首页 > 最新文献

European Heart Journal最新文献

英文 中文
Using artificial intelligence to spot heart failure from ECGs: is it prime time? 利用人工智能从心电图中发现心力衰竭:这是黄金时机吗?
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-15 DOI: 10.1093/eurheartj/ehae906
Charalambos Antoniades, Kenneth Chan
{"title":"Using artificial intelligence to spot heart failure from ECGs: is it prime time?","authors":"Charalambos Antoniades, Kenneth Chan","doi":"10.1093/eurheartj/ehae906","DOIUrl":"https://doi.org/10.1093/eurheartj/ehae906","url":null,"abstract":"","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise type and settings, quality of life, and mental health in coronary artery disease: a network meta-analysis. 冠状动脉疾病的运动类型和环境、生活质量和心理健康:一项网络荟萃分析
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-15 DOI: 10.1093/eurheartj/ehae870
Angel Toval, Esmée A Bakker, Joao Bruno Granada-Maia, Sergio Núñez de Arenas-Arroyo, Patricio Solis-Urra, Thijs M H Eijsvogels, Irene Esteban-Cornejo, Vicente Martínez-Vizcaíno, Francisco B Ortega

Background and aims: Individuals with coronary artery disease have poorer mental health, health-related quality of life (HR-QoL), and cognition compared with (age-matched) controls. Exercise training may attenuate these effects. The aim is to systematically review and meta-analyse the effects of different exercise types and settings on brain structure/function, cognition, HR-QoL, mental health (e.g. depression, anxiety), and sleep in patients with coronary artery disease.

Methods: A systematic search was conducted and a network meta-analysis compared (i) exercise types, high-intensity interval training (HIIT), HIIT + resistance (HIIT + R), moderate-intensity training (MIT), MIT + R and stretching-toning-balance training, and (ii) exercise settings, in-person and home-based.

Results: A total of 42 randomized controlled trials with a parallel group design were identified, of which 36 were included in the meta-analysis. Few studies included cognition (n = 2), sleep (n = 2), and none brain structure/function (n = 0). Most studies examined HR-QoL (n = 30), depression (n = 15), and anxiety (n = 9), in which outcomes were meta-analysed. HIIT + R, HIIT, and MIT were associated with improved HR-QoL vs. no exercise (i.e. usual care) [standardized mean difference, SMD: 1.53 (95% confidence interval 0.83; 2.24), 0.44 (0.15; 0.73), and 0.44 (0.20; 0.67), respectively]. In-person exercise was associated with larger and significant improvements [HR-QoL SMD: 0.51 (0.28; 0.74), depressive SMD: -0.55 (-1.03; -0.07), and anxiety symptoms SMD: -1.16 (-2.05; -0.26)] compared with no exercise, whereas home-based programmes were not significantly associated with improvements in these outcomes. Findings were robust in secondary (i.e. intervention duration and volume) and sensitivity analyses excluding high risk of bias studies.

Conclusions: Exercise training, especially in-person sessions, was associated with improved HR-QoL, depression and anxiety, independently of exercise type. However, this study raises concern about the effectiveness of home-based programmes in improving these outcomes.Study protocol was registered in PROSPERO (ID: CRD42023402569).

背景和目的:冠状动脉疾病患者的心理健康、健康相关生活质量(HR-QoL)和认知能力较(年龄匹配)对照组差。运动训练可以减轻这些影响。目的是系统回顾和荟萃分析不同运动类型和设置对冠状动脉疾病患者大脑结构/功能、认知、HR-QoL、心理健康(如抑郁、焦虑)和睡眠的影响。方法:进行系统检索和网络荟萃分析,比较(i)运动类型,高强度间歇训练(HIIT), HIIT +阻力训练(HIIT + R),中等强度训练(MIT), MIT + R和拉伸-拉伸-平衡训练,以及(ii)运动设置,面对面和家庭基础。结果:共纳入42项采用平行组设计的随机对照试验,其中36项纳入meta分析。少数研究包括认知(n = 2)、睡眠(n = 2)和无大脑结构/功能(n = 0)。大多数研究检查了HR-QoL (n = 30)、抑郁(n = 15)和焦虑(n = 9),其中的结果进行了meta分析。HIIT + R、HIIT和MIT与没有运动(即常规护理)的HR-QoL改善相关[标准化平均差,SMD: 1.53(95%可信区间0.83;2.24), 0.44 (0.15;0.73), 0.44 (0.20;0.67),分别)。亲自锻炼与更大且显著的改善相关[HR-QoL SMD: 0.51 (0.28;0.74),抑郁SMD: -0.55 (-1.03;焦虑症状SMD: -1.16 (-2.05;(-0.26)]与不锻炼相比,而以家庭为基础的项目与这些结果的改善没有显著相关。在次要分析(即干预持续时间和数量)和敏感性分析中,排除了高风险偏倚研究,研究结果是稳健的。结论:运动训练,尤其是面对面的训练,与改善的HR-QoL、抑郁和焦虑有关,与运动类型无关。然而,这项研究引起了人们对以家庭为基础的项目在改善这些结果方面的有效性的关注。研究方案已在PROSPERO注册(ID: CRD42023402569)。
{"title":"Exercise type and settings, quality of life, and mental health in coronary artery disease: a network meta-analysis.","authors":"Angel Toval, Esmée A Bakker, Joao Bruno Granada-Maia, Sergio Núñez de Arenas-Arroyo, Patricio Solis-Urra, Thijs M H Eijsvogels, Irene Esteban-Cornejo, Vicente Martínez-Vizcaíno, Francisco B Ortega","doi":"10.1093/eurheartj/ehae870","DOIUrl":"https://doi.org/10.1093/eurheartj/ehae870","url":null,"abstract":"<p><strong>Background and aims: </strong>Individuals with coronary artery disease have poorer mental health, health-related quality of life (HR-QoL), and cognition compared with (age-matched) controls. Exercise training may attenuate these effects. The aim is to systematically review and meta-analyse the effects of different exercise types and settings on brain structure/function, cognition, HR-QoL, mental health (e.g. depression, anxiety), and sleep in patients with coronary artery disease.</p><p><strong>Methods: </strong>A systematic search was conducted and a network meta-analysis compared (i) exercise types, high-intensity interval training (HIIT), HIIT + resistance (HIIT + R), moderate-intensity training (MIT), MIT + R and stretching-toning-balance training, and (ii) exercise settings, in-person and home-based.</p><p><strong>Results: </strong>A total of 42 randomized controlled trials with a parallel group design were identified, of which 36 were included in the meta-analysis. Few studies included cognition (n = 2), sleep (n = 2), and none brain structure/function (n = 0). Most studies examined HR-QoL (n = 30), depression (n = 15), and anxiety (n = 9), in which outcomes were meta-analysed. HIIT + R, HIIT, and MIT were associated with improved HR-QoL vs. no exercise (i.e. usual care) [standardized mean difference, SMD: 1.53 (95% confidence interval 0.83; 2.24), 0.44 (0.15; 0.73), and 0.44 (0.20; 0.67), respectively]. In-person exercise was associated with larger and significant improvements [HR-QoL SMD: 0.51 (0.28; 0.74), depressive SMD: -0.55 (-1.03; -0.07), and anxiety symptoms SMD: -1.16 (-2.05; -0.26)] compared with no exercise, whereas home-based programmes were not significantly associated with improvements in these outcomes. Findings were robust in secondary (i.e. intervention duration and volume) and sensitivity analyses excluding high risk of bias studies.</p><p><strong>Conclusions: </strong>Exercise training, especially in-person sessions, was associated with improved HR-QoL, depression and anxiety, independently of exercise type. However, this study raises concern about the effectiveness of home-based programmes in improving these outcomes.Study protocol was registered in PROSPERO (ID: CRD42023402569).</p>","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence and mortality prediction in acute coronary syndromes. 人工智能与急性冠状动脉综合征的死亡率预测。
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-13 DOI: 10.1093/eurheartj/ehae475
Zachi I Attia, Paul A Friedman
{"title":"Artificial intelligence and mortality prediction in acute coronary syndromes.","authors":"Zachi I Attia, Paul A Friedman","doi":"10.1093/eurheartj/ehae475","DOIUrl":"https://doi.org/10.1093/eurheartj/ehae475","url":null,"abstract":"","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome. 基于心电图的机器学习对疑似急性冠状动脉综合征患者进行风险分层。
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-13 DOI: 10.1093/eurheartj/ehae880
Zeineb Bouzid, Ervin Sejdic, Christian Martin-Gill, Ziad Faramand, Stephanie Frisch, Mohammad Alrawashdeh, Stephanie Helman, Tanmay A Gokhale, Nathan T Riek, Karina Kraevsky-Phillips, Richard E Gregg, Susan M Sereika, Gilles Clermont, Murat Akcakaya, Jessica K Zègre-Hemsey, Samir Saba, Clifton W Callaway, Salah S Al-Zaiti

Background and aims: The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain.

Methods: This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain. All-cause death was ascertained from multiple sources, including the CDC National Death Index registry. Six machine learning models were trained for survival analysis using 73 morphological electrocardiogram features (80% training with 10-fold cross-validation and 20% testing), followed by a variational Bayesian Gaussian mixture model to define distinct risk groups. The resulting classification performance was compared against the HEART score.

Results: The derivation cohort included 4015 patients (age 59 ± 16 years, 47% women). The mortality rate was 20.3% after a median follow-up period of 3.05 years (interquartile range 1.75-5.32). Extra Survival Trees outperformed other forecasting models, and the derived risk groups successfully classified patients into low-, moderate-, and high-risk groups (log-rank test statistic = 121.14, P < .001). This model outperformed the HEART score, reducing the rate of missed events by >90% with a negative predictive value and sensitivity of 93.4% and 85.9%, compared to 89.0% and 75.0%, respectively. In an independent external testing cohort (N = 3095, age 59 ± 15 years, 44% women, 30-day mortality 3.5%), patients in the moderate [odds ratio 3.62 (1.35-9.74)] and high [odds ratio 6.12 (2.38-15.75)] risk groups had significantly higher odds of mortality compared to those in the low-risk group.

Conclusions: The externally validated machine learning-based model, exclusively utilizing features from the 12-lead electrocardiogram, outperformed the HEART score in stratifying the mortality risk of patients with acute chest pain. This may have the potential to impact the precision of care delivery and the allocation of resources to those at highest risk of adverse events.

背景和目的:胸痛患者风险分层的重要性超出了诊断和立即治疗。本研究旨在评估基于心电图特征的机器学习模型对胸痛患者全因死亡率进行风险分层的预后价值。方法:这是一项前瞻性观察队列研究,研究对象为连续的非创伤性胸痛患者。全因死亡由多种来源确定,包括疾病预防控制中心国家死亡指数登记处。使用73个形态学心电图特征训练6个机器学习模型进行生存分析(80%训练,10倍交叉验证和20%测试),然后使用变分贝叶斯高斯混合模型定义不同的风险组。将结果分类性能与HEART评分进行比较。结果:衍生队列包括4015例患者(年龄59±16岁,女性47%)。中位随访期为3.05年(四分位数范围1.75-5.32),死亡率为20.3%。额外生存树优于其他预测模型,衍生的风险组成功地将患者分为低、中、高风险组(log-rank检验统计量= 121.14,P < .001)。该模型优于HEART评分,将遗漏事件率降低了90%,阴性预测值和敏感性分别为93.4%和85.9%,而后者分别为89.0%和75.0%。在一个独立的外部检测队列中(N = 3095,年龄59±15岁,44%女性,30天死亡率3.5%),中等[比值比3.62(1.35-9.74)]和高[比值比6.12(2.38-15.75)]危险组患者的死亡率明显高于低危险组。结论:外部验证的基于机器学习的模型,专门利用12导联心电图的特征,在急性胸痛患者的死亡风险分层方面优于HEART评分。这可能会影响到医疗服务的准确性和对那些不良事件风险最高的人的资源分配。
{"title":"Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome.","authors":"Zeineb Bouzid, Ervin Sejdic, Christian Martin-Gill, Ziad Faramand, Stephanie Frisch, Mohammad Alrawashdeh, Stephanie Helman, Tanmay A Gokhale, Nathan T Riek, Karina Kraevsky-Phillips, Richard E Gregg, Susan M Sereika, Gilles Clermont, Murat Akcakaya, Jessica K Zègre-Hemsey, Samir Saba, Clifton W Callaway, Salah S Al-Zaiti","doi":"10.1093/eurheartj/ehae880","DOIUrl":"https://doi.org/10.1093/eurheartj/ehae880","url":null,"abstract":"<p><strong>Background and aims: </strong>The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain.</p><p><strong>Methods: </strong>This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain. All-cause death was ascertained from multiple sources, including the CDC National Death Index registry. Six machine learning models were trained for survival analysis using 73 morphological electrocardiogram features (80% training with 10-fold cross-validation and 20% testing), followed by a variational Bayesian Gaussian mixture model to define distinct risk groups. The resulting classification performance was compared against the HEART score.</p><p><strong>Results: </strong>The derivation cohort included 4015 patients (age 59 ± 16 years, 47% women). The mortality rate was 20.3% after a median follow-up period of 3.05 years (interquartile range 1.75-5.32). Extra Survival Trees outperformed other forecasting models, and the derived risk groups successfully classified patients into low-, moderate-, and high-risk groups (log-rank test statistic = 121.14, P < .001). This model outperformed the HEART score, reducing the rate of missed events by >90% with a negative predictive value and sensitivity of 93.4% and 85.9%, compared to 89.0% and 75.0%, respectively. In an independent external testing cohort (N = 3095, age 59 ± 15 years, 44% women, 30-day mortality 3.5%), patients in the moderate [odds ratio 3.62 (1.35-9.74)] and high [odds ratio 6.12 (2.38-15.75)] risk groups had significantly higher odds of mortality compared to those in the low-risk group.</p><p><strong>Conclusions: </strong>The externally validated machine learning-based model, exclusively utilizing features from the 12-lead electrocardiogram, outperformed the HEART score in stratifying the mortality risk of patients with acute chest pain. This may have the potential to impact the precision of care delivery and the allocation of resources to those at highest risk of adverse events.</p>","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study. 心衰风险分层使用人工智能应用于心电图图像:一项跨国研究。
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-13 DOI: 10.1093/eurheartj/ehae914
Lovedeep S Dhingra, Arya Aminorroaya, Veer Sangha, Aline F Pedroso, Folkert W Asselbergs, Luisa C C Brant, Sandhi M Barreto, Antonio Luiz P Ribeiro, Harlan M Krumholz, Evangelos K Oikonomou, Rohan Khera

Background and aims: Current heart failure (HF) risk stratification strategies require comprehensive clinical evaluation. In this study, artificial intelligence (AI) applied to electrocardiogram (ECG) images was examined as a strategy to predict HF risk.

Methods: Across multinational cohorts in the Yale New Haven Health System (YNHHS), UK Biobank (UKB), and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), individuals without baseline HF were followed for the first HF hospitalization. An AI-ECG model that defines cross-sectional left ventricular systolic dysfunction from 12-lead ECG images was used, and its association with incident HF was evaluated. Discrimination was assessed using Harrell's C-statistic. Pooled cohort equations to prevent HF (PCP-HF) were used as a comparator.

Results: Among 231 285 YNHHS patients, 4472 had primary HF hospitalizations over 4.5 years (inter-quartile range 2.5-6.6). In UKB and ELSA-Brasil, among 42 141 and 13 454 people, 46 and 31 developed HF over 3.1 (2.1-4.5) and 4.2 (3.7-4.5) years. A positive AI-ECG screen portended a 4- to 24-fold higher risk of new-onset HF [age-, sex-adjusted hazard ratio: YNHHS, 3.88 (95% confidence interval 3.63-4.14); UKB, 12.85 (6.87-24.02); ELSA-Brasil, 23.50 (11.09-49.81)]. The association was consistent after accounting for comorbidities and the competing risk of death. Higher probabilities were associated with progressively higher HF risk. Model discrimination was 0.718 in YNHHS, 0.769 in UKB, and 0.810 in ELSA-Brasil. In YNHHS and ELSA-Brasil, incorporating AI-ECG with PCP-HF yielded a significant improvement in discrimination over PCP-HF alone.

Conclusions: An AI model applied to a single ECG image defined the risk of future HF, representing a digital biomarker for stratifying HF risk.

背景和目的:目前的心力衰竭(HF)风险分层策略需要全面的临床评估。在这项研究中,人工智能(AI)应用于心电图(ECG)图像,作为预测心衰风险的策略。方法:在耶鲁纽黑文卫生系统(YNHHS)、英国生物银行(UKB)和巴西成人健康纵向研究(ELSA-Brasil)的跨国队列中,对首次HF住院的无基线HF患者进行随访。采用AI-ECG模型,根据12导联心电图图像定义左室收缩功能障碍,并评估其与心衰事件的关联。使用Harrell的c统计量来评估歧视。采用预防HF的合并队列方程(PCP-HF)作为比较。结果:在231 285例YNHHS患者中,4472例原发性心衰住院时间超过4.5年(四分位数间距2.5-6.6)。在UKB和ELSA-Brasil, 41441人和13454人中,分别有46人和31人在3.1(2.1-4.5)和4.2(3.7-4.5)年发生HF。AI-ECG筛查阳性预示着新发HF的风险增加4- 24倍[年龄、性别校正风险比:YNHHS, 3.88(95%可信区间3.63-4.14);英国,12.85 (6.87-24.02);ELSA-Brasil, 23.50[11.09-49.81]。在考虑了合并症和竞争死亡风险后,这种关联是一致的。概率越高,心衰风险越高。YNHHS的模型鉴别率为0.718,UKB为0.769,ELSA-Brasil为0.810。在YNHHS和ELSA-Brasil,与单独使用PCP-HF相比,将AI-ECG与PCP-HF结合可以显著改善对PCP-HF的辨别。结论:应用于单个ECG图像的AI模型定义了未来HF的风险,代表了HF风险分层的数字生物标志物。
{"title":"Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study.","authors":"Lovedeep S Dhingra, Arya Aminorroaya, Veer Sangha, Aline F Pedroso, Folkert W Asselbergs, Luisa C C Brant, Sandhi M Barreto, Antonio Luiz P Ribeiro, Harlan M Krumholz, Evangelos K Oikonomou, Rohan Khera","doi":"10.1093/eurheartj/ehae914","DOIUrl":"10.1093/eurheartj/ehae914","url":null,"abstract":"<p><strong>Background and aims: </strong>Current heart failure (HF) risk stratification strategies require comprehensive clinical evaluation. In this study, artificial intelligence (AI) applied to electrocardiogram (ECG) images was examined as a strategy to predict HF risk.</p><p><strong>Methods: </strong>Across multinational cohorts in the Yale New Haven Health System (YNHHS), UK Biobank (UKB), and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), individuals without baseline HF were followed for the first HF hospitalization. An AI-ECG model that defines cross-sectional left ventricular systolic dysfunction from 12-lead ECG images was used, and its association with incident HF was evaluated. Discrimination was assessed using Harrell's C-statistic. Pooled cohort equations to prevent HF (PCP-HF) were used as a comparator.</p><p><strong>Results: </strong>Among 231 285 YNHHS patients, 4472 had primary HF hospitalizations over 4.5 years (inter-quartile range 2.5-6.6). In UKB and ELSA-Brasil, among 42 141 and 13 454 people, 46 and 31 developed HF over 3.1 (2.1-4.5) and 4.2 (3.7-4.5) years. A positive AI-ECG screen portended a 4- to 24-fold higher risk of new-onset HF [age-, sex-adjusted hazard ratio: YNHHS, 3.88 (95% confidence interval 3.63-4.14); UKB, 12.85 (6.87-24.02); ELSA-Brasil, 23.50 (11.09-49.81)]. The association was consistent after accounting for comorbidities and the competing risk of death. Higher probabilities were associated with progressively higher HF risk. Model discrimination was 0.718 in YNHHS, 0.769 in UKB, and 0.810 in ELSA-Brasil. In YNHHS and ELSA-Brasil, incorporating AI-ECG with PCP-HF yielded a significant improvement in discrimination over PCP-HF alone.</p><p><strong>Conclusions: </strong>An AI model applied to a single ECG image defined the risk of future HF, representing a digital biomarker for stratifying HF risk.</p>","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overweight, obesity, and cardiovascular disease in heterozygous familial hypercholesterolaemia: the EAS FH Studies Collaboration registry. 杂合子家族性高胆固醇血症中的超重、肥胖和心血管疾病:EAS FH研究合作注册
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-13 DOI: 10.1093/eurheartj/ehae791
Amany Elshorbagy, Antonio J Vallejo-Vaz, Fotios Barkas, Alexander R M Lyons, Christophe A T Stevens, Kanika I Dharmayat, Alberico L Catapano, Tomas Freiberger, G Kees Hovingh, Pedro Mata, Frederick J Raal, Raul D Santos, Handrean Soran, Gerald F Watts, Marianne Abifadel, Carlos A Aguilar-Salinas, Khalid F Alhabib, Mutaz Alkhnifsawi, Wael Almahmeed, Fahad Alnouri, Rodrigo Alonso, Khalid Al-Rasadi, Ahmad Al-Sarraf, Marcello Arca, Tester F Ashavaid, Maurizio Averna, Maciej Banach, Marianne Becker, Christoph J Binder, Mafalda Bourbon, Liam R Brunham, Krzysztof Chlebus, Pablo Corral, Diogo Cruz, Kairat Davletov, Olivier S Descamps, Bambang Dwiputra, Marat Ezhov, Urh Groselj, Mariko Harada-Shiba, Kirsten B Holven, Steve E Humphries, Meral Kayikcioglu, Weerapan Khovidhunkit, Katarina Lalic, Gustavs Latkovskis, Ulrich Laufs, Evangelos Liberopoulos, Marcos M Lima-Martinez, Vincent Maher, A David Marais, Winfried März, Erkin Mirrakhimov, André R Miserez, Olena Mitchenko, Hapizah Nawawi, Børge G Nordestgaard, Andrie G Panayiotou, György Paragh, Zaneta Petrulioniene, Belma Pojskic, Arman Postadzhiyan, Ashraf Reda, Željko Reiner, Ximena Reyes, Fouzia Sadiq, Wilson Ehidiamen Sadoh, Heribert Schunkert, Aleksandr B Shek, Erik Stroes, Ta-Chen Su, Tavintharan Subramaniam, Andrey V Susekov, Myra Tilney, Brian Tomlinson, Thanh Huong Truong, Alexandros D Tselepis, Anne Tybjærg-Hansen, Alejandra Vázquez-Cárdenas, Margus Viigimaa, Branislav Vohnout, Shizuya Yamashita, Kausik K Ray

Background and aims: Overweight and obesity are modifiable risk factors for atherosclerotic cardiovascular disease (ASCVD) in the general population, but their prevalence in individuals with heterozygous familial hypercholesterolaemia (HeFH) and whether they confer additional risk of ASCVD independent of LDL cholesterol (LDL-C) remains unclear.

Methods: Cross-sectional analysis was conducted in 35 540 patients with HeFH across 50 countries, in the EAS FH Studies Collaboration registry. Prevalence of World Health Organization-defined body mass index categories was investigated in adults (n = 29 265) and children/adolescents (n = 6275); and their association with prevalent ASCVD.

Results: Globally, 52% of adults and 27% of children with HeFH were overweight or obese, with the highest prevalence noted in Northern Africa/Western Asia. A higher overweight/obesity prevalence was found in non-high-income vs. high-income countries. Median age at familial hypercholesterolaemia diagnosis in adults with obesity was 9 years older than in normal weight adults. Obesity was associated with a more atherogenic lipid profile independent of lipid-lowering medication. Prevalence of coronary artery disease increased progressively across body mass index categories in both children and adults. Compared with normal weight, obesity was associated with higher odds of coronary artery disease in children (odds ratio 9.28, 95% confidence interval 1.77-48.77, adjusted for age, sex, lipids, and lipid-lowering medication) and coronary artery disease and stroke in adults (odds ratio 2.35, 95% confidence interval 2.10-2.63 and odds ratio 1.65, 95% confidence interval 1.27-2.14, respectively), but less consistently with peripheral artery disease. Adjusting for diabetes, hypertension and smoking modestly attenuated the associations.

Conclusions: Overweight and obesity are common in patients with HeFH and contribute to ASCVD risk from childhood, independent of LDL-C and lipid-lowering medication. Sustained body weight management is needed to reduce the risk of ASCVD in HeFH.

背景和目的:超重和肥胖是普通人群中动脉粥样硬化性心血管疾病(ASCVD)的可改变危险因素,但其在杂合子家族性高胆固醇血症(HeFH)患者中的患病率以及它们是否赋予独立于低密度脂蛋白胆固醇(LDL- c)的ASCVD额外风险尚不清楚。方法:在EAS FH研究合作登记处对50个国家的35540例HeFH患者进行横断面分析。在成人(n = 29265)和儿童/青少年(n = 6275)中调查了世界卫生组织定义的体重指数类别的流行情况;以及它们与ASCVD流行的关系结果:在全球范围内,52%的HeFH成人和27%的HeFH儿童超重或肥胖,其中北非/西亚的患病率最高。非高收入国家的超重/肥胖患病率高于高收入国家。肥胖成人家族性高胆固醇血症诊断的中位年龄比正常体重成人大9岁。肥胖与更具有动脉粥样硬化性的脂质谱相关,与降脂药物无关。在儿童和成人中,冠状动脉疾病的患病率在体重指数类别中逐渐增加。与正常体重相比,肥胖与儿童冠状动脉疾病(优势比9.28,95%可信区间1.77-48.77,经年龄、性别、血脂和降脂药物调整后)和成人冠状动脉疾病和中风(优势比2.35,95%可信区间2.10-2.63,优势比1.65,95%可信区间1.27-2.14)相关,但与外周动脉疾病的相关性较低。对糖尿病、高血压和吸烟进行调整后,这种关联有所减弱。结论:超重和肥胖在HeFH患者中很常见,并且与LDL-C和降脂药物无关,自儿童期起就增加ASCVD风险。需要持续的体重管理来降低HeFH患者ASCVD的风险。
{"title":"Overweight, obesity, and cardiovascular disease in heterozygous familial hypercholesterolaemia: the EAS FH Studies Collaboration registry.","authors":"Amany Elshorbagy, Antonio J Vallejo-Vaz, Fotios Barkas, Alexander R M Lyons, Christophe A T Stevens, Kanika I Dharmayat, Alberico L Catapano, Tomas Freiberger, G Kees Hovingh, Pedro Mata, Frederick J Raal, Raul D Santos, Handrean Soran, Gerald F Watts, Marianne Abifadel, Carlos A Aguilar-Salinas, Khalid F Alhabib, Mutaz Alkhnifsawi, Wael Almahmeed, Fahad Alnouri, Rodrigo Alonso, Khalid Al-Rasadi, Ahmad Al-Sarraf, Marcello Arca, Tester F Ashavaid, Maurizio Averna, Maciej Banach, Marianne Becker, Christoph J Binder, Mafalda Bourbon, Liam R Brunham, Krzysztof Chlebus, Pablo Corral, Diogo Cruz, Kairat Davletov, Olivier S Descamps, Bambang Dwiputra, Marat Ezhov, Urh Groselj, Mariko Harada-Shiba, Kirsten B Holven, Steve E Humphries, Meral Kayikcioglu, Weerapan Khovidhunkit, Katarina Lalic, Gustavs Latkovskis, Ulrich Laufs, Evangelos Liberopoulos, Marcos M Lima-Martinez, Vincent Maher, A David Marais, Winfried März, Erkin Mirrakhimov, André R Miserez, Olena Mitchenko, Hapizah Nawawi, Børge G Nordestgaard, Andrie G Panayiotou, György Paragh, Zaneta Petrulioniene, Belma Pojskic, Arman Postadzhiyan, Ashraf Reda, Željko Reiner, Ximena Reyes, Fouzia Sadiq, Wilson Ehidiamen Sadoh, Heribert Schunkert, Aleksandr B Shek, Erik Stroes, Ta-Chen Su, Tavintharan Subramaniam, Andrey V Susekov, Myra Tilney, Brian Tomlinson, Thanh Huong Truong, Alexandros D Tselepis, Anne Tybjærg-Hansen, Alejandra Vázquez-Cárdenas, Margus Viigimaa, Branislav Vohnout, Shizuya Yamashita, Kausik K Ray","doi":"10.1093/eurheartj/ehae791","DOIUrl":"https://doi.org/10.1093/eurheartj/ehae791","url":null,"abstract":"<p><strong>Background and aims: </strong>Overweight and obesity are modifiable risk factors for atherosclerotic cardiovascular disease (ASCVD) in the general population, but their prevalence in individuals with heterozygous familial hypercholesterolaemia (HeFH) and whether they confer additional risk of ASCVD independent of LDL cholesterol (LDL-C) remains unclear.</p><p><strong>Methods: </strong>Cross-sectional analysis was conducted in 35 540 patients with HeFH across 50 countries, in the EAS FH Studies Collaboration registry. Prevalence of World Health Organization-defined body mass index categories was investigated in adults (n = 29 265) and children/adolescents (n = 6275); and their association with prevalent ASCVD.</p><p><strong>Results: </strong>Globally, 52% of adults and 27% of children with HeFH were overweight or obese, with the highest prevalence noted in Northern Africa/Western Asia. A higher overweight/obesity prevalence was found in non-high-income vs. high-income countries. Median age at familial hypercholesterolaemia diagnosis in adults with obesity was 9 years older than in normal weight adults. Obesity was associated with a more atherogenic lipid profile independent of lipid-lowering medication. Prevalence of coronary artery disease increased progressively across body mass index categories in both children and adults. Compared with normal weight, obesity was associated with higher odds of coronary artery disease in children (odds ratio 9.28, 95% confidence interval 1.77-48.77, adjusted for age, sex, lipids, and lipid-lowering medication) and coronary artery disease and stroke in adults (odds ratio 2.35, 95% confidence interval 2.10-2.63 and odds ratio 1.65, 95% confidence interval 1.27-2.14, respectively), but less consistently with peripheral artery disease. Adjusting for diabetes, hypertension and smoking modestly attenuated the associations.</p><p><strong>Conclusions: </strong>Overweight and obesity are common in patients with HeFH and contribute to ASCVD risk from childhood, independent of LDL-C and lipid-lowering medication. Sustained body weight management is needed to reduce the risk of ASCVD in HeFH.</p>","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ERC-funded grant: cardiac regeneration. erc资助资助:心脏再生。
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-11 DOI: 10.1093/eurheartj/ehae873
Cristina Villa Del Campo, Inés Rivero-García, Miguel Torres
{"title":"ERC-funded grant: cardiac regeneration.","authors":"Cristina Villa Del Campo, Inés Rivero-García, Miguel Torres","doi":"10.1093/eurheartj/ehae873","DOIUrl":"https://doi.org/10.1093/eurheartj/ehae873","url":null,"abstract":"","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personalized management of tricuspid valve regurgitation. 三尖瓣返流的个体化治疗。
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-11 DOI: 10.1093/eurheartj/ehae733
Philipp Lurz, Edoardo Zancanaro, Karl-Patrik Kresoja
{"title":"Personalized management of tricuspid valve regurgitation.","authors":"Philipp Lurz, Edoardo Zancanaro, Karl-Patrik Kresoja","doi":"10.1093/eurheartj/ehae733","DOIUrl":"https://doi.org/10.1093/eurheartj/ehae733","url":null,"abstract":"","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transthyretin amyloid cardiomyopathy: a paradigm for advancing precision medicine. 转甲状腺素淀粉样心肌病:推进精准医学的范例。
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-10 DOI: 10.1093/eurheartj/ehae811
Esther Gonzalez-Lopez, Mathew S Maurer, Pablo Garcia-Pavia

Development of specific therapies addressing the underlying diseases' mechanisms constitutes the basis of precision medicine. Transthyretin cardiac amyloidosis (ATTR-CM) is an exemplar of precise therapeutic approach in the field of heart failure and cardiomyopathies. A better understanding of the underlying pathophysiology, more precise data of its epidemiology, and advances in imaging techniques that allow non-invasive diagnosis have fostered the development of new and very effective specific therapies for ATTR-CM. Therapeutic advances have revolutionized the field, transforming a rare, devastating, and untreatable disease into a more common disease with several therapeutic alternatives available. Three main types of therapies (stabilizers, suppressors, and degraders) that act at different points of the amyloidogenic cascade have been developed or are currently under investigation. In this review, the key advances in pathophysiology and epidemiology that have occurred in the last decades along with the different therapeutic alternatives available or under development for ATTR-CM are described, illustrating the role of precision medicine applied to cardiovascular disorders. Pending questions that would need to be answered in upcoming years are also reviewed.

针对潜在疾病机制的特定疗法的发展构成了精准医学的基础。转甲状腺素型心脏淀粉样变性(atr - cm)是心衰和心肌病领域精确治疗方法的典范。更好地了解潜在的病理生理学,更精确的流行病学数据,以及允许非侵入性诊断的成像技术的进步,促进了atr - cm新的和非常有效的特异性治疗的发展。治疗的进步已经彻底改变了这个领域,把一种罕见的、毁灭性的、无法治愈的疾病变成了一种更常见的疾病,有几种治疗方法可供选择。三种主要类型的治疗方法(稳定剂,抑制剂和降解剂)作用于淀粉样蛋白级联的不同点,已经开发或目前正在研究中。本文综述了近几十年来atr - cm在病理生理学和流行病学方面的主要进展,以及现有或正在开发的不同治疗方案,说明了精准医学在心血管疾病中的作用。还审查了未来几年需要回答的未决问题。
{"title":"Transthyretin amyloid cardiomyopathy: a paradigm for advancing precision medicine.","authors":"Esther Gonzalez-Lopez, Mathew S Maurer, Pablo Garcia-Pavia","doi":"10.1093/eurheartj/ehae811","DOIUrl":"https://doi.org/10.1093/eurheartj/ehae811","url":null,"abstract":"<p><p>Development of specific therapies addressing the underlying diseases' mechanisms constitutes the basis of precision medicine. Transthyretin cardiac amyloidosis (ATTR-CM) is an exemplar of precise therapeutic approach in the field of heart failure and cardiomyopathies. A better understanding of the underlying pathophysiology, more precise data of its epidemiology, and advances in imaging techniques that allow non-invasive diagnosis have fostered the development of new and very effective specific therapies for ATTR-CM. Therapeutic advances have revolutionized the field, transforming a rare, devastating, and untreatable disease into a more common disease with several therapeutic alternatives available. Three main types of therapies (stabilizers, suppressors, and degraders) that act at different points of the amyloidogenic cascade have been developed or are currently under investigation. In this review, the key advances in pathophysiology and epidemiology that have occurred in the last decades along with the different therapeutic alternatives available or under development for ATTR-CM are described, illustrating the role of precision medicine applied to cardiovascular disorders. Pending questions that would need to be answered in upcoming years are also reviewed.</p>","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional coronary assessment in angina with intermediate coronary stenosis: the #FullPhysiology approach. 中度冠状动脉狭窄心绞痛的冠状动脉功能评估:#FullPhysiology方法。
IF 37.6 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-10 DOI: 10.1093/eurheartj/ehae926
Antonio Maria Leone, Domenico Galante, Andrea Viceré, Andrea Marrone, Filippo Maria Verardi, Chiara Giuliana, Ciro Pollio Benvenuto, Vincenzo Viccaro, Simona Todisco, Andrea Erriquez, Simone Biscaglia, Cristina Aurigemma, Enrico Romagnoli, Rocco Antonio Montone, Michele Basile, Eugenio Di Brino, Filippo Rumi, Gennaro Capalbo, Carlo Trani, Francesco Burzotta, Filippo Crea, Italo Porto, Gianluca Campo
{"title":"Functional coronary assessment in angina with intermediate coronary stenosis: the #FullPhysiology approach.","authors":"Antonio Maria Leone, Domenico Galante, Andrea Viceré, Andrea Marrone, Filippo Maria Verardi, Chiara Giuliana, Ciro Pollio Benvenuto, Vincenzo Viccaro, Simona Todisco, Andrea Erriquez, Simone Biscaglia, Cristina Aurigemma, Enrico Romagnoli, Rocco Antonio Montone, Michele Basile, Eugenio Di Brino, Filippo Rumi, Gennaro Capalbo, Carlo Trani, Francesco Burzotta, Filippo Crea, Italo Porto, Gianluca Campo","doi":"10.1093/eurheartj/ehae926","DOIUrl":"https://doi.org/10.1093/eurheartj/ehae926","url":null,"abstract":"","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Heart Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1