首页 > 最新文献

Epigenomics最新文献

英文 中文
The histone methyltransferase SMYD1 is induced by thermogenic stimuli in adipose tissue. 脂肪组织中的组蛋白甲基转移酶 SMYD1 受热刺激诱导。
IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-03-01 Epub Date: 2024-03-05 DOI: 10.2217/epi-2023-0381
Annunziata G Cicatiello, Annarita Nappi, Fabiana Franchini, Immacolata C Nettore, Maddalena Raia, Carmine Rocca, Tommaso Angelone, Monica Dentice, Paola Ungaro, Paolo E Macchia

Aim: To study the expression of histone methyltransferase SMYD1 in white adipose tissue (WAT) and brown adipose tissue and during differentiation of preadipocytes to white and beige phenotypes. Methods: C57BL/6J mice fed a high-fat diet (and exposed to cold) and 3T3-L1 cells stimulated to differentiate into white and beige adipocytes were used. Results: SMYD1 expression increased in WAT of high-fat diet fed mice and in WAT and brown adipose tissue of cold-exposed mice, suggesting its role in thermogenesis. SMYD1 expression was higher in beige adipocytes than in white adipocytes, and its silencing leads to a decrease in mitochondrial content and in Pgc-1α expression. Conclusion: These data suggest a novel role for SMYD1 as a positive regulator of energy control in adipose tissue.

目的:研究组蛋白甲基转移酶 SMYD1 在白色脂肪组织(WAT)和棕色脂肪组织中的表达,以及前脂肪细胞向白色和米色表型分化过程中的表达。研究方法使用高脂饮食(并暴露于寒冷环境)的 C57BL/6J 小鼠和刺激分化为白色和米色脂肪细胞的 3T3-L1 细胞。结果SMYD1在以高脂饮食喂养的小鼠的WAT和暴露于寒冷的小鼠的WAT和棕色脂肪组织中的表达增加,表明其在产热中的作用。SMYD1在米色脂肪细胞中的表达高于白色脂肪细胞,沉默SMYD1会导致线粒体含量和Pgc-1α表达的减少。结论这些数据表明,SMYD1 在脂肪组织的能量控制中发挥着新的积极调节作用。
{"title":"The histone methyltransferase SMYD1 is induced by thermogenic stimuli in adipose tissue.","authors":"Annunziata G Cicatiello, Annarita Nappi, Fabiana Franchini, Immacolata C Nettore, Maddalena Raia, Carmine Rocca, Tommaso Angelone, Monica Dentice, Paola Ungaro, Paolo E Macchia","doi":"10.2217/epi-2023-0381","DOIUrl":"10.2217/epi-2023-0381","url":null,"abstract":"<p><p><b>Aim:</b> To study the expression of histone methyltransferase SMYD1 in white adipose tissue (WAT) and brown adipose tissue and during differentiation of preadipocytes to white and beige phenotypes. <b>Methods:</b> C57BL/6J mice fed a high-fat diet (and exposed to cold) and 3T3-L1 cells stimulated to differentiate into white and beige adipocytes were used. <b>Results:</b> SMYD1 expression increased in WAT of high-fat diet fed mice and in WAT and brown adipose tissue of cold-exposed mice, suggesting its role in thermogenesis. SMYD1 expression was higher in beige adipocytes than in white adipocytes, and its silencing leads to a decrease in mitochondrial content and in <i>Pgc-1α</i> expression. <b>Conclusion:</b> These data suggest a novel role for SMYD1 as a positive regulator of energy control in adipose tissue.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"359-374"},"PeriodicalIF":3.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data science using the human epigenome for predicting multifactorial diseases and symptoms. 利用人类表观基因组预测多因素疾病和症状的数据科学。
IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-03-01 Epub Date: 2024-02-05 DOI: 10.2217/epi-2023-0321
Shota Nishitani, Alicia K Smith, Akemi Tomoda, Takashi X Fujisawa

Tweetable abstract This article reviews machine learning models that leverages epigenomic data for predicting multifactorial diseases and symptoms as well as how such models can be utilized to explore new research questions.

Tweetable 摘要 本文回顾了利用表观基因组数据预测多因素疾病和症状的机器学习模型,以及如何利用这些模型探索新的研究问题。
{"title":"Data science using the human epigenome for predicting multifactorial diseases and symptoms.","authors":"Shota Nishitani, Alicia K Smith, Akemi Tomoda, Takashi X Fujisawa","doi":"10.2217/epi-2023-0321","DOIUrl":"10.2217/epi-2023-0321","url":null,"abstract":"<p><p>Tweetable abstract This article reviews machine learning models that leverages epigenomic data for predicting multifactorial diseases and symptoms as well as how such models can be utilized to explore new research questions.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"273-276"},"PeriodicalIF":3.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated analysis of transcriptome and epigenome reveals ENSR00000272060 as a potential biomarker in gastric cancer. 转录组和表观基因组的综合分析显示 ENSR00000272060 是胃癌的潜在生物标记物。
IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-02-01 Epub Date: 2024-01-29 DOI: 10.2217/epi-2023-0213
Basireh Bahrami, Markus Wolfien, Parvaneh Nikpour

Background: Enhancer RNAs (eRNAs) are involved in gene expression regulation. Although functional roles of eRNAs in the pathophysiology of neoplasms have been reported, their involvement in gastric cancer (GC) is less known. Materials & methods: A network-based integrative approach was utilized for analyzing transcriptome and epigenome alterations in GC, and an eRNA was selected for experimental validation. Survival analysis and clinicopathological associations were also performed. Results: A hub eRNA, ENSR00000272060, showed significantly increased expression in tumor versus nontumor tissues, as well as an association with clinicopathological features. A seven-gene prognostic model was also constructed. Conclusion: The constructed network provides a comprehensive understanding of the underlying processes implicated in the progression of GC, along with a starting point from which to derive potential diagnostic/prognostic biomarkers.

背景:增强子 RNA(eRNA)参与基因表达调控。虽然 eRNAs 在肿瘤病理生理学中的功能作用已有报道,但它们在胃癌(GC)中的参与却鲜为人知。材料与方法:利用基于网络的整合方法分析胃癌转录组和表观基因组的改变,并选择一种 eRNA 进行实验验证。同时还进行了生存分析和临床病理关联分析。结果中心 eRNA ENSR00000272060 在肿瘤组织与非肿瘤组织中的表达显著增加,并与临床病理特征相关。还构建了一个七基因预后模型。结论所构建的网络让人们全面了解了与 GC 病变进展有关的潜在过程,并以此为起点推导出潜在的诊断/预后生物标记物。
{"title":"Integrated analysis of transcriptome and epigenome reveals <i>ENSR00000272060</i> as a potential biomarker in gastric cancer.","authors":"Basireh Bahrami, Markus Wolfien, Parvaneh Nikpour","doi":"10.2217/epi-2023-0213","DOIUrl":"10.2217/epi-2023-0213","url":null,"abstract":"<p><p><b>Background:</b> Enhancer RNAs (eRNAs) are involved in gene expression regulation. Although functional roles of eRNAs in the pathophysiology of neoplasms have been reported, their involvement in gastric cancer (GC) is less known. <b>Materials & methods:</b> A network-based integrative approach was utilized for analyzing transcriptome and epigenome alterations in GC, and an eRNA was selected for experimental validation. Survival analysis and clinicopathological associations were also performed. <b>Results:</b> A hub eRNA, <i>ENSR00000272060</i>, showed significantly increased expression in tumor versus nontumor tissues, as well as an association with clinicopathological features. A seven-gene prognostic model was also constructed. <b>Conclusion:</b> The constructed network provides a comprehensive understanding of the underlying processes implicated in the progression of GC, along with a starting point from which to derive potential diagnostic/prognostic biomarkers.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"159-173"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial D-loop methylation levels inversely correlate with disease duration in amyotrophic lateral sclerosis. 线粒体 D 环甲基化水平与肌萎缩性脊髓侧索硬化症的病程成反比。
IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-02-01 Epub Date: 2024-02-05 DOI: 10.2217/epi-2023-0265
Andrea Stoccoro, Adam R Smith, Lorena Mosca, Alessandro Marocchi, Francesca Gerardi, Christian Lunetta, Katie Lunnon, Lucia Migliore, Fabio Coppedè

Aim: To correlate mitochondrial D-loop region methylation levels and mtDNA copy number with disease duration in familial amyotrophic lateral sclerosis (ALS) patients. Patients & methods: The study population included 12 ALS patients with a mutation in SOD1 and 13 ALS patients with the C9orf72 hexanucleotide repeat expansion. Methylation levels of the D-loop region and mtDNA copy number were quantified using pyrosequencing and quantitative PCR, respectively. Results: We observed that D-loop methylation levels inversely correlated while mtDNA copy number positively correlated with disease duration. Conclusion: Considering the central role played by mitochondria in ALS, this preliminary study provides new knowledge for future studies aimed at identifying biomarkers of disease progression and new targets for therapeutic interventions.

目的:研究家族性肌萎缩侧索硬化症(ALS)患者线粒体D环区甲基化水平和mtDNA拷贝数与病程的相关性。患者和方法研究对象包括 12 名 SOD1 基因突变的 ALS 患者和 13 名 C9orf72 六核苷酸重复扩增的 ALS 患者。分别使用热测序和定量 PCR 对 D 环区的甲基化水平和 mtDNA 拷贝数进行了量化。结果我们观察到,D-环甲基化水平与病程成反比,而mtDNA拷贝数与病程成正比。结论考虑到线粒体在 ALS 中的核心作用,这项初步研究为今后旨在确定疾病进展生物标志物和治疗干预新靶点的研究提供了新的知识。
{"title":"Mitochondrial D-loop methylation levels inversely correlate with disease duration in amyotrophic lateral sclerosis.","authors":"Andrea Stoccoro, Adam R Smith, Lorena Mosca, Alessandro Marocchi, Francesca Gerardi, Christian Lunetta, Katie Lunnon, Lucia Migliore, Fabio Coppedè","doi":"10.2217/epi-2023-0265","DOIUrl":"10.2217/epi-2023-0265","url":null,"abstract":"<p><p><b>Aim:</b> To correlate mitochondrial D-loop region methylation levels and mtDNA copy number with disease duration in familial amyotrophic lateral sclerosis (ALS) patients. <b>Patients & methods:</b> The study population included 12 ALS patients with a mutation in <i>SOD1</i> and 13 ALS patients with the <i>C9orf72</i> hexanucleotide repeat expansion. Methylation levels of the D-loop region and mtDNA copy number were quantified using pyrosequencing and quantitative PCR, respectively. <b>Results:</b> We observed that D-loop methylation levels inversely correlated while mtDNA copy number positively correlated with disease duration. <b>Conclusion:</b> Considering the central role played by mitochondria in ALS, this preliminary study provides new knowledge for future studies aimed at identifying biomarkers of disease progression and new targets for therapeutic interventions.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"203-214"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA methylation as a window into female reproductive aging. DNA 甲基化是女性生殖衰老的窗口。
IF 3 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-02-01 Epub Date: 2023-12-22 DOI: 10.2217/epi-2023-0298
Anna K Knight, Jessica B Spencer, Alicia K Smith

People with ovaries experience reproductive aging as their reproductive function and system declines. This has significant implications for both fertility and long-term health, with people experiencing an increased risk of cardiometabolic disorders after menopause. Reproductive aging can be assessed through markers of ovarian reserve, response to fertility treatment or molecular biomarkers, including DNA methylation. Changes in DNA methylation with age associate with poorer reproductive outcomes, and epigenome-wide studies can provide insight into genes and pathways involved. DNA methylation-based epigenetic clocks can quantify biological age in reproductive tissues and systemically. This review provides an overview of hallmarks and theories of aging in the context of the reproductive system, and then focuses on studies of DNA methylation in reproductive tissues.

有卵巢的人随着生殖功能和生殖系统的衰退,会经历生殖衰老。这对生育和长期健康都有重大影响,绝经后患心脏代谢疾病的风险会增加。生殖衰老可通过卵巢储备标志物、对生育治疗的反应或分子生物标志物(包括 DNA 甲基化)进行评估。随着年龄的增长,DNA甲基化的变化与较差的生殖结果有关,而全表观基因组研究可以深入了解相关基因和途径。基于 DNA 甲基化的表观遗传时钟可以量化生殖组织和全身的生物年龄。本综述概述了生殖系统衰老的标志和理论,然后重点介绍了生殖组织中的 DNA 甲基化研究。
{"title":"DNA methylation as a window into female reproductive aging.","authors":"Anna K Knight, Jessica B Spencer, Alicia K Smith","doi":"10.2217/epi-2023-0298","DOIUrl":"10.2217/epi-2023-0298","url":null,"abstract":"<p><p>People with ovaries experience reproductive aging as their reproductive function and system declines. This has significant implications for both fertility and long-term health, with people experiencing an increased risk of cardiometabolic disorders after menopause. Reproductive aging can be assessed through markers of ovarian reserve, response to fertility treatment or molecular biomarkers, including DNA methylation. Changes in DNA methylation with age associate with poorer reproductive outcomes, and epigenome-wide studies can provide insight into genes and pathways involved. DNA methylation-based epigenetic clocks can quantify biological age in reproductive tissues and systemically. This review provides an overview of hallmarks and theories of aging in the context of the reproductive system, and then focuses on studies of DNA methylation in reproductive tissues.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"175-188"},"PeriodicalIF":3.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The epigenetics of frailty. 虚弱的表观遗传学
IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-02-01 Epub Date: 2023-12-19 DOI: 10.2217/epi-2023-0279
Madia Lozupone, Vincenzo Solfrizzi, Rodolfo Sardone, Vittorio Dibello, Fabio Castellana, Roberta Zupo, Luisa Lampignano, Ilaria Bortone, Antonio Daniele, Francesco Panza

The conceptual change of frailty, from a physical to a biopsychosocial phenotype, expanded the field of frailty, including social and behavioral domains with critical interaction between different frailty models. Environmental exposures - including physical exercise, psychosocial factors and diet - may play a role in the frailty pathophysiology. Complex underlying mechanisms involve the progressive interactions of genetics with epigenetics and of multimorbidity with environmental factors. Here we review the literature on possible mechanisms explaining the association between epigenetic hallmarks (i.e., global DNA methylation, DNA methylation age acceleration and microRNAs) and frailty, considered as biomarkers of aging. Frailty could be considered the result of environmental epigenetic factors on biological aging, caused by conflicting DNA methylation age and chronological age.

虚弱的概念从生理表型转变为生物心理社会表型,扩大了虚弱的研究领域,包括社会和行为领域,不同的虚弱模型之间存在着重要的相互作用。环境暴露--包括体育锻炼、社会心理因素和饮食--可能在虚弱病理生理学中发挥作用。复杂的内在机制涉及遗传学与表观遗传学以及多病与环境因素的渐进互动。在此,我们回顾了有关表观遗传学特征(即全局 DNA 甲基化、DNA 甲基化年龄加速和 microRNAs)与衰弱(被视为衰老的生物标志物)之间关联的可能机制的文献。虚弱可被认为是环境表观遗传因素对生物衰老的影响,由 DNA 甲基化年龄和计时年龄的冲突引起。
{"title":"The epigenetics of frailty.","authors":"Madia Lozupone, Vincenzo Solfrizzi, Rodolfo Sardone, Vittorio Dibello, Fabio Castellana, Roberta Zupo, Luisa Lampignano, Ilaria Bortone, Antonio Daniele, Francesco Panza","doi":"10.2217/epi-2023-0279","DOIUrl":"10.2217/epi-2023-0279","url":null,"abstract":"<p><p>The conceptual change of frailty, from a physical to a biopsychosocial phenotype, expanded the field of frailty, including social and behavioral domains with critical interaction between different frailty models. Environmental exposures - including physical exercise, psychosocial factors and diet - may play a role in the frailty pathophysiology. Complex underlying mechanisms involve the progressive interactions of genetics with epigenetics and of multimorbidity with environmental factors. Here we review the literature on possible mechanisms explaining the association between epigenetic hallmarks (i.e., global DNA methylation, DNA methylation age acceleration and microRNAs) and frailty, considered as biomarkers of aging. Frailty could be considered the result of environmental epigenetic factors on biological aging, caused by conflicting DNA methylation age and chronological age.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"189-202"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138799266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
POU2F2-mediated upregulation of lncRNA PTPRG-AS1 inhibits ferroptosis in breast cancer via miR-376c-3p/SLC7A11 axis. POU2F2介导的lncRNA PTPRG-AS1上调通过miR-376c-3p/SLC7A11轴抑制乳腺癌中的铁突变。
IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-02-01 Epub Date: 2024-02-06 DOI: 10.2217/epi-2023-0100
Jun Li, Pei-Ting Li, Wei Wu, Bo-Ni Ding, Yan-Guang Wen, Hai-Lin Cai, Shuang-Xi Liu, Tao Hong, Jian-Fei Zhang, Jian-Da Zhou, Li-Yuan Qian, Juan Du

Background: Triple-negative breast cancer (TNBC) is a subtype of BC with high rates of mortality. The mechanism of PTPRG-AS1 in ferroptosis of TNBC was investigated. Methods: Chromatin immunoprecipitation and dual-luciferase reporter assays were used to measure intermolecular relationships. MTT and colony formation assays detected cell viability and proliferation. Kits detected Fe2+ and reactive oxygen species levels. The role of PTPRG-AS1 in tumor growth was analyzed in vivo. Results: PTPRG-AS1 was increased in TNBC tissues and cells. PTPRG-AS1 silencing increased the reduction of glutathione and GPX4, increased Fe2+ and reactive oxygen species in erastin-treated cells and inhibited proliferation. POU2F2 transcriptionally upregulated PTPRG-AS1. PTPRG-AS1 targeted miR-376c-3p to upregulate SLC7A11. PTPRG-AS1 knockdown suppressed tumor growth in vivo. Conclusion: POU2F2 transcriptionally activates PTPRG-AS1 to modulate ferroptosis and proliferation by miR-376c-3p/SLC7A11, promoting TNBC.

背景:三阴性乳腺癌(TNBC三阴性乳腺癌(TNBC)是 BC 中死亡率较高的一种亚型。研究人员探讨了 PTPRG-AS1 在 TNBC 铁变态反应中的作用机制。方法:染色质免疫沉淀使用染色质免疫沉淀和双荧光素酶报告实验来测量分子间的关系。MTT 和集落形成试验检测细胞活力和增殖。试剂盒检测了Fe2+和活性氧水平。在体内分析了 PTPRG-AS1 在肿瘤生长中的作用。结果PTPRG-AS1在TNBC组织和细胞中都有所增加。PTPRG-AS1沉默会增加谷胱甘肽和GPX4的还原,增加依拉斯汀处理细胞中的Fe2+和活性氧,并抑制细胞增殖。POU2F2 转录上调 PTPRG-AS1。PTPRG-AS1 靶向 miR-376c-3p 上调 SLC7A11。PTPRG-AS1 基因敲除抑制了肿瘤在体内的生长。结论POU2F2转录激活PTPRG-AS1,通过miR-376c-3p/SLC7A11调控铁变态反应和增殖,促进TNBC。
{"title":"POU2F2-mediated upregulation of lncRNA <i>PTPRG-AS1</i> inhibits ferroptosis in breast cancer via miR-376c-3p/SLC7A11 axis.","authors":"Jun Li, Pei-Ting Li, Wei Wu, Bo-Ni Ding, Yan-Guang Wen, Hai-Lin Cai, Shuang-Xi Liu, Tao Hong, Jian-Fei Zhang, Jian-Da Zhou, Li-Yuan Qian, Juan Du","doi":"10.2217/epi-2023-0100","DOIUrl":"10.2217/epi-2023-0100","url":null,"abstract":"<p><p><b>Background:</b> Triple-negative breast cancer (TNBC) is a subtype of BC with high rates of mortality. The mechanism of <i>PTPRG-AS1</i> in ferroptosis of TNBC was investigated. <b>Methods:</b> Chromatin immunoprecipitation and dual-luciferase reporter assays were used to measure intermolecular relationships. MTT and colony formation assays detected cell viability and proliferation. Kits detected Fe<sup>2+</sup> and reactive oxygen species levels. The role of PTPRG-AS1 in tumor growth was analyzed <i>in vivo</i>. <b>Results:</b> <i>PTPRG-AS1</i> was increased in TNBC tissues and cells. <i>PTPRG-AS1</i> silencing increased the reduction of glutathione and GPX4, increased Fe<sup>2+</sup> and reactive oxygen species in erastin-treated cells and inhibited proliferation. POU2F2 transcriptionally upregulated <i>PTPRG-AS1</i>. <i>PTPRG-AS1</i> targeted miR-376c-3p to upregulate <i>SLC7A11</i>. <i>PTPRG-AS1</i> knockdown suppressed tumor growth <i>in vivo</i>. <b>Conclusion:</b> POU2F2 transcriptionally activates <i>PTPRG-AS1</i> to modulate ferroptosis and proliferation by miR-376c-3p/SLC7A11, promoting TNBC.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"215-231"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital PCR-based GRHL2 methylation testing in acute myeloid leukemia: diagnosis, prognosis and monitoring. 基于数字 PCR 的急性髓性白血病 GRHL2 甲基化检测:诊断、预后和监测。
IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-02-01 Epub Date: 2024-02-12 DOI: 10.2217/epi-2023-0406
Jing Hua, Miaomiao Chu, Chaohui Wang, Hangfan Zhang, Jing Luan, Yifei Zhang, Qiang Li, Taiwu Xiao, Chuansheng Zhu, Xuan Li, Bo Fu

Background: Acute myeloid leukemia (AML) is a challenging disease with high rates of recurrence. The role of the cancer-related gene GRHL2 in AML has not been widely studied. Methods: Peripheral blood samples were collected from 73 AML patients and 68 healthy controls. Droplet digital PCR was used to detect GRHL2 methylation levels to explore the value of GRHL2 methylation in the diagnosis, treatment response and prognosis of AML. Result: GRHL2 methylation was significantly increased in AML patients (p < 0.01), with high diagnostic accuracy (area under the curve: 0.848; p < 0.001). GRHL2 methylation was correlated with chemotherapy response (p < 0.05) and is an independent prognostic factor for AML (p < 0.05). Conclusion: GRHL2 methylation is expected to serve as a biomarker for diagnosing AML patients and predicting prognosis.

背景:急性髓性白血病(AML)是一种具有高复发率的挑战性疾病。癌症相关基因 GRHL2 在 AML 中的作用尚未得到广泛研究。研究方法收集了 73 名 AML 患者和 68 名健康对照者的外周血样本。采用液滴数字 PCR 检测 GRHL2 甲基化水平,以探讨 GRHL2 甲基化在急性髓细胞性白血病的诊断、治疗反应和预后中的价值。结果GRHL2甲基化在急性髓细胞性白血病患者中明显增加(p GRHL2甲基化与化疗反应相关(p 结论:GRHL2甲基化有望影响急性髓细胞性白血病的诊断、治疗反应和预后:GRHL2甲基化有望成为诊断急性髓细胞白血病患者和预测预后的生物标志物。
{"title":"Digital PCR-based <i>GRHL2</i> methylation testing in acute myeloid leukemia: diagnosis, prognosis and monitoring.","authors":"Jing Hua, Miaomiao Chu, Chaohui Wang, Hangfan Zhang, Jing Luan, Yifei Zhang, Qiang Li, Taiwu Xiao, Chuansheng Zhu, Xuan Li, Bo Fu","doi":"10.2217/epi-2023-0406","DOIUrl":"10.2217/epi-2023-0406","url":null,"abstract":"<p><p><b>Background:</b> Acute myeloid leukemia (AML) is a challenging disease with high rates of recurrence. The role of the cancer-related gene <i>GRHL2</i> in AML has not been widely studied. <b>Methods:</b> Peripheral blood samples were collected from 73 AML patients and 68 healthy controls. Droplet digital PCR was used to detect <i>GRHL2</i> methylation levels to explore the value of <i>GRHL2</i> methylation in the diagnosis, treatment response and prognosis of AML. <b>Result:</b> <i>GRHL2</i> methylation was significantly increased in AML patients (p < 0.01), with high diagnostic accuracy (area under the curve: 0.848; p < 0.001). <i>GRHL2</i> methylation was correlated with chemotherapy response (p < 0.05) and is an independent prognostic factor for AML (p < 0.05). <b>Conclusion:</b> <i>GRHL2</i> methylation is expected to serve as a biomarker for diagnosing AML patients and predicting prognosis.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"233-247"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twin study: genotype-dependent epigenetic factors affecting free thyroxine levels in the normal range. 双胞胎研究:影响正常范围内游离甲状腺素水平的基因型依赖性表观遗传因素。
IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-02-01 Epub Date: 2024-01-24 DOI: 10.2217/epi-2023-0372
Saki Yoshioka, Yuya Arakawa, Mika Hasegawa, Shiho Kato, Hinako Hashimoto, Saho Mori, Hiromichi Ueda, Mikio Watanabe

Aim: To explore the clinical application of DNA methylation affecting thyroid function, we evaluated the association of DNA methylation with free thyroxine (FT4) and TSH measurements in monozygotic twins. Materials & methods: Discordant pairs for FT4 or TSH levels were examined for the relationship between the within-pair difference of each measurement and the DNA methylation levels using epigenome-wide association studies. The contribution of polymorphisms to the methylation sensitivity was also examined. Results: We found two CpG sites significantly associated with FT4 levels, and also some CpG sites showing significant differences in their methylation levels within FT4-discordant pairs depending on the polymorphism in EPHB2. Conclusion: The FT4 level may be associated with a combination of methylation and polymorphisms in the EPHB2 gene.

目的:为了探索影响甲状腺功能的 DNA 甲基化的临床应用,我们评估了 DNA 甲基化与单卵双生子游离甲状腺素(FT4)和促甲状腺激素(TSH)测量值的相关性。材料与方法利用全表观基因组关联研究,对FT4或TSH水平不一致的双生子对内差异与DNA甲基化水平之间的关系进行了研究。同时还研究了多态性对甲基化敏感性的贡献。结果发现我们发现两个 CpG 位点与 FT4 水平显著相关,而且根据 EPHB2 的多态性,一些 CpG 位点在 FT4 不一致的配对中显示出显著的甲基化水平差异。结论FT4 水平可能与 EPHB2 基因的甲基化和多态性共同作用有关。
{"title":"Twin study: genotype-dependent epigenetic factors affecting free thyroxine levels in the normal range.","authors":"Saki Yoshioka, Yuya Arakawa, Mika Hasegawa, Shiho Kato, Hinako Hashimoto, Saho Mori, Hiromichi Ueda, Mikio Watanabe","doi":"10.2217/epi-2023-0372","DOIUrl":"10.2217/epi-2023-0372","url":null,"abstract":"<p><p><b>Aim:</b> To explore the clinical application of DNA methylation affecting thyroid function, we evaluated the association of DNA methylation with free thyroxine (FT4) and TSH measurements in monozygotic twins. <b>Materials & methods:</b> Discordant pairs for FT4 or TSH levels were examined for the relationship between the within-pair difference of each measurement and the DNA methylation levels using epigenome-wide association studies. The contribution of polymorphisms to the methylation sensitivity was also examined. <b>Results:</b> We found two CpG sites significantly associated with FT4 levels, and also some CpG sites showing significant differences in their methylation levels within FT4-discordant pairs depending on the polymorphism in <i>EPHB2</i>. <b>Conclusion:</b> The FT4 level may be associated with a combination of methylation and polymorphisms in the <i>EPHB2</i> gene.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"147-158"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SET protein as an epigenetics target. 作为表观遗传学靶标的 SET 蛋白。
IF 3.8 4区 医学 Q2 GENETICS & HEREDITY Pub Date : 2024-02-01 Epub Date: 2023-12-22 DOI: 10.2217/epi-2023-0297
Gabriel da Silva, Thaís Moré Milan, Pablo Shimaoka Chagas, Glauce Lunardelli Trevisan, Camila Lopes Ferraz, Andréia Machado Leopoldino

The SET gene has four transcripts reported in NCBI, coding two isoforms of SET proteins. The most known function of SET protein is inhibiting protein phosphatase 2A, a tumor suppressor, which has been associated with different biological processes. In this review, our focus was on exploring the other SET functions related to epigenetic mechanisms, which impact cellular migration, cell cycle and apoptosis.

据 NCBI 报道,SET 基因有四个转录本,编码两种同工酶 SET 蛋白。SET 蛋白最著名的功能是抑制蛋白磷酸酶 2A,这是一种肿瘤抑制因子,与不同的生物过程有关。在这篇综述中,我们重点探讨了 SET 与表观遗传机制有关的其他功能,这些功能会影响细胞迁移、细胞周期和细胞凋亡。
{"title":"SET protein as an epigenetics target.","authors":"Gabriel da Silva, Thaís Moré Milan, Pablo Shimaoka Chagas, Glauce Lunardelli Trevisan, Camila Lopes Ferraz, Andréia Machado Leopoldino","doi":"10.2217/epi-2023-0297","DOIUrl":"10.2217/epi-2023-0297","url":null,"abstract":"<p><p>The SET gene has four transcripts reported in NCBI, coding two isoforms of SET proteins. The most known function of SET protein is inhibiting protein phosphatase 2A, a tumor suppressor, which has been associated with different biological processes. In this review, our focus was on exploring the other SET functions related to epigenetic mechanisms, which impact cellular migration, cell cycle and apoptosis.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"249-257"},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Epigenomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1