14 times higher than that of the wild-type BLAP. Further simulated mutation analysis showed that the Y310E mutation increased the distance from the substrate ligand to the binding pocket from 2.3 Å to 4.5 Å, reducing steric hindrance to the active center. Under the optimal conditions and after 3.5 h of reaction catalyzed by BLAP<sup>Y310E</sup>, 200 mM ethyl tetrahydrofuroate was converted to (<em>S</em>)-2-ethyl tetrahydrofuroate and (<em>R</em>)-2-tetrahydrofuroic acid with the <em>ee</em> values of 99.9 % and 68.63 %, respectively. The enantiomeric ratio of BLAP<sup>Y310E</sup> was 105.5, which was 30.23 times higher than that of BLAP. This study advances the comprehension of protease activity and selectivity mechanisms in resolving ester substances and lays a robust foundation for the industrial production of the optically pure (<em>S</em>)-2-ethyl tetrahydrofuroate and (<em>R</em>)-2-tetrahydrofuroic acid via biological enzymatic methods.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"181 ","pages":"Article 110523"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of lycopene β-cyclase from Dunaliella bardawil for enhanced β-carotene production and salt tolerance 巴达维杜莎藻番茄红素β-环化酶的表征,以提高β-胡萝卜素产量和耐盐性。
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.enzmictec.2024.110520
Yu-Chen Xie , Zhi-Wei Ye , Jv-Liang Dai , Hao-Hong Chen , Jian-Guo Jiang
Dunaliella can accumulate more β-carotene (10 % or even more of the dry weight of cells) than any other species. Lycopene β-cyclase (LcyB) is the key enzyme in the catalysis of lycopene to β-carotene. In the present research, we used Escherichia coli BL21 (DE3) as host to construct two different types of engineering bacteria, one expressing the D. bardawil LcyB and the other expressing the orthologue Erwinia uredovora crtY. The catalytic ability of LcyB and CrtY were evaluated by comparing the β-carotene yields of the two E. coli BL21(DE3) strains, whose salt tolerance was simultaneously compared by cultivated them under different NaCl concentrations (1 %, 2 %, and 4 %). We also interfered with the LcyB gene to investigate the effect of LcyB in D. bardawil. Results displayed that the β-carotene yield of the LcyB-transformant significantly increased by about 48 % compared with the crtY-transformant. Additionally, LcyB was verified to be able to enhance the salt tolerance of E. coli BL21 (DE3). It is concluded that D. bardawil LcyB not only has better catalytic ability but also is able to confer salt tolerance to cells. Interfering D. bardawil LcyB induced the low expression of LcyB and the changes of growth and carotenoids metabolism in D. bardawil.
杜纳利藻积累的 β-胡萝卜素(占细胞干重的 10%,甚至更高)比任何其他物种都多。番茄红素β-环化酶(LcyB)是将番茄红素催化成β-胡萝卜素的关键酶。在本研究中,我们以大肠杆菌 BL21 (DE3) 为宿主,构建了两种不同类型的工程菌,一种表达 D. bardawil LcyB,另一种表达 Erwinia uredovora crtY 的直向同源物。通过比较两株大肠杆菌 BL21(DE3)的β-胡萝卜素产量,评估了 LcyB 和 CrtY 的催化能力。我们还干扰了 LcyB 基因,以研究 LcyB 对 D. bardawil 的影响。结果显示,与 crtY 转化株相比,LcyB 转化株的β-胡萝卜素产量显著增加了约 48%。此外,还验证了 LcyB 能够增强大肠杆菌 BL21 (DE3) 的耐盐性。结论是,D. bardawil LcyB 不仅具有更好的催化能力,还能赋予细胞耐盐性。干扰 D. bardawil LcyB 会导致 LcyB 的低表达以及 D. bardawil 生长和类胡萝卜素代谢的变化。
{"title":"Characterization of lycopene β-cyclase from Dunaliella bardawil for enhanced β-carotene production and salt tolerance","authors":"Yu-Chen Xie ,&nbsp;Zhi-Wei Ye ,&nbsp;Jv-Liang Dai ,&nbsp;Hao-Hong Chen ,&nbsp;Jian-Guo Jiang","doi":"10.1016/j.enzmictec.2024.110520","DOIUrl":"10.1016/j.enzmictec.2024.110520","url":null,"abstract":"<div><div><em>Dunaliella</em> can accumulate more β-carotene (10 % or even more of the dry weight of cells) than any other species. Lycopene β-cyclase (LcyB) is the key enzyme in the catalysis of lycopene to β-carotene. In the present research, we used <em>Escherichia coli</em> BL21 (DE3) as host to construct two different types of engineering bacteria, one expressing the <em>D. bardawil</em> LcyB and the other expressing the orthologue <em>Erwinia uredovora</em> crtY. The catalytic ability of LcyB and CrtY were evaluated by comparing the β-carotene yields of the two <em>E. coli</em> BL21(DE3) strains, whose salt tolerance was simultaneously compared by cultivated them under different NaCl concentrations (1 %, 2 %, and 4 %). We also interfered with the <em>LcyB</em> gene to investigate the effect of <em>LcyB</em> in <em>D. bardawil</em>. Results displayed that the β-carotene yield of the LcyB-transformant significantly increased by about 48 % compared with the crtY-transformant. Additionally, <em>LcyB</em> was verified to be able to enhance the salt tolerance of <em>E. coli</em> BL21 (DE3). It is concluded that <em>D. bardawil</em> LcyB not only has better catalytic ability but also is able to confer salt tolerance to cells. Interfering <em>D. bardawil LcyB</em> induced the low expression of LcyB and the changes of growth and carotenoids metabolism in <em>D. bardawil.</em></div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"181 ","pages":"Article 110520"},"PeriodicalIF":3.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Action pattern of Sulfolobus O-α-glycoligase for synthesis of highly water soluble resveratrol 3,4′-α-diglucoside 硫醇杆菌 O-α-糖苷酶合成高水溶性白藜芦醇 3,4′-α- 二糖苷的作用模式
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-24 DOI: 10.1016/j.enzmictec.2024.110518
Hee-Won Ahn , Jetendra Kumar Roy , Jaeick Lee , Mi-Jin Lee , Sang-Ho Yoo , Young-Wan Kim
This study presents the enzymatic synthesis of resveratrol-3,4′-O-α-diglucoside (RDG) using a hyperactive O-α-glycoligase (MalA-D416R/Q450S) and α-glucopyranosyl fluoride as the donor substrate. The transglycosylation rate for resveratrol by MalA-D416R/Q450S was maximized in 100 mM Tris-HCl (pH 9.5) containing 20 % DMSO at 45°C. Because the pKa of the 4′-OH group of resveratrol is lower than that of the 3-OH group, the 4′-OH group is more nucleophilic at the alkaline pH, leading to a preference for glycosylation at the 4′-OH site rather than the 3-OH site. This preference makes resveratrol 3-O-α-glucoside (R3G) as the more efficient acceptor than resveratrol 4′-O-α-glucoside (R4′G), resulting in negligible production of resveratrol 3-O-α-glucoside (R3G) due to its complete consumption in the second transglycosylation reaction when using a 2:1 ratio of donor to acceptor substrates. From a preparative scale reaction, R4′G and RDG were isolated with yields of 41.2 % and 43.3 %, respectively. The water solubility of RDG exceeded 1.67 M, which represents more than a 9,800-fold improvement compared to resveratrol. In a hydrolysis experiment using intestinal α-glycosidase from rat, the α-glucosides of resveratrol (R4′G and RDG) were completely deglycosylated to the aglycone.
本研究采用超活性 O-α-糖苷酶(MalA-D416R/Q450S)和α-吡喃葡萄糖酰氟作为供体底物,酶法合成了白藜芦醇-3,4′-O-α-二葡萄糖苷(RDG)。MalA-D416R/Q450S 在含有 20% DMSO 的 100 mM Tris-HCl(pH 9.5)、45°C 条件下对白藜芦醇的转糖基化率达到最大。由于白藜芦醇的 4′-OH基团的 pKa 低于 3-OH基团,因此 4′-OH基团在碱性 pH 值下更具亲核性,导致糖基化更倾向于 4′-OH位点而不是 3-OH位点。这种偏好使白藜芦醇 3-O-α-葡萄糖苷(R3G)成为比白藜芦醇 4′-O-α-葡萄糖苷(R4′G)更有效的受体,导致白藜芦醇 3-O-α-葡萄糖苷(R3G)的产量微乎其微,因为当供体和受体底物的比例为 2:1 时,它在第二次转糖基化反应中完全消耗掉了。在制备规模的反应中,分离出了 R4′G 和 RDG,产量分别为 41.2 % 和 43.3 %。RDG 的水溶性超过 1.67 M,与白藜芦醇相比提高了 9,800 多倍。在使用大鼠肠道α-糖苷酶进行的水解实验中,白藜芦醇的α-葡萄糖苷(R4′G 和 RDG)被完全脱糖为苷元。
{"title":"Action pattern of Sulfolobus O-α-glycoligase for synthesis of highly water soluble resveratrol 3,4′-α-diglucoside","authors":"Hee-Won Ahn ,&nbsp;Jetendra Kumar Roy ,&nbsp;Jaeick Lee ,&nbsp;Mi-Jin Lee ,&nbsp;Sang-Ho Yoo ,&nbsp;Young-Wan Kim","doi":"10.1016/j.enzmictec.2024.110518","DOIUrl":"10.1016/j.enzmictec.2024.110518","url":null,"abstract":"<div><div>This study presents the enzymatic synthesis of resveratrol-3,4′-O-α-diglucoside (RDG) using a hyperactive O-α-glycoligase (MalA-D416R/Q450S) and α-glucopyranosyl fluoride as the donor substrate. The transglycosylation rate for resveratrol by MalA-D416R/Q450S was maximized in 100 mM Tris-HCl (pH 9.5) containing 20 % DMSO at 45°C. Because the p<em>K</em><sub>a</sub> of the 4′-OH group of resveratrol is lower than that of the 3-OH group, the 4′-OH group is more nucleophilic at the alkaline pH, leading to a preference for glycosylation at the 4′-OH site rather than the 3-OH site. This preference makes resveratrol 3-O-α-glucoside (R3G) as the more efficient acceptor than resveratrol 4′-O-α-glucoside (R4′G), resulting in negligible production of resveratrol 3-O-α-glucoside (R3G) due to its complete consumption in the second transglycosylation reaction when using a 2:1 ratio of donor to acceptor substrates. From a preparative scale reaction, R4′G and RDG were isolated with yields of 41.2 % and 43.3 %, respectively. The water solubility of RDG exceeded 1.67 M, which represents more than a 9,800-fold improvement compared to resveratrol. In a hydrolysis experiment using intestinal α-glycosidase from rat, the α-glucosides of resveratrol (R4′G and RDG) were completely deglycosylated to the aglycone.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"181 ","pages":"Article 110518"},"PeriodicalIF":3.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in ficin specificity by different substrate proteins promoted by enzyme immobilization 酶固定化促进不同底物蛋白改变菲辛的特异性
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-21 DOI: 10.1016/j.enzmictec.2024.110517
Alex D. Gonzalez-Vasquez , El Siar Hocine , Marcela Urzúa , Javier Rocha-Martin , Roberto Fernandez-Lafuente
Ficin extract has been immobilized using different supports: glyoxyl and Aspartic/1,6 hexamethylenediamine (Asp/HA) agarose beads. The latter was later submitted to glutaraldehyde modification to get covalent immobilization. The activities of these 3 kinds of biocatalysts were compared utilizing 4 different substrates, casein, hemoglobin and bovine serum albumin and benzoyl-arginine-p-nitroanilide at pH 7 and 5. Using glyoxyl-agarose, the effect of enzyme-support reaction time on the activity versus the four substrates at both pH values was studied. Reaction time has been shown to distort the enzyme due to an increase in the number of covalent support-enzyme bonds. Surprisingly, for all the substrates and conditions the prolongation of the enzyme-support reaction did not imply a decrease in enzyme activity. Using the Asp/HA supports (with different amount of HA) differences in the effect on enzyme activity versus the different substrates are much more significant, while with some substrates the immobilization produced a decrease in enzyme activity, with in other cases the activity increased. These different effects are even increased after glutaraldehyde treatment. That way, the conformational changes induced by the biocatalyst immobilization or the chemical modification fully altered the enzyme protein specificity. This may also have some implications when following enzyme inactivation.
Ficin 提取物使用不同的支持物进行固定:乙醛基和天冬氨酸/1,6-己二胺(Asp/HA)琼脂糖珠。后者后来经过戊二醛修饰,实现了共价固定。利用 4 种不同的底物(酪蛋白、血红蛋白、牛血清白蛋白和苯甲酰精氨酸对硝基苯胺),在 pH 值为 7 和 5 的条件下比较了这 3 种生物催化剂的活性。利用乙醛基琼脂糖,研究了在两种 pH 值下酶支持反应时间对四种底物活性的影响。事实证明,反应时间会使酶变形,因为共价支持键-酶键的数量会增加。令人惊讶的是,在所有底物和条件下,酶与支持物反应时间的延长并不意味着酶活性的降低。使用 Asp/HA 支持物(HA 含量不同)时,不同底物对酶活性的影响差异要大得多。这些不同的影响在戊二醛处理后甚至会加剧。因此,生物催化剂固定化或化学修饰引起的构象变化完全改变了酶蛋白的特异性。这也可能对酶失活后产生一些影响。
{"title":"Changes in ficin specificity by different substrate proteins promoted by enzyme immobilization","authors":"Alex D. Gonzalez-Vasquez ,&nbsp;El Siar Hocine ,&nbsp;Marcela Urzúa ,&nbsp;Javier Rocha-Martin ,&nbsp;Roberto Fernandez-Lafuente","doi":"10.1016/j.enzmictec.2024.110517","DOIUrl":"10.1016/j.enzmictec.2024.110517","url":null,"abstract":"<div><div>Ficin extract has been immobilized using different supports: glyoxyl and Aspartic/1,6 hexamethylenediamine (Asp/HA) agarose beads. The latter was later submitted to glutaraldehyde modification to get covalent immobilization. The activities of these 3 kinds of biocatalysts were compared utilizing 4 different substrates, casein, hemoglobin and bovine serum albumin and benzoyl-arginine-p-nitroanilide at pH 7 and 5. Using glyoxyl-agarose, the effect of enzyme-support reaction time on the activity versus the four substrates at both pH values was studied. Reaction time has been shown to distort the enzyme due to an increase in the number of covalent support-enzyme bonds. Surprisingly, for all the substrates and conditions the prolongation of the enzyme-support reaction did not imply a decrease in enzyme activity. Using the Asp/HA supports (with different amount of HA) differences in the effect on enzyme activity versus the different substrates are much more significant, while with some substrates the immobilization produced a decrease in enzyme activity, with in other cases the activity increased. These different effects are even increased after glutaraldehyde treatment. That way, the conformational changes induced by the biocatalyst immobilization or the chemical modification fully altered the enzyme protein specificity. This may also have some implications when following enzyme inactivation.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"181 ","pages":"Article 110517"},"PeriodicalIF":3.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141022924001248/pdfft?md5=4a8c2db0aa168bda301afda3b77f7953&pid=1-s2.0-S0141022924001248-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly(3-hydroxybutyrate) production for food packaging from biomass derived carbohydrates by cupriavidus necator DSM 545 利用坏死葡萄球菌 DSM 545 从生物质中提取的碳水化合物生产用于食品包装的聚(3-羟基丁酸)乙酸酯
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-17 DOI: 10.1016/j.enzmictec.2024.110516
Gianfrancesco Russo , Paola Scocca , Mattia Gelosia , Giacomo Fabbrizi , Tommaso Giannoni , Stefania Urbani , Sonia Esposto , Andrea Nicolini

The extensive utilization of conventional plastics has resulted in a concerning surge in waste. A potential solution lies in biodegradable polymers mostly derived from renewable sources. Cupriavidus necator DSM 545 is a microorganism capable, under stress conditions, of intracellularly accumulating Poly(3-hydroxybutyrate) (PHB), a bio-polyester. This study aimed to identify optimal conditions to maximize the intracellular accumulation of PHB and its global production using natural media obtained by processing lignocellulosic residues of cardoon, a low-cost feedstock. An intracellular PHB accumulation was observed in all of the tested media, indicating a metabolic stress induced by the lack of macronutrients. Increasing C/N ratios led to a significant decrease in cellular biomass and PHB production. Furthermore C. necator DSM 545 was incapable of consuming more than 25 g/L of supplied monosaccharides. Surprisingly, in the samples supplied with 60 % of the pentose-rich liquid fraction, complete consumption of xylose was observed. This result was also confirmed by subsequent tests using Medium 1 growth media containing xylose as the sole carbon source. Using a diluted medium with a C/N ratio of 5, a PHB production of 5.84 g/L and intracellular PHB accumulation of 77 % w/w were respectively achieved. Finally, comparative shelf-life tests conducted against conventional pre-packaging materials in PP suggested that PHB films performed similarly in preserve ready-to-eat products.

传统塑料的广泛使用导致废物激增,令人担忧。生物可降解聚合物是一种潜在的解决方案,这种聚合物大多来自可再生来源。坏死葡萄球菌(Cupriavidus necator)DSM 545 是一种微生物,在压力条件下能够在细胞内积累生物聚酯聚(3-羟基丁酸)(PHB)。本研究旨在确定最佳条件,以最大限度地提高 PHB 的细胞内积累,并利用加工低成本原料--芒果的木质纤维素残渣所获得的天然培养基生产 PHB。在所有测试的培养基中都观察到了细胞内 PHB 的积累,这表明缺乏大量营养物质会导致新陈代谢压力。提高 C/N 比会导致细胞生物量和 PHB 产量显著下降。此外,C. necator DSM 545 无法消耗超过 25 克/升的单糖。令人惊讶的是,在富含 60% 戊糖液体组分的样品中,木糖被完全消耗。随后使用含木糖作为唯一碳源的 Medium 1 生长培养基进行的测试也证实了这一结果。使用 C/N 比为 5 的稀释培养基,PHB 产量分别达到 5.84 克/升和 77 % w/w 的胞内 PHB 积累。最后,与传统的聚丙烯预包装材料进行的货架期比较测试表明,PHB 薄膜在保存即食产品方面的表现类似。
{"title":"Poly(3-hydroxybutyrate) production for food packaging from biomass derived carbohydrates by cupriavidus necator DSM 545","authors":"Gianfrancesco Russo ,&nbsp;Paola Scocca ,&nbsp;Mattia Gelosia ,&nbsp;Giacomo Fabbrizi ,&nbsp;Tommaso Giannoni ,&nbsp;Stefania Urbani ,&nbsp;Sonia Esposto ,&nbsp;Andrea Nicolini","doi":"10.1016/j.enzmictec.2024.110516","DOIUrl":"10.1016/j.enzmictec.2024.110516","url":null,"abstract":"<div><p>The extensive utilization of conventional plastics has resulted in a concerning surge in waste. A potential solution lies in biodegradable polymers mostly derived from renewable sources. <em>Cupriavidus necator</em> DSM 545 is a microorganism capable, under stress conditions, of intracellularly accumulating Poly(3-hydroxybutyrate) (PHB), a bio-polyester. This study aimed to identify optimal conditions to maximize the intracellular accumulation of PHB and its global production using natural media obtained by processing lignocellulosic residues of cardoon, a low-cost feedstock. An intracellular PHB accumulation was observed in all of the tested media, indicating a metabolic stress induced by the lack of macronutrients. Increasing C/N ratios led to a significant decrease in cellular biomass and PHB production. Furthermore <em>C. necator</em> DSM 545 was incapable of consuming more than 25 g/L of supplied monosaccharides. Surprisingly, in the samples supplied with 60 % of the pentose-rich liquid fraction, complete consumption of xylose was observed. This result was also confirmed by subsequent tests using Medium 1 growth media containing xylose as the sole carbon source. Using a diluted medium with a C/N ratio of 5, a PHB production of 5.84 g/L and intracellular PHB accumulation of 77 % w/w were respectively achieved. Finally, comparative shelf-life tests conducted against conventional pre-packaging materials in PP suggested that PHB films performed similarly in preserve ready-to-eat products.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"181 ","pages":"Article 110516"},"PeriodicalIF":3.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141022924001236/pdfft?md5=c85d42688356aef8de5e917227dcb749&pid=1-s2.0-S0141022924001236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Runella zeae D-mannose 2-epimerase and its expression in Bacillus subtilis for D-mannose production from D-glucose Runella zeae D-甘露糖 2-酰亚胺酶的特征及其在枯草芽孢杆菌中的表达,以利用 D-葡萄糖生产 D-甘露糖
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-05 DOI: 10.1016/j.enzmictec.2024.110506
Yuhan Wei , Wei Xu , Wenli Zhang , Penka Petrova , Kaloyan Petrov , Dawei Ni , Wanmeng Mu

D-Mannose 2-epimerase (MEase) catalyzes the bioconversion between D-glucose and D-mannose. It is an important potential biocatalyst for large-scale production of D-mannose, a functional monosaccharide used in pharmaceutical and food industries. In this study, a new microbial MEase was characterized from Runella zeae DSM 19591. The enzyme was purified by one-step nickel-affinity chromatography and determined to be a dimeric protein with two identical subunits of approximately 86.1 kDa by gel filtration. The enzyme showed the highest activity at pH 8.0 and 40 °C, with a specific activity of 2.99 U/mg on D-glucose and 3.71 U/mg on D-mannose. The melting temperature (Tm) was 49.4 °C and the half-life was 115.14 and 3.23 h at 35 and 40 °C, respectively. The purified enzyme (1 U/mL) produced 115.7 g/L of D-mannose from 500 g/L of D-glucose for 48 h, with a conversion ratio of 23.14 %. It was successfully expressed in Bacillus subtilis WB600 via pP43NMK as the vector. The highest fermentation activity was 10.58 U/mL after fed-batch cultivation for 28 h, and the whole cells of recombinant B. subtilis produced 114.0 g/L of D-mannose from 500 g/L of D-glucose, with a conversion ratio of 22.8 %.

D-Mannose 2-epimerase (MEase) 催化 D-葡萄糖和 D-甘露糖之间的生物转化。它是大规模生产 D-甘露糖(一种用于制药和食品工业的功能性单糖)的重要潜在生物催化剂。本研究对 Runella zeae DSM 19591 的一种新型微生物 MEase 进行了鉴定。通过一步镍亲和层析法纯化了该酶,并通过凝胶过滤确定其为二聚体蛋白,含有两个相同的亚基,分子量约为 86.1 kDa。该酶在 pH 值为 8.0、温度为 40 ℃ 时活性最高,对 D-葡萄糖的比活度为 2.99 U/mg ,对 D-甘露糖的比活度为 3.71 U/mg 。熔融温度(Tm)为 49.4 °C,在 35 °C和 40 °C时的半衰期分别为 115.14 和 3.23 h。纯化酶(1 U/mL)从 500 g/L D-葡萄糖中产生 115.7 g/L D-甘露糖,持续 48 h,转化率为 23.14 %。该酶以 pP43NMK 为载体在枯草芽孢杆菌 WB600 中成功表达。重组枯草芽孢杆菌全细胞从 500 g/L 的 D-葡萄糖中产生 114.0 g/L 的 D-甘露糖,转化率为 22.8 %。
{"title":"Characterization of Runella zeae D-mannose 2-epimerase and its expression in Bacillus subtilis for D-mannose production from D-glucose","authors":"Yuhan Wei ,&nbsp;Wei Xu ,&nbsp;Wenli Zhang ,&nbsp;Penka Petrova ,&nbsp;Kaloyan Petrov ,&nbsp;Dawei Ni ,&nbsp;Wanmeng Mu","doi":"10.1016/j.enzmictec.2024.110506","DOIUrl":"10.1016/j.enzmictec.2024.110506","url":null,"abstract":"<div><p>D-Mannose 2-epimerase (MEase) catalyzes the bioconversion between D-glucose and D-mannose. It is an important potential biocatalyst for large-scale production of D-mannose, a functional monosaccharide used in pharmaceutical and food industries. In this study, a new microbial MEase was characterized from <em>Runella zeae</em> DSM 19591. The enzyme was purified by one-step nickel-affinity chromatography and determined to be a dimeric protein with two identical subunits of approximately 86.1 kDa by gel filtration. The enzyme showed the highest activity at pH 8.0 and 40 °C, with a specific activity of 2.99 U/mg on D-glucose and 3.71 U/mg on D-mannose. The melting temperature (<em>T</em><sub>m</sub>) was 49.4 °C and the half-life was 115.14 and 3.23 h at 35 and 40 °C, respectively. The purified enzyme (1 U/mL) produced 115.7 g/L of D-mannose from 500 g/L of D-glucose for 48 h, with a conversion ratio of 23.14 %. It was successfully expressed in <em>Bacillus subtilis</em> WB600 via pP43NMK as the vector. The highest fermentation activity was 10.58 U/mL after fed-batch cultivation for 28 h, and the whole cells of recombinant <em>B. subtilis</em> produced 114.0 g/L of D-mannose from 500 g/L of D-glucose, with a conversion ratio of 22.8 %.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"181 ","pages":"Article 110506"},"PeriodicalIF":3.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penicillin binding proteins-based immunoassay for the selective and quantitative determination of beta-lactam antibiotics 基于青霉素结合蛋白的免疫测定法,用于选择性定量测定β-内酰胺类抗生素。
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-04 DOI: 10.1016/j.enzmictec.2024.110507
Rilong Liu , Hangzhen Lan , Song Yan , Lu Huang , Daodong Pan , Yichun Wu

An immunoassay method based on penicillin-binding protein (PBP) was developed for the quantitative determination of 10 kinds of beta-lactam antibiotics (BLAs). First, two kinds of PBPs, which are named PBP1a and PBP2x, were expressed and purified, and they were characterized by SDS-PAGE and western blotting analysis. Then, the binding activity of PBP1a and PBP2x to template BLAs, cefquinome (CEFQ) and ampicillin (AMP), was determined. The effect of the buffer solution system, e.g., pH, ion concentration, and organic solvent, on the immune interaction efficiency between PBPs and BLAs was also evaluated. In the end, the PBP-based immunoassay method was developed and validated for the detection of 10 kinds of BLAs. Under optimal conditions, PBPs exhibited high binding affinity to BLAs. In addition, this method showed a high sensitivity for the detection of 10 kinds of BLAs with the limits of detection from 0.21 to 9.12 ng/mL, which are much lower than their corresponding maximum residual limit of European Union (4–100 ng/mL). Moreover, the developed PBP-immunoassay was employed for BLA detection from milk samples, and satisfactory recoveries (68.9–101.3 %) were obtained.

建立了一种基于青霉素结合蛋白(PBP)的免疫测定方法,用于定量检测10种β-内酰胺类抗生素(BLAs)。首先,表达并纯化了两种 PBPs,分别命名为 PBP1a 和 PBP2x。然后,测定了 PBP1a 和 PBP2x 与模板 BLAs(头孢喹诺(CEFQ)和氨苄青霉素(AMP))的结合活性。此外,还评估了缓冲溶液体系(如 pH 值、离子浓度和有机溶剂)对 PBPs 和 BLAs 免疫相互作用效率的影响。最后,建立了基于 PBP 的免疫测定方法,并对 10 种 BLAs 的检测进行了验证。在最佳条件下,PBPs 与 BLAs 具有很高的结合亲和力。此外,该方法对10种BLAs的检测灵敏度高,检出限为0.21-9.12 ng/mL,远低于欧盟规定的相应最大残留限量(4-100 ng/mL)。此外,所开发的 PBP 免疫分析法还被用于牛奶样品中 BLA 的检测,并获得了令人满意的回收率(68.9%-101.3%)。
{"title":"Penicillin binding proteins-based immunoassay for the selective and quantitative determination of beta-lactam antibiotics","authors":"Rilong Liu ,&nbsp;Hangzhen Lan ,&nbsp;Song Yan ,&nbsp;Lu Huang ,&nbsp;Daodong Pan ,&nbsp;Yichun Wu","doi":"10.1016/j.enzmictec.2024.110507","DOIUrl":"10.1016/j.enzmictec.2024.110507","url":null,"abstract":"<div><p>An immunoassay method based on penicillin-binding protein (PBP) was developed for the quantitative determination of 10 kinds of beta-lactam antibiotics (BLAs). First, two kinds of PBPs, which are named PBP1a and PBP2x, were expressed and purified, and they were characterized by SDS-PAGE and western blotting analysis. Then, the binding activity of PBP1a and PBP2x to template BLAs, cefquinome (CEFQ) and ampicillin (AMP), was determined. The effect of the buffer solution system, e.g., pH, ion concentration, and organic solvent, on the immune interaction efficiency between PBPs and BLAs was also evaluated. In the end, the PBP-based immunoassay method was developed and validated for the detection of 10 kinds of BLAs. Under optimal conditions, PBPs exhibited high binding affinity to BLAs. In addition, this method showed a high sensitivity for the detection of 10 kinds of BLAs with the limits of detection from 0.21 to 9.12 ng/mL, which are much lower than their corresponding maximum residual limit of European Union (4–100 ng/mL). Moreover, the developed PBP-immunoassay was employed for BLA detection from milk samples, and satisfactory recoveries (68.9–101.3 %) were obtained.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"181 ","pages":"Article 110507"},"PeriodicalIF":3.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutant β-fructofuranosidase synthesizing blastose [β-d-Fruf-(2→6)-d-Glcp] 合成爆炸糖[β-d-Fruf-(2→6)-d-Glcp]的突变体β-呋喃果糖苷酶
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-25 DOI: 10.1016/j.enzmictec.2024.110500
Atsuki Takagi, Takayoshi Tagami, Masayuki Okuyama

Fructooligosaccharides (FOS) are leading prebiotics that help keep the gut healthy and aid wellness by stimulating the growth and activity of beneficial intestinal bacteria. The best-studied FOS are inulin-type FOS, mainly oligosaccharides with β-Fruf-(2→1)-Fruf linkages, including 1-kestose [β-Fruf-(2→1)-β-Fruf-(2↔1)-α-Glcp] and nystose [β-Fruf-(2→1)-β-Fruf-(2→1)-β-Fruf-(2↔1)-α-Glcp]. However, the properties of other types of FOS—levan-type FOS with β-Fruf-(2→6)-Fruf linkages and neo-type FOS with β-Fruf-(2→6)-Glcp linkages—remain ambiguous because efficient methods have not been established for their synthesis. Here, using site-saturation mutation of residue His79 of β-fructofuranosidase from Zymomonas mobilis NBRC13756, we successfully obtained a mutant β-fructofuranosidase that specifically produces neo-type FOS. The H79G enzyme variant loses the native β-Fruf-(2→1)-Fru-transfer ability (which produces 1-kestose), and instead has β-Fruf-(2→6)-Glc-transfer ability and produces neokestose. Its hydrolytic activity specific to the β-Fruf-(2↔1)-α-Glcp bond of neokestose then yields blastose [β-Fruf-(2→6)-Glcp]. The enzyme produces 0.4 M blastose from 1.0 M sucrose (80 % of the theoretical yield). The production system for blastose established here will contribute to the elucidation of the physiological functions of this disaccharide.

果寡糖(FOS)是一种主要的益生元,通过刺激肠道有益菌的生长和活动,有助于保持肠道健康和帮助养生。研究得最好的果寡糖是菊粉型果寡糖,主要是具有β-Fruf-(2→1)-Fruf连接的低聚糖,包括1-estose [β-Fruf-(2→1)-β-Fruf-(2↔1)-α-Glcp]和nystose [β-Fruf-(2→1)-β-Fruf-(2→1)-β-Fruf-(2↔1)-α-Glcp]。然而,其他类型的 FOS--具有 β-Fruf-(2→6)-Fruf连接的levan型FOS和具有 β-Fruf-(2→6)-Glcp连接的neo型FOS--由于尚未建立有效的合成方法,其性质仍然不明确。在这里,我们利用对莫比莱兹单胞菌(Zymomonas mobilis NBRC13756)β-呋喃果糖苷酶残基 His79 的位点饱和突变,成功地获得了一种能特异性产生新型 FOS 的突变体 β-呋喃果糖苷酶。H79G 酶变体失去了原生的 β-Fruf-(2→1)-Fru-转移能力(产生 1-蔗糖),转而具有 β-Fruf-(2→6)-Glc-转移能力并产生新蔗糖。它对新酮糖中的β-Fruf-(2↔1)-α-Glcp 键具有特异性水解活性,然后产生布拉斯糖[β-Fruf-(2→6)-Glcp]。该酶可从 1.0 M 蔗糖中产生 0.4 M 的蔗糖(理论产量的 80%)。在此建立的蔗糖生产系统将有助于阐明这种二糖的生理功能。
{"title":"Mutant β-fructofuranosidase synthesizing blastose [β-d-Fruf-(2→6)-d-Glcp]","authors":"Atsuki Takagi,&nbsp;Takayoshi Tagami,&nbsp;Masayuki Okuyama","doi":"10.1016/j.enzmictec.2024.110500","DOIUrl":"10.1016/j.enzmictec.2024.110500","url":null,"abstract":"<div><p>Fructooligosaccharides (FOS) are leading prebiotics that help keep the gut healthy and aid wellness by stimulating the growth and activity of beneficial intestinal bacteria. The best-studied FOS are inulin-type FOS, mainly oligosaccharides with β-Fru<em>f</em>-(2→1)-Fru<em>f</em> linkages, including 1-kestose [β-Fru<em>f</em>-(2→1)-β-Fru<em>f</em>-(2↔1)-α-Glc<em>p</em>] and nystose [β-Fru<em>f</em>-(2→1)-β-Fru<em>f</em>-(2→1)-β-Fru<em>f</em>-(2↔1)-α-Glc<em>p</em>]. However, the properties of other types of FOS—levan-type FOS with β-Fru<em>f</em>-(2→6)-Fru<em>f</em> linkages and neo-type FOS with β-Fru<em>f</em>-(2→6)-Glc<em>p</em> linkages—remain ambiguous because efficient methods have not been established for their synthesis. Here, using site-saturation mutation of residue His79 of β-fructofuranosidase from <em>Zymomonas mobilis</em> NBRC13756, we successfully obtained a mutant β-fructofuranosidase that specifically produces neo-type FOS. The H79G enzyme variant loses the native β-Fru<em>f</em>-(2→1)-Fru-transfer ability (which produces 1-kestose), and instead has β-Fru<em>f</em>-(2→6)-Glc-transfer ability and produces neokestose. Its hydrolytic activity specific to the β-Fru<em>f</em>-(2↔1)-α-Glc<em>p</em> bond of neokestose then yields blastose [β-Fru<em>f</em>-(2→6)-Glc<em>p</em>]. The enzyme produces 0.4 M blastose from 1.0 M sucrose (80 % of the theoretical yield). The production system for blastose established here will contribute to the elucidation of the physiological functions of this disaccharide.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"180 ","pages":"Article 110500"},"PeriodicalIF":3.4,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-rational engineering of ω-transaminase for enhanced enzymatic activity to 2-ketobutyrate 对ω-反转氨酶进行半合理工程设计,以增强其对 2-酮丁酸的酶活性
IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-24 DOI: 10.1016/j.enzmictec.2024.110505
Lili Zhang , Yu Hong , Jiapeng Lu , Yi Wang , Wei Luo

Transaminases (EC 2.6.1.X, TAs) are important biocatalysts in the synthesis of chiral amines, and have significant value in the field of medicine. However, TAs suffer from low enzyme activity and poor catalytic efficiency in the synthesis of chiral amines or non-natural amino acids, which hinders their industrial applications. In this study, a novel TA derived from Paracoccus pantotrophus (ppTA) that was investigated in our previous study was employed with a semi-rational design strategy to improve its enzyme activity to 2-ketobutyrate. By using homology modeling and molecular docking, four surrounding sites in the substrate-binding S pocket were selected as potential mutational sites. Through alanine scanning and saturation mutagenesis, the optimal mutant V153A with significantly improved enzyme activity was finally obtained, which was 578 % higher than that of the wild-type ppTA (WT). Furthermore, the mutant enzyme ppTA-V153A also exhibited slightly improved temperature and pH stability compared to WT. Subsequently, the mutant was used to convert 2-ketobutyrate for the preparation of L-2-aminobutyric acid (L-ABA). The mutant can tolerate 300 mM 2-ketobutyrate with a conversion rate of 74 %, which lays a solid foundation for the preparation of chiral amines.

转氨酶(EC 2.6.1.X,TAs)是合成手性胺的重要生物催化剂,在医药领域具有重要价值。然而,TAs 在合成手性胺或非天然氨基酸时存在酶活性低、催化效率低等问题,这阻碍了它们在工业上的应用。在本研究中,我们采用半理性设计策略,对先前研究中研究过的一种来自泛酸副球菌(ppTA)的新型 TA 进行了研究,以提高其对 2-Ketobutyrate 的酶活性。通过同源建模和分子对接,选择了底物结合 S 袋周围的四个位点作为潜在的突变位点。通过丙氨酸扫描和饱和突变,最终获得了酶活性显著提高的最佳突变体 V153A,其酶活性比野生型 ppTA(WT)高出 578%。此外,与 WT 相比,突变体酶 ppTA-V153A 的温度和 pH 稳定性也略有提高。随后,该突变体被用于转化 2-酮丁酸以制备 L-2-氨基丁酸(L-ABA)。该突变体可耐受 300 mM 2-酮丁酸,转化率为 74%,这为制备手性胺奠定了坚实的基础。
{"title":"Semi-rational engineering of ω-transaminase for enhanced enzymatic activity to 2-ketobutyrate","authors":"Lili Zhang ,&nbsp;Yu Hong ,&nbsp;Jiapeng Lu ,&nbsp;Yi Wang ,&nbsp;Wei Luo","doi":"10.1016/j.enzmictec.2024.110505","DOIUrl":"10.1016/j.enzmictec.2024.110505","url":null,"abstract":"<div><p>Transaminases (EC 2.6.1.X, TAs) are important biocatalysts in the synthesis of chiral amines, and have significant value in the field of medicine. However, TAs suffer from low enzyme activity and poor catalytic efficiency in the synthesis of chiral amines or non-natural amino acids, which hinders their industrial applications. In this study, a novel TA derived from <em>Paracoccus pantotrophus</em> (<em>pp</em>TA) that was investigated in our previous study was employed with a semi-rational design strategy to improve its enzyme activity to 2-ketobutyrate. By using homology modeling and molecular docking, four surrounding sites in the substrate-binding S pocket were selected as potential mutational sites. Through alanine scanning and saturation mutagenesis, the optimal mutant V153A with significantly improved enzyme activity was finally obtained, which was 578 % higher than that of the wild-type <em>pp</em>TA (WT). Furthermore, the mutant enzyme <em>pp</em>TA-V153A also exhibited slightly improved temperature and pH stability compared to WT. Subsequently, the mutant was used to convert 2-ketobutyrate for the preparation of L-2-aminobutyric acid (L-ABA). The mutant can tolerate 300 mM 2-ketobutyrate with a conversion rate of 74 %, which lays a solid foundation for the preparation of chiral amines.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"180 ","pages":"Article 110505"},"PeriodicalIF":3.4,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Enzyme and Microbial Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1