Plants activate defense machinery when infested by herbivorous insects but avoid such costs in the absence of herbivory. However, the key signaling pathway regulators underlying such flexibility and the mechanisms that insects exploit these components to disarm plant defense systems remain elusive. Here, it is reported that immune repressor 14-3-3e in rice Oryza sativa (OsGF14e) regulates immune homeostasis. Infestation with brown planthopper (BPH) Nilaparvata lugens decreased OsGF14e expression; however, the level of downregulation is limited both by the short duration and the specific feeding location. OsGF14e interacts with Enhanced Disease Resistance 1-like (OsEDR1l), a Raf-like MAP kinase kinase kinase (MAPKKK), and repressed jasmonic acid, jasmonic acid-isoleucine, and H2O2 accumulation by enhancing OsEDR1l abundance and signaling ability. OsGF14e and OsEDR1l overexpression renders rice susceptible to BPH, whereas their knockout increases plant resistance but compromises rice growth and grain yield. Intriguingly, BPH 14-3-3e protein (Nl14) that shares high sequence homology and structural similarity with OsGF14e is identified from BPH saliva and egg-associated secretions. Mediated through BPH feeding and oviposition, Nl14, similar to OsGF14e, interacts with OsEDR1l and triggers the OsEDR1l signaling, thereby suppressing plant defenses and facilitating BPH infestation. Apparently, structural and functional mimicry makes it possible for this newly discovered BPH effector to exploit rice OsGF14e-EDR1l immune suppression module. The results reveal a novel mechanism deployed by herbivorous insects, in a manner similar to certain pathogen effectors, to evade host plant defenses by mimicking host immune regulators.
{"title":"An Insect Effector Mimics Its Host Immune Regulator to Undermine Plant Immunity.","authors":"Jianmei Fu, Shuai Li, Jing Li, Zhichang Zhao, Jing Li, Xinyang Tan, Shan Yu, Maofeng Jing, Keyan Zhu-Salzman, Jichao Fang, Rui Ji","doi":"10.1002/advs.202409186","DOIUrl":"https://doi.org/10.1002/advs.202409186","url":null,"abstract":"<p><p>Plants activate defense machinery when infested by herbivorous insects but avoid such costs in the absence of herbivory. However, the key signaling pathway regulators underlying such flexibility and the mechanisms that insects exploit these components to disarm plant defense systems remain elusive. Here, it is reported that immune repressor 14-3-3e in rice Oryza sativa (OsGF14e) regulates immune homeostasis. Infestation with brown planthopper (BPH) Nilaparvata lugens decreased OsGF14e expression; however, the level of downregulation is limited both by the short duration and the specific feeding location. OsGF14e interacts with Enhanced Disease Resistance 1-like (OsEDR1l), a Raf-like MAP kinase kinase kinase (MAPKKK), and repressed jasmonic acid, jasmonic acid-isoleucine, and H<sub>2</sub>O<sub>2</sub> accumulation by enhancing OsEDR1l abundance and signaling ability. OsGF14e and OsEDR1l overexpression renders rice susceptible to BPH, whereas their knockout increases plant resistance but compromises rice growth and grain yield. Intriguingly, BPH 14-3-3e protein (Nl14) that shares high sequence homology and structural similarity with OsGF14e is identified from BPH saliva and egg-associated secretions. Mediated through BPH feeding and oviposition, Nl14, similar to OsGF14e, interacts with OsEDR1l and triggers the OsEDR1l signaling, thereby suppressing plant defenses and facilitating BPH infestation. Apparently, structural and functional mimicry makes it possible for this newly discovered BPH effector to exploit rice OsGF14e-EDR1l immune suppression module. The results reveal a novel mechanism deployed by herbivorous insects, in a manner similar to certain pathogen effectors, to evade host plant defenses by mimicking host immune regulators.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2409186"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Zhu, Tinghua Li, Xinhao Peng, Xiaoxian Zhang, Xuequan Zhang, Qiusheng Wang, Lei Lei, Jun Zhang, Bin He, Jun Cao
MXenzymes, a promising class of catalytic therapeutic material, offer great potential for tumor treatment, but they encounter significant obstacles due to suboptimal catalytic efficiency and kinetics in the tumor microenvironment (TME). Herein, this study draws inspiration from the electronic structure of transition metal vanadium, proposing the leverage of TME specific-features to induce structural transformations in sheet-like vanadium carbide MXenzymes (TVMz). These transformations trigger cascading catalytic reactions that amplify oxidative stress, thereby significantly enhancing multimodal tumor therapy. Specifically, the engineered HTVMz, coated with hyaluronic acid, exhibits good stability and generates a thermal effect under NIR-II laser irradiation. The thermal effect, combined with TME characteristics, facilities a structural transformation into ultra-small vanadium oxide nanozymes (VOx). The enlarged surface area of VOx substantially enhances ROS regeneration and amplifies oxidative stress, which promotes lysosomal permeability and induces endoplasmic reticulum stress. The high-valent vanadium in VOx interacts with intracellular glutathione, disrupting redox homeostasis and intensifying oxidative stress further. These amplifications accelerate tumor apoptosis, induce ferroptosis, and suppress HSP90 expression. Consequently, the heightened thermal sensitivity of HTVMz synergistically promotes tumor cell death via multimodal therapeutic pathways. This study presents an innovative strategy for tumor catalytic therapy by manipulating MXenzymes structures, advancing the field of catalytic therapy.
{"title":"Tumor Microenvironment-Driven Structural Transformation of Vanadium-Based MXenzymes to Amplify Oxidative Stress for Multimodal Tumor Therapy.","authors":"Hai Zhu, Tinghua Li, Xinhao Peng, Xiaoxian Zhang, Xuequan Zhang, Qiusheng Wang, Lei Lei, Jun Zhang, Bin He, Jun Cao","doi":"10.1002/advs.202408998","DOIUrl":"https://doi.org/10.1002/advs.202408998","url":null,"abstract":"<p><p>MXenzymes, a promising class of catalytic therapeutic material, offer great potential for tumor treatment, but they encounter significant obstacles due to suboptimal catalytic efficiency and kinetics in the tumor microenvironment (TME). Herein, this study draws inspiration from the electronic structure of transition metal vanadium, proposing the leverage of TME specific-features to induce structural transformations in sheet-like vanadium carbide MXenzymes (TVMz). These transformations trigger cascading catalytic reactions that amplify oxidative stress, thereby significantly enhancing multimodal tumor therapy. Specifically, the engineered HTVMz, coated with hyaluronic acid, exhibits good stability and generates a thermal effect under NIR-II laser irradiation. The thermal effect, combined with TME characteristics, facilities a structural transformation into ultra-small vanadium oxide nanozymes (VO<sub>x</sub>). The enlarged surface area of VO<sub>x</sub> substantially enhances ROS regeneration and amplifies oxidative stress, which promotes lysosomal permeability and induces endoplasmic reticulum stress. The high-valent vanadium in VO<sub>x</sub> interacts with intracellular glutathione, disrupting redox homeostasis and intensifying oxidative stress further. These amplifications accelerate tumor apoptosis, induce ferroptosis, and suppress HSP90 expression. Consequently, the heightened thermal sensitivity of HTVMz synergistically promotes tumor cell death via multimodal therapeutic pathways. This study presents an innovative strategy for tumor catalytic therapy by manipulating MXenzymes structures, advancing the field of catalytic therapy.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2408998"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plants exhibit remarkable regenerative abilities under stress conditions like injury, herbivory, and damage from harsh weather, particularly through adventitious root formation. They have sophisticated molecular mechanisms to recognize and respond to wounding. Jasmonic acid (JA), a wound hormone, triggers auxin synthesis to stimulate root regeneration. Melatonin (MT), structurally similar to auxin, also significantly influences root induction, but its specific mechanism is unclear. Phytomelatonin's signal transduction is discovered in wound-induced root formation, identifying SlPMTR1/2 as phytomelatonin receptors, transmitting signals to SHOOT BORNE ROOTLESS 1 (SlSBRL1), a key regulator of wound-induced root regeneration, via the G protein α subunit 1 (SlGPA1). Additionally, SlPMTR1/2 is activated by JA, and targeted by SlMYC2. Overall, the specific mechanisms of phytomelatonin on wound-induced root regeneration is uncovered and revealed a crosstalk between phytomelatonin and JA, offering new insights into plant repair mechanisms.
{"title":"Integration of Phytomelatonin Signaling With Jasmonic Acid in Wound-induced Adventitious Root Regeneration.","authors":"Ying Liu, Xiaoyun Wang, Shirui Jing, Congyang Jia, Hongxin Li, Chonghua Li, Qiuyu He, Na Zhang, Yang-Dong Guo","doi":"10.1002/advs.202413485","DOIUrl":"https://doi.org/10.1002/advs.202413485","url":null,"abstract":"<p><p>Plants exhibit remarkable regenerative abilities under stress conditions like injury, herbivory, and damage from harsh weather, particularly through adventitious root formation. They have sophisticated molecular mechanisms to recognize and respond to wounding. Jasmonic acid (JA), a wound hormone, triggers auxin synthesis to stimulate root regeneration. Melatonin (MT), structurally similar to auxin, also significantly influences root induction, but its specific mechanism is unclear. Phytomelatonin's signal transduction is discovered in wound-induced root formation, identifying SlPMTR1/2 as phytomelatonin receptors, transmitting signals to SHOOT BORNE ROOTLESS 1 (SlSBRL1), a key regulator of wound-induced root regeneration, via the G protein α subunit 1 (SlGPA1). Additionally, SlPMTR1/2 is activated by JA, and targeted by SlMYC2. Overall, the specific mechanisms of phytomelatonin on wound-induced root regeneration is uncovered and revealed a crosstalk between phytomelatonin and JA, offering new insights into plant repair mechanisms.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413485"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteoarthritis (OA) is an age-related degenerative joint disease, prominently influenced by the pro-inflammatory cytokine interleukin-6 (IL-6). Although elevated IL-6 levels in joint fluid are well-documented, the uneven cartilage degeneration observed in knee OA patients suggests additional underlying mechanisms. This study investigates the role of interleukin-6 receptor (IL-6R) in mediating IL-6 signaling and its contribution to OA progression. Here, significantly elevated IL-6R expression is identified in degenerated cartilage of OA patients. Further, in vivo experiments reveal that intra-articular injection of recombinant IL-6R protein or activation of gp130 (Y757F mutation) accelerates OA progression. Conversely, knockout of IL-6R or JAK2, as well as treatment with a JAK inhibitor, alleviates OA symptoms. Mechanistically, chondrocytes derived from degenerative cartilage exhibit impaired nuclear localization of SOX9, a key regulator of cartilage homeostasis. JAK inhibition stabilizes SIRT1, reduces SOX9 acetylation, and thereby facilitates SOX9 nuclear localization, promoting cartilage repair. Additionally, the JAK inhibitor-induced apoptosis in p21-positive senescent cells, and their targeted clearance successfully alleviates OA in p21-3MR mice. In conclusion, these findings reveal a novel mechanism by which inhibiting the IL-6R/JAK2 pathway can alleviate OA. Furthermore, this study proposes targeting p21-positive senescent cells as a new therapeutic strategy for OA.
{"title":"Targeting p21-Positive Senescent Chondrocytes via IL-6R/JAK2 Inhibition to Alleviate Osteoarthritis.","authors":"Xiang Zhao, Jieming Lin, Feng Liu, Yu Zhang, Bo Shi, Chunhui Ma, Ziqi Wang, Song Xue, Qingrong Xu, Hongda Shao, Jingxing Yang, Yanzheng Gao","doi":"10.1002/advs.202410795","DOIUrl":"https://doi.org/10.1002/advs.202410795","url":null,"abstract":"<p><p>Osteoarthritis (OA) is an age-related degenerative joint disease, prominently influenced by the pro-inflammatory cytokine interleukin-6 (IL-6). Although elevated IL-6 levels in joint fluid are well-documented, the uneven cartilage degeneration observed in knee OA patients suggests additional underlying mechanisms. This study investigates the role of interleukin-6 receptor (IL-6R) in mediating IL-6 signaling and its contribution to OA progression. Here, significantly elevated IL-6R expression is identified in degenerated cartilage of OA patients. Further, in vivo experiments reveal that intra-articular injection of recombinant IL-6R protein or activation of gp130 (Y757F mutation) accelerates OA progression. Conversely, knockout of IL-6R or JAK2, as well as treatment with a JAK inhibitor, alleviates OA symptoms. Mechanistically, chondrocytes derived from degenerative cartilage exhibit impaired nuclear localization of SOX9, a key regulator of cartilage homeostasis. JAK inhibition stabilizes SIRT1, reduces SOX9 acetylation, and thereby facilitates SOX9 nuclear localization, promoting cartilage repair. Additionally, the JAK inhibitor-induced apoptosis in p21-positive senescent cells, and their targeted clearance successfully alleviates OA in p21-3MR mice. In conclusion, these findings reveal a novel mechanism by which inhibiting the IL-6R/JAK2 pathway can alleviate OA. Furthermore, this study proposes targeting p21-positive senescent cells as a new therapeutic strategy for OA.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410795"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renrui Chen, Pengxing Nie, Liangxiao Ma, Guang-Zhong Wang
The primate cerebral cortex, the major organ for cognition, consists of an immense number of neurons. However, the organizational principles governing these neurons remain unclear. By accessing the single-cell spatial transcriptome of over 25 million neuron cells across the entire macaque cortex, it is discovered that the distribution of neurons within cortical layers is highly non-random. Strikingly, over three-quarters of these neurons are located in distinct neuronal clusters. Within these clusters, different cell types tend to collaborate rather than function independently. Typically, excitatory neuron clusters mainly consist of excitatory-excitatory combinations, while inhibitory clusters primarily contain excitatory-inhibitory combinations. Both cluster types have roughly equal numbers of neurons in each layer. Importantly, most excitatory and inhibitory neuron clusters form spatial partnerships, indicating a balanced local neuronal network and correlating with specific functional regions. These organizational principles are conserved across mouse cortical regions. These findings suggest that different brain regions of the cortex may exhibit similar mechanisms at the neuronal population level.
{"title":"Organizational Principles of the Primate Cerebral Cortex at the Single-Cell Level.","authors":"Renrui Chen, Pengxing Nie, Liangxiao Ma, Guang-Zhong Wang","doi":"10.1002/advs.202411041","DOIUrl":"https://doi.org/10.1002/advs.202411041","url":null,"abstract":"<p><p>The primate cerebral cortex, the major organ for cognition, consists of an immense number of neurons. However, the organizational principles governing these neurons remain unclear. By accessing the single-cell spatial transcriptome of over 25 million neuron cells across the entire macaque cortex, it is discovered that the distribution of neurons within cortical layers is highly non-random. Strikingly, over three-quarters of these neurons are located in distinct neuronal clusters. Within these clusters, different cell types tend to collaborate rather than function independently. Typically, excitatory neuron clusters mainly consist of excitatory-excitatory combinations, while inhibitory clusters primarily contain excitatory-inhibitory combinations. Both cluster types have roughly equal numbers of neurons in each layer. Importantly, most excitatory and inhibitory neuron clusters form spatial partnerships, indicating a balanced local neuronal network and correlating with specific functional regions. These organizational principles are conserved across mouse cortical regions. These findings suggest that different brain regions of the cortex may exhibit similar mechanisms at the neuronal population level.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411041"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenjie You, Zichao Cai, Feng Xiao, Jiaxin Zhao, Guanyi Wang, Wang Wang, Zesheng Chen, Weikang Hu, Yun Chen, Zijian Wang
Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes. As a result, targeting ROS levels to maintain redox balance has become a promising strategy for improving wound recovery. Currently, no biomaterials have been reported to simultaneously up-regulate and down-regulate ROS to achieve broad-spectrum antibacterial and antioxidant properties. Inspired by the site-dependent effect of nanomaterials, a micron-sized ferroferric oxide (Fe3O4)/MXene (FM) heterojunction is synthesized using a hydrothermal method. The FM heterojunction could scavenge extracellular ROS by activating catalase (CAT)-like and superoxide dismutase (SOD)-like nanozyme activities. Meanwhile, FM heterojunction could release ferric ions and ferrous ions by defect engineering to induce bacterial ferroptosis, up-regulating intercellular ROS, and lipid peroxidation. For applications in vivo, FM heterojunction is incorporated into the tips of gelatin methacryloyl (GelMA)-based microneedle (termed as GFM microneedle) using a two-step casting technique. The results showed that GFM microneedle combined with photothermal therapy could improve S. aureus-infected skin regeneration in diabetic rats. The effectiveness and safety of GFM microneedle are not less favorable than that of a commercial wound dressing. This study provides a proof-of-concept for heterojunction-mediated regenerative medicine via a site-dependent ROS-targeting strategy.
{"title":"Biomolecular Microneedle Initiates Fe<sub>3</sub>O<sub>4</sub>/MXene Heterojunction-Mediated Nanozyme-Like Reactions and Bacterial Ferroptosis to Repair Diabetic Wounds.","authors":"Wenjie You, Zichao Cai, Feng Xiao, Jiaxin Zhao, Guanyi Wang, Wang Wang, Zesheng Chen, Weikang Hu, Yun Chen, Zijian Wang","doi":"10.1002/advs.202417314","DOIUrl":"https://doi.org/10.1002/advs.202417314","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes. As a result, targeting ROS levels to maintain redox balance has become a promising strategy for improving wound recovery. Currently, no biomaterials have been reported to simultaneously up-regulate and down-regulate ROS to achieve broad-spectrum antibacterial and antioxidant properties. Inspired by the site-dependent effect of nanomaterials, a micron-sized ferroferric oxide (Fe<sub>3</sub>O<sub>4</sub>)/MXene (FM) heterojunction is synthesized using a hydrothermal method. The FM heterojunction could scavenge extracellular ROS by activating catalase (CAT)-like and superoxide dismutase (SOD)-like nanozyme activities. Meanwhile, FM heterojunction could release ferric ions and ferrous ions by defect engineering to induce bacterial ferroptosis, up-regulating intercellular ROS, and lipid peroxidation. For applications in vivo, FM heterojunction is incorporated into the tips of gelatin methacryloyl (GelMA)-based microneedle (termed as GFM microneedle) using a two-step casting technique. The results showed that GFM microneedle combined with photothermal therapy could improve S. aureus-infected skin regeneration in diabetic rats. The effectiveness and safety of GFM microneedle are not less favorable than that of a commercial wound dressing. This study provides a proof-of-concept for heterojunction-mediated regenerative medicine via a site-dependent ROS-targeting strategy.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2417314"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanbo Xiao, Han Gao, Min Li, Fanqiang Chen, Qiao Li, Yiwei Li, Can Li, Meixiao Wang, Fangyuan Zhu, Lexian Yang, Shiyong Wang, Feng Miao, Yulin Chen, Cheng Chen, Bin Cheng, Jianpeng Liu, Zhongkai Liu
Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials. The application of displacement field via in situ electrostatic gating introduces a sizable and tunable electronic bandgap, proportional to the field strength up to 100 meV. Meanwhile, the moiré potential, induced by aligning the underlying hexagonal boron nitride substrate, extends the bandgap by ≈20 meV. Theoretical calculations effectively capture the experimental observations. This investigation provides a quantitative understanding of how these two mechanisms collaboratively modulate the band gap in bilayer graphene, offering valuable guidance for the design of graphene-based electronic devices.
{"title":"Unveiling a Tunable Moiré Bandgap in Bilayer Graphene/hBN Device by Angle-Resolved Photoemission Spectroscopy.","authors":"Hanbo Xiao, Han Gao, Min Li, Fanqiang Chen, Qiao Li, Yiwei Li, Can Li, Meixiao Wang, Fangyuan Zhu, Lexian Yang, Shiyong Wang, Feng Miao, Yulin Chen, Cheng Chen, Bin Cheng, Jianpeng Liu, Zhongkai Liu","doi":"10.1002/advs.202412609","DOIUrl":"https://doi.org/10.1002/advs.202412609","url":null,"abstract":"<p><p>Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials. The application of displacement field via in situ electrostatic gating introduces a sizable and tunable electronic bandgap, proportional to the field strength up to 100 meV. Meanwhile, the moiré potential, induced by aligning the underlying hexagonal boron nitride substrate, extends the bandgap by ≈20 meV. Theoretical calculations effectively capture the experimental observations. This investigation provides a quantitative understanding of how these two mechanisms collaboratively modulate the band gap in bilayer graphene, offering valuable guidance for the design of graphene-based electronic devices.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412609"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning. Based on these datasets, a network deep reinforcement learning (N-DRL) framework is developed to optimize its stability, effectively balancing weight reduction with the maintenance of structural integrity. The results reveal a pronounced correlation between the total fiber length in 3D-DFNS and its mechanical properties, where longer fibers enhance stress distribution and stability. Additionally, fiber orientation is also considered as a potential factor influencing stress growth values. Furthermore, the N-DRL model demonstrates superior performance compared to traditional approaches in optimizing network stability while minimizing mass and computational cost. Structural integrity is significantly improved through the addition of triple junctions and the reduction of higher-order nodes. In summary, this study leverages machine learning to optimize biomimetic 3D-DFNS, providing novel insights into the design of lightweight, high-strength materials.
{"title":"Optimizing Biomimetic 3D Disordered Fibrous Network Structures for Lightweight, High-Strength Materials via Deep Reinforcement Learning.","authors":"Yunhao Yang, Runnan Bai, Wenli Gao, Leitao Cao, Jing Ren, Zhengzhong Shao, Shengjie Ling","doi":"10.1002/advs.202413293","DOIUrl":"https://doi.org/10.1002/advs.202413293","url":null,"abstract":"<p><p>3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning. Based on these datasets, a network deep reinforcement learning (N-DRL) framework is developed to optimize its stability, effectively balancing weight reduction with the maintenance of structural integrity. The results reveal a pronounced correlation between the total fiber length in 3D-DFNS and its mechanical properties, where longer fibers enhance stress distribution and stability. Additionally, fiber orientation is also considered as a potential factor influencing stress growth values. Furthermore, the N-DRL model demonstrates superior performance compared to traditional approaches in optimizing network stability while minimizing mass and computational cost. Structural integrity is significantly improved through the addition of triple junctions and the reduction of higher-order nodes. In summary, this study leverages machine learning to optimize biomimetic 3D-DFNS, providing novel insights into the design of lightweight, high-strength materials.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413293"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuxiao Hu, Baoquan Liu, Fanyan Zeng, Yang Pan, Dui Ma, Meilan Xie, Shenglian Luo
Amorphous clusters are gaining prominence as prospective hosts for sodium-ion hybrid capacitors (SIHCs), but their efficacy is still affected by atomic coordination. Optimization of ion storage and charge transport can be achieved through high coordination and bimetallic configurations. Herein, high-coordination amorphous P6-Nb-W-P5 (Nb/W-P) clusters are skillfully tailored by bridging Nb into the second shell of W in the W-P5 configuration, nested in situ in conductive and stable N, P co-doped carbon nanospheres (Nb/W-P@NPC). Such clusters with high atom utilization can offer profuse Na+ storage sites due to their high coordination. As an electron donor, Nb-bridging can subtly modify the electronic structure of clusters, and broaden the hybridization of d-p orbitals, thus improving charge transfer efficiency and fostering diversified active sites. Compared with the low-coordinated W-PL@NPC and the high-coordinated W-P@NPC, the reversible capacity of Nb/W-P@NPC upgrades to 556.3 mAh g-1 at 0.1 A g-1, alongside exceptional cycling stability at high rates. When integrated into SIHCs, the high energy density and high-power output (223.6 and 9800 W kg-1) are achieved. By systematically exploring the effect of high coordination and bimetallic design on the storage efficacies of amorphous clusters, this study has greatly advanced the development of SIHC technologies.
{"title":"High-Coordination and Nb-Bridging of Bimetallic Amorphous P<sub>6</sub>-Nb-W-P<sub>5</sub> Clusters in Carbon Nanospheres for High-Performance Sodium-Ion Hybrid Capacitors.","authors":"Shuxiao Hu, Baoquan Liu, Fanyan Zeng, Yang Pan, Dui Ma, Meilan Xie, Shenglian Luo","doi":"10.1002/advs.202416942","DOIUrl":"https://doi.org/10.1002/advs.202416942","url":null,"abstract":"<p><p>Amorphous clusters are gaining prominence as prospective hosts for sodium-ion hybrid capacitors (SIHCs), but their efficacy is still affected by atomic coordination. Optimization of ion storage and charge transport can be achieved through high coordination and bimetallic configurations. Herein, high-coordination amorphous P<sub>6</sub>-Nb-W-P<sub>5</sub> (Nb/W-P) clusters are skillfully tailored by bridging Nb into the second shell of W in the W-P<sub>5</sub> configuration, nested in situ in conductive and stable N, P co-doped carbon nanospheres (Nb/W-P@NPC). Such clusters with high atom utilization can offer profuse Na<sup>+</sup> storage sites due to their high coordination. As an electron donor, Nb-bridging can subtly modify the electronic structure of clusters, and broaden the hybridization of d-p orbitals, thus improving charge transfer efficiency and fostering diversified active sites. Compared with the low-coordinated W-P<sub>L</sub>@NPC and the high-coordinated W-P@NPC, the reversible capacity of Nb/W-P@NPC upgrades to 556.3 mAh g<sup>-1</sup> at 0.1 A g<sup>-1</sup>, alongside exceptional cycling stability at high rates. When integrated into SIHCs, the high energy density and high-power output (223.6 and 9800 W kg<sup>-1</sup>) are achieved. By systematically exploring the effect of high coordination and bimetallic design on the storage efficacies of amorphous clusters, this study has greatly advanced the development of SIHC technologies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2416942"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid growth of Internet of Things (IoT) devices necessitates efficient data compression techniques to manage the vast amounts of data they generate. Chemiresistive sensor arrays (CSAs), a simple yet essential component in IoT systems, produce large datasets due to their simultaneous multi-sensor operations. Classical principal component analysis (cPCA), a widely used solution for dimensionality reduction, often struggles to preserve critical information in complex datasets. In this study, the self-adaptive quantum kernel (SAQK) PCA is introduced as a complementary approach to enhance information retention. The results show that SAQK PCA outperforms cPCA in various back end machine-learning tasks, particularly in low-dimensional scenarios where quantum bit resources are constrained. Although the overall improvement is modest in some cases, SAQK PCA proves especially effective in preserving group structures within low-dimensional data. These findings underscore the potential of noisy intermediate-scale quantum (NISQ) computers to transform data processing in real-world IoT applications by improving the efficiency and reliability of CSA data compression and readout, despite current qubit limitations.
{"title":"Self-Adaptive Quantum Kernel Principal Component Analysis for Compact Readout of Chemiresistive Sensor Arrays.","authors":"Zeheng Wang, Timothy van der Laan, Muhammad Usman","doi":"10.1002/advs.202411573","DOIUrl":"https://doi.org/10.1002/advs.202411573","url":null,"abstract":"<p><p>The rapid growth of Internet of Things (IoT) devices necessitates efficient data compression techniques to manage the vast amounts of data they generate. Chemiresistive sensor arrays (CSAs), a simple yet essential component in IoT systems, produce large datasets due to their simultaneous multi-sensor operations. Classical principal component analysis (cPCA), a widely used solution for dimensionality reduction, often struggles to preserve critical information in complex datasets. In this study, the self-adaptive quantum kernel (SAQK) PCA is introduced as a complementary approach to enhance information retention. The results show that SAQK PCA outperforms cPCA in various back end machine-learning tasks, particularly in low-dimensional scenarios where quantum bit resources are constrained. Although the overall improvement is modest in some cases, SAQK PCA proves especially effective in preserving group structures within low-dimensional data. These findings underscore the potential of noisy intermediate-scale quantum (NISQ) computers to transform data processing in real-world IoT applications by improving the efficiency and reliability of CSA data compression and readout, despite current qubit limitations.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411573"},"PeriodicalIF":14.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}