Pub Date : 2024-03-07DOI: 10.1186/s13634-024-01121-7
Cheng Zhong, Di Zhai, Yang Lu, Ke Li
Unmanned aerial vehicles (UAVs) offer a new approach to wireless communication, leveraging their high mobility, flexibility, and visual communication capabilities. Ambient backscatter communication enables Internet of Things devices to transmit data by reflecting and modulating ambient radio waves, eliminating the need for additional wireless channels, and reducing energy consumption and cost for sensors. However, passive ambient backscatter communication has limitations such as limited range and poor communication quality. By utilizing UAVs as communication nodes, these limitations can be overcome, expanding the communication range and improving the quality of communication. Although some research has been conducted on combining UAVs and ambient backscatter, several challenges remain. One key challenge is the strong direct link interference in ambient backscatter under UAV conditions, which significantly affects communication quality. In this paper, we propose an intelligent backward and forward straight link interference cancellation algorithm based on NOMA decoding technique to enhance ambient backscatter communication quality under UAV conditions and extract more ambient energy for UAV energy supply. The paper includes theoretical derivation, algorithm description, and simulation analysis to validate the error bit rate of labeled information bits. The results demonstrate that the forward algorithm reduces the error bit rate by approximately 20% under low signal-to-noise ratio (SNR) conditions, while the backward algorithm reduces the error bit rate under high SNR conditions. The combination of the forward and backward algorithms reduces the error bit rate under both high and low SNR conditions. The proposed method contributes to improving the quality of ambient backscatter communication in UAV settings.
{"title":"Intelligent interference cancellation and ambient backscatter signal extraction for wireless-powered UAV IoT network","authors":"Cheng Zhong, Di Zhai, Yang Lu, Ke Li","doi":"10.1186/s13634-024-01121-7","DOIUrl":"https://doi.org/10.1186/s13634-024-01121-7","url":null,"abstract":"<p>Unmanned aerial vehicles (UAVs) offer a new approach to wireless communication, leveraging their high mobility, flexibility, and visual communication capabilities. Ambient backscatter communication enables Internet of Things devices to transmit data by reflecting and modulating ambient radio waves, eliminating the need for additional wireless channels, and reducing energy consumption and cost for sensors. However, passive ambient backscatter communication has limitations such as limited range and poor communication quality. By utilizing UAVs as communication nodes, these limitations can be overcome, expanding the communication range and improving the quality of communication. Although some research has been conducted on combining UAVs and ambient backscatter, several challenges remain. One key challenge is the strong direct link interference in ambient backscatter under UAV conditions, which significantly affects communication quality. In this paper, we propose an intelligent backward and forward straight link interference cancellation algorithm based on NOMA decoding technique to enhance ambient backscatter communication quality under UAV conditions and extract more ambient energy for UAV energy supply. The paper includes theoretical derivation, algorithm description, and simulation analysis to validate the error bit rate of labeled information bits. The results demonstrate that the forward algorithm reduces the error bit rate by approximately 20% under low signal-to-noise ratio (SNR) conditions, while the backward algorithm reduces the error bit rate under high SNR conditions. The combination of the forward and backward algorithms reduces the error bit rate under both high and low SNR conditions. The proposed method contributes to improving the quality of ambient backscatter communication in UAV settings.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"128 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1186/s13634-024-01126-2
Zhen Liu, Sen Chen, Zhaobo Zhang, Jiahao Qin, Bao Peng
As the scale of water conservancy projects continues to expand, the amount and complexity of analytical data have also correspondingly increased. At present, it is difficult to realize project management decision support based on a single data source, and most manual analysis methods not only have high labor costs, but also are prone to the risk of misjudgment, resulting in huge property losses. Based on this problem, this paper proposes visual analysis method for unmanned pumping stations on dynamic platforms based on data fusion technology. First, the method uses the transfer learning method to enable ResNet18 obtain generalization ability. Secondly, the method uses ResNet18 to extract image features, and outputs fixed length sequence data as the input of long short-term memory (LSTM). Finally, the method uses LSTM outputs the classification results. The experimental results demonstrate that the algorithm model can achieve an impressive accuracy of 99.032%, outperforming the combination of traditional feature extraction and machine learning methods. This model effectively recognizes and classifies images of pumping stations, significantly reducing the risk of accidents in these facilities.
{"title":"Visual analysis method for unmanned pumping stations on dynamic platforms based on data fusion technology","authors":"Zhen Liu, Sen Chen, Zhaobo Zhang, Jiahao Qin, Bao Peng","doi":"10.1186/s13634-024-01126-2","DOIUrl":"https://doi.org/10.1186/s13634-024-01126-2","url":null,"abstract":"<p>As the scale of water conservancy projects continues to expand, the amount and complexity of analytical data have also correspondingly increased. At present, it is difficult to realize project management decision support based on a single data source, and most manual analysis methods not only have high labor costs, but also are prone to the risk of misjudgment, resulting in huge property losses. Based on this problem, this paper proposes visual analysis method for unmanned pumping stations on dynamic platforms based on data fusion technology. First, the method uses the transfer learning method to enable ResNet18 obtain generalization ability. Secondly, the method uses ResNet18 to extract image features, and outputs fixed length sequence data as the input of long short-term memory (LSTM). Finally, the method uses LSTM outputs the classification results. The experimental results demonstrate that the algorithm model can achieve an impressive accuracy of 99.032%, outperforming the combination of traditional feature extraction and machine learning methods. This model effectively recognizes and classifies images of pumping stations, significantly reducing the risk of accidents in these facilities.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"13 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1186/s13634-024-01125-3
Donglin Tan, Junfeng Wang
In this paper, a novel algorithm is presented for warhead recognition in the defense of ballistic missiles. The range profiles from the warheads of interest in typical illumination directions form a dataset. First, each range profile in the dataset is compared to the range profile of the target under observation, and the most similar range profile is found. Then, the observed target is considered as a warhead if the deviation of its range profile from the most similar range profile is less than or equal to a threshold. The threshold is chosen such that the detection rate is a constant. The simulation results verify the effectiveness of the proposed algorithm. Since the threshold is automatically calculated according to the detection rate, this algorithm has a larger applicability than the current methods based on range-profile matching.
{"title":"Recognition of warheads by range-profile matching with automatic threshold","authors":"Donglin Tan, Junfeng Wang","doi":"10.1186/s13634-024-01125-3","DOIUrl":"https://doi.org/10.1186/s13634-024-01125-3","url":null,"abstract":"<p>In this paper, a novel algorithm is presented for warhead recognition in the defense of ballistic missiles. The range profiles from the warheads of interest in typical illumination directions form a dataset. First, each range profile in the dataset is compared to the range profile of the target under observation, and the most similar range profile is found. Then, the observed target is considered as a warhead if the deviation of its range profile from the most similar range profile is less than or equal to a threshold. The threshold is chosen such that the detection rate is a constant. The simulation results verify the effectiveness of the proposed algorithm. Since the threshold is automatically calculated according to the detection rate, this algorithm has a larger applicability than the current methods based on range-profile matching.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"27 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140003621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-24DOI: 10.1186/s13634-024-01123-5
Ying Sun
This paper investigates the integration of relay-assisted Internet of Things (IoT) systems, focusing on the use of multiple relays to enhance the system performance. The central metric of interest in this study is system outage probability, evaluated in terms of latency. Our research provides a comprehensive analysis of system outage probability, considering different relay selection criteria to optimize the system’s transmission performance. Three relay selection strategies are employed to enhance the system transmission performance. Specifically, the first strategy, optimal relay selection, aims to identify the relay that minimizes the latency and maximizes the data transmission reliability. The second approach, partial relay selection, focuses on selecting a subset of relays strategically to balance the system resources and achieve the latency reduction. The third strategy, random relay selection, explores the potential of opportunistic relay selection without prior knowledge. Through a rigorous investigation, our paper evaluates the impact of these relay selection criteria on the performance of relay-assisted edge computing systems. By assessing the system outage probability in relation to latency, we provide valuable insights into the trade-offs and advantages associated with each selection strategy. Our findings contribute to the design and optimization of reliable and efficient edge computing systems, with implications for various applications, including the IoT and intelligent data processing.
{"title":"Distributed transmission and optimization of relay-assisted space-air-ground IoT systems","authors":"Ying Sun","doi":"10.1186/s13634-024-01123-5","DOIUrl":"https://doi.org/10.1186/s13634-024-01123-5","url":null,"abstract":"<p>This paper investigates the integration of relay-assisted Internet of Things (IoT) systems, focusing on the use of multiple relays to enhance the system performance. The central metric of interest in this study is system outage probability, evaluated in terms of latency. Our research provides a comprehensive analysis of system outage probability, considering different relay selection criteria to optimize the system’s transmission performance. Three relay selection strategies are employed to enhance the system transmission performance. Specifically, the first strategy, optimal relay selection, aims to identify the relay that minimizes the latency and maximizes the data transmission reliability. The second approach, partial relay selection, focuses on selecting a subset of relays strategically to balance the system resources and achieve the latency reduction. The third strategy, random relay selection, explores the potential of opportunistic relay selection without prior knowledge. Through a rigorous investigation, our paper evaluates the impact of these relay selection criteria on the performance of relay-assisted edge computing systems. By assessing the system outage probability in relation to latency, we provide valuable insights into the trade-offs and advantages associated with each selection strategy. Our findings contribute to the design and optimization of reliable and efficient edge computing systems, with implications for various applications, including the IoT and intelligent data processing.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"142 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139952871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1186/s13634-024-01120-8
Yanhui Mao, Longhan Yang, Aiqing Huo, Fei Li, Yi Gao
In practice, the near-bit drilling tool confronts with strong vibrations and high-speed rotation. Therein the original signal amplitude of the tool attitude measurements is relatively feeble, and the signal-to-noise ratio (SNR) is exceptionally low. To handle this issue, this paper proposes a weak SNR signal extraction method, frequency selecting complementary ensemble empirical mode decomposition, which is based on ensemble empirical mode decomposition combining with complementary noise and frequency selecting. This method firstly adds different positive and negative pairs of auxiliary white noise to the original near-bit weak SNR signal, secondly adopts empirical mode decomposition on each pair of noise-added signals, then performs ensemble averaging on the obtained multiple sets of intrinsic mode function (IMF) to output more stable IMF of each order and set suitable weights according to designed frequency threshold, and finally reconstructs the original useful signal through weighted summing IMFs. Simulation results show that the extraction accuracy of well inclination angle ranges about ± 0.51°, and the extraction accuracy of tool face angle ranges about ± 1.35°, and meanwhile experimental results are provided compared with other advanced methods, which verifies the effectiveness of our method.
{"title":"An FSCEEMD method for downhole weak SNR signal extraction of near-bit attitude parameters","authors":"Yanhui Mao, Longhan Yang, Aiqing Huo, Fei Li, Yi Gao","doi":"10.1186/s13634-024-01120-8","DOIUrl":"https://doi.org/10.1186/s13634-024-01120-8","url":null,"abstract":"<p>In practice, the near-bit drilling tool confronts with strong vibrations and high-speed rotation. Therein the original signal amplitude of the tool attitude measurements is relatively feeble, and the signal-to-noise ratio (SNR) is exceptionally low. To handle this issue, this paper proposes a weak SNR signal extraction method, frequency selecting complementary ensemble empirical mode decomposition, which is based on ensemble empirical mode decomposition combining with complementary noise and frequency selecting. This method firstly adds different positive and negative pairs of auxiliary white noise to the original near-bit weak SNR signal, secondly adopts empirical mode decomposition on each pair of noise-added signals, then performs ensemble averaging on the obtained multiple sets of intrinsic mode function (IMF) to output more stable IMF of each order and set suitable weights according to designed frequency threshold, and finally reconstructs the original useful signal through weighted summing IMFs. Simulation results show that the extraction accuracy of well inclination angle ranges about ± 0.51°, and the extraction accuracy of tool face angle ranges about ± 1.35°, and meanwhile experimental results are provided compared with other advanced methods, which verifies the effectiveness of our method.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"11 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1186/s13634-024-01119-1
Jiaxin Wei, Zhengwei Wang, Shufang Li, Xiaoming Wang, Huan Xu, Xiushan Wang, Sen Yao, Weimin Song, Youwei Wang, Chao Mei
The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight (P < 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652, R2 = 0.841) and the BPNN models’ (RMSE = 0.640, R2 = 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606, R2 = 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes.
{"title":"Prediction modeling of cigarette ventilation rate based on genetic algorithm backpropagation (GABP) neural network","authors":"Jiaxin Wei, Zhengwei Wang, Shufang Li, Xiaoming Wang, Huan Xu, Xiushan Wang, Sen Yao, Weimin Song, Youwei Wang, Chao Mei","doi":"10.1186/s13634-024-01119-1","DOIUrl":"https://doi.org/10.1186/s13634-024-01119-1","url":null,"abstract":"<p>The ventilation rate of cigarettes is an important indicator that affects the internal quality of cigarettes. When producing cigarettes, the unit may experience unstable ventilation rates, which can lead to a decrease in cigarette quality and pose certain risks to smokers. By establishing the ventilation rate prediction model, guide the design of unit parameters in advance, to achieve the goal of stabilizing unit ventilation rate, improve the stability of cigarette ventilation rate, and enhance the quality of cigarettes. This paper used multiple linear regression networks (MLR), backpropagation neural networks (BPNN), and genetic algorithm-optimized backpropagation (GABP) to construct a model for the prediction of cigarette ventilation rate. The model results indicated that the total ventilation rate was significantly positively correlated with weight (<i>P</i> < 0.01), circumference, hardness, filter air permeability, and open resistance. The results showed that the MLR models' (RMSE = 0.652, <i>R</i><sup>2</sup> = 0.841) and the BPNN models’ (RMSE = 0.640, <i>R</i><sup>2</sup> = 0.847) prediction ability were limited. Optimization by genetic algorithm, GABP models were generated and exhibited a little better prediction performance (RMSE = 0.606, <i>R</i><sup>2</sup> = 0.873). The results indicated that the GABP model has the highest accuracy in the prediction of predicting ventilation rate and can accurately predict cigarette ventilation rate. This method can provide theoretical guidance and technical support for the stability study of the ventilation rate of the unit, improve the design and manufacturing capabilities and product quality of short cigarette products, and help to improve the quality of cigarettes.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"91 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-19DOI: 10.1186/s13634-024-01118-2
Abstract
In view of the serious color and definition distortion in the process of the traditional image fusion, this study proposes a Haar-like multi-scale analysis model, in which Haar wavelet has been modified and used for the medical image fusion to obtain even better results. Firstly, when the improved Haar wavelet basis function is translated, inner product and down-sampled with each band of the original image, the band is decomposed into four sub-images containing one low-frequency subdomain and three high-frequency subdomains. Secondly, the different fusion rules are applied in the low-frequency domain and the high-frequency domains to get the low-frequency sub-image and the high-frequency sub-images in each band. The four new sub-frequency domains are inverse-decomposed to reconstruct each new band. The study configures and synthesizes these new bands to produce a fusion image. Lastly, the two groups of the medical images are used for experimental simulation. The Experimental results are analyzed and compared with those of other fusion methods. It can be found the fusion method proposed in the study obtain the superior effects in the spatial definition and the color depth feature, especially in color criteria such as OP, SpD, CR and SSIM, comparing with the other methods.
摘要 针对传统图像融合过程中色彩和清晰度失真严重的问题,本研究提出了一种类 Haar 多尺度分析模型,其中对 Haar 小波进行了改进,并将其用于医学图像融合,以获得更好的效果。首先,将改进后的 Haar 小波基函数与原始图像的每个频带进行平移、内积和下采样,将频带分解为包含一个低频子域和三个高频子域的四个子图像。其次,在低频域和高频域应用不同的融合规则,得到每个波段的低频子图像和高频子图像。对四个新的子频域进行反分解,重建每个新频段。该研究对这些新波段进行配置和合成,以生成融合图像。最后,两组医学图像被用于实验模拟。对实验结果进行了分析,并与其他融合方法进行了比较。可以发现,与其他方法相比,本研究提出的融合方法在空间定义和色彩深度特征方面,尤其是在 OP、SpD、CR 和 SSIM 等色彩标准方面,都取得了卓越的效果。
{"title":"Image fusion research based on the Haar-like multi-scale analysis","authors":"","doi":"10.1186/s13634-024-01118-2","DOIUrl":"https://doi.org/10.1186/s13634-024-01118-2","url":null,"abstract":"<h3>Abstract</h3> <p>In view of the serious color and definition distortion in the process of the traditional image fusion, this study proposes a Haar-like multi-scale analysis model, in which Haar wavelet has been modified and used for the medical image fusion to obtain even better results. Firstly, when the improved Haar wavelet basis function is translated, inner product and down-sampled with each band of the original image, the band is decomposed into four sub-images containing one low-frequency subdomain and three high-frequency subdomains. Secondly, the different fusion rules are applied in the low-frequency domain and the high-frequency domains to get the low-frequency sub-image and the high-frequency sub-images in each band. The four new sub-frequency domains are inverse-decomposed to reconstruct each new band. The study configures and synthesizes these new bands to produce a fusion image. Lastly, the two groups of the medical images are used for experimental simulation. The Experimental results are analyzed and compared with those of other fusion methods. It can be found the fusion method proposed in the study obtain the superior effects in the spatial definition and the color depth feature, especially in color criteria such as OP, SpD, CR and SSIM, comparing with the other methods.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"21 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139910910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-19DOI: 10.1186/s13634-024-01117-3
Xingzi Qiang, Rui Xue, Yanbo Zhu
The confidence partitioning sampling filter (CPSF) method proposed in this paper is a novel approach for solving the generic nonlinear filtering problem. First, the confidence probability space (CPS) is defined, which restricts the state transition in a bounded and closed state space in the recursive Bayesian filtering. In the posterior CPS, the weighted grid samples, represented the posterior PDF, are obtained by using the partitioning sampling technique (PST). Each weighted grid sample is treated as an impulse function. The approximate expression of the posterior PDF, as key for the PST implementation, is obtained by using the properties of the impulse function in the integral operation. By executing the selection of the CPS and the PST step repeatedly, the CPSF framework is formed to achieve the approximation of the recursive Bayesian filtering. Second, the difficulty of the CPSF framework implementation lies in obtaining the real posterior CPS. Therefore, the space intersection (SI) method is suggested to obtain the approximate posterior CPS. On this basis, the SI_CPSF algorithm, as an executable algorithm, is formed to solve the generic nonlinear filtering problem. Third, the approximate error between the CPSF framework and the recursive Bayesian filter is analyzed theoretically. The consistency of the CPSF framework to the recursive Bayesian filter is proved. Finally, the performances of the SI_CPSF algorithm, including robustness, accuracy and efficiency, are evaluated using four representative simulation experiments. The simulation results showed that SI_CSPF requires far less samples than particle filter (PF) under the same accuracy. Its computation is on average one order of magnitude less than that of the PF. The robustness of the proposed algorithm is also evaluated in the simulations.
{"title":"Confidence partitioning sampling filtering","authors":"Xingzi Qiang, Rui Xue, Yanbo Zhu","doi":"10.1186/s13634-024-01117-3","DOIUrl":"https://doi.org/10.1186/s13634-024-01117-3","url":null,"abstract":"<p>The confidence partitioning sampling filter (CPSF) method proposed in this paper is a novel approach for solving the generic nonlinear filtering problem. First, the confidence probability space (CPS) is defined, which restricts the state transition in a bounded and closed state space in the recursive Bayesian filtering. In the posterior CPS, the weighted grid samples, represented the posterior PDF, are obtained by using the partitioning sampling technique (PST). Each weighted grid sample is treated as an impulse function. The approximate expression of the posterior PDF, as key for the PST implementation, is obtained by using the properties of the impulse function in the integral operation. By executing the selection of the CPS and the PST step repeatedly, the CPSF framework is formed to achieve the approximation of the recursive Bayesian filtering. Second, the difficulty of the CPSF framework implementation lies in obtaining the real posterior CPS. Therefore, the space intersection (SI) method is suggested to obtain the approximate posterior CPS. On this basis, the SI_CPSF algorithm, as an executable algorithm, is formed to solve the generic nonlinear filtering problem. Third, the approximate error between the CPSF framework and the recursive Bayesian filter is analyzed theoretically. The consistency of the CPSF framework to the recursive Bayesian filter is proved. Finally, the performances of the SI_CPSF algorithm, including robustness, accuracy and efficiency, are evaluated using four representative simulation experiments. The simulation results showed that SI_CSPF requires far less samples than particle filter (PF) under the same accuracy. Its computation is on average one order of magnitude less than that of the PF. The robustness of the proposed algorithm is also evaluated in the simulations.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"7 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139910724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.1186/s13634-024-01114-6
Omar M. Sleem, M. E. Ashour, N. S. Aybat, Constantino M. Lagoa
Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the (ell _{p}) quasi-norm, where (0<p<1). An iterative two-block algorithm for minimizing the (ell _{p}) quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of (ell _{1}) norm minimization. The algorithm’s merit relies on its ability to solve the (ell _{p}) quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other (ell _{p}) quasi-norm based methods presented in previous literature.
{"title":"Lp quasi-norm minimization: algorithm and applications","authors":"Omar M. Sleem, M. E. Ashour, N. S. Aybat, Constantino M. Lagoa","doi":"10.1186/s13634-024-01114-6","DOIUrl":"https://doi.org/10.1186/s13634-024-01114-6","url":null,"abstract":"<p>Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the <span>(ell _{p})</span> quasi-norm, where <span>(0<p<1)</span>. An iterative two-block algorithm for minimizing the <span>(ell _{p})</span> quasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of <span>(ell _{1})</span> norm minimization. The algorithm’s merit relies on its ability to solve the <span>(ell _{p})</span> quasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other <span>(ell _{p})</span> quasi-norm based methods presented in previous literature.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"8 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, UAV techniques are developing very fast, and UAVs are becoming more and more popular in both civilian and military fields. An important application of UAVs is rescue and disaster relief. In post-earthquake evaluation scenes where it is difficult or dangerous for human to reach, UAVs and sensors can form a wireless sensor network and collect environmental information. In such application scenarios, task allocation algorithms are important for UAVs to collect data efficiently. This paper firstly proposes an improved immune multi-agent algorithm for the offline task allocation stage. The proposed algorithm provides higher accuracy and convergence performance by improving the optimization operation. Then, this paper proposes an improved adaptive discrete cuckoo algorithm for the online task reallocation stage. By introducing adaptive step size transformation and appropriate local optimization operator, the speed of convergence is accelerated, making it suitable for real-time online task reallocation. Simulation results have proved the effectiveness of the proposed task allocation algorithms.
{"title":"Offline and online task allocation algorithms for multiple UAVs in wireless sensor networks","authors":"Liang Ye, Yu Yang, Weixiao Meng, Xuanli Wu, Xiaoshuai Li, Rangang Zhu","doi":"10.1186/s13634-024-01116-4","DOIUrl":"https://doi.org/10.1186/s13634-024-01116-4","url":null,"abstract":"<p>In recent years, UAV techniques are developing very fast, and UAVs are becoming more and more popular in both civilian and military fields. An important application of UAVs is rescue and disaster relief. In post-earthquake evaluation scenes where it is difficult or dangerous for human to reach, UAVs and sensors can form a wireless sensor network and collect environmental information. In such application scenarios, task allocation algorithms are important for UAVs to collect data efficiently. This paper firstly proposes an improved immune multi-agent algorithm for the offline task allocation stage. The proposed algorithm provides higher accuracy and convergence performance by improving the optimization operation. Then, this paper proposes an improved adaptive discrete cuckoo algorithm for the online task reallocation stage. By introducing adaptive step size transformation and appropriate local optimization operator, the speed of convergence is accelerated, making it suitable for real-time online task reallocation. Simulation results have proved the effectiveness of the proposed task allocation algorithms.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"9 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}