Diffraction is a fundamental phenomenon that occurs when blast or shock waves pass over sudden discontinuous surfaces. It generates a complex flow field consisting of diffracted waves, expansion waves, slipstream, contact surface, and an unstable shear layer, in addition to emitting acoustic waves. In this study, we investigated the diffraction of a blast wave passing over a series of grooved structures with different aspect ratios and geometrical shapes (rectangular, circular, and triangular) using high-speed shadowgraph images. The blast wave Mach number considered in our investigation is 1.34. The grooves feature leading-edge geometrical variations such as rectangular, circular arc, and wedge shapes positioned at various lateral locations from the exit of the shock tube. The aspect ratios of the rectangular grooves vary from 0.33, 0.5, and 0.67. The circular and triangular grooves have an aspect ratio of 0.33. The trajectories and velocities of the primary vortex are calculated by tracking the location of the vortex in the shadowgraph images. Our observations revealed that a large portion of the incident blast wave is abducted inside the groove as the aspect ratio increases in rectangular grooves, resulting in better attenuation of the blast wave. The grooves, which have circular shapes, produced weaker diffraction, which resulted in delayed and weak primary vortex. The triangular grooves produced the strongest primary vortex and have the highest attenuation characteristics among other grooves. The strength and trajectory of the primary vortex formed over the grooves strongly depend on the aspect ratio and the curvature of the leading edge for a given Mach number. Vortices generated from rectangular and triangular grooves exhibit considerable strength and longevity.
{"title":"A study on blast wave diffractions and the dynamics of associated vortices inside different grooves kept at various lateral distances from the shock tube","authors":"Senthilkumar Subramanian , Murugan Thangadurai , Konstantinos Kontis","doi":"10.1016/j.euromechflu.2024.07.012","DOIUrl":"10.1016/j.euromechflu.2024.07.012","url":null,"abstract":"<div><p>Diffraction is a fundamental phenomenon that occurs when blast or shock waves pass over sudden discontinuous surfaces. It generates a complex flow field consisting of diffracted waves, expansion waves, slipstream, contact surface, and an unstable shear layer, in addition to emitting acoustic waves. In this study, we investigated the diffraction of a blast wave passing over a series of grooved structures with different aspect ratios and geometrical shapes (rectangular, circular, and triangular) using high-speed shadowgraph images. The blast wave Mach number considered in our investigation is 1.34. The grooves feature leading-edge geometrical variations such as rectangular, circular arc, and wedge shapes positioned at various lateral locations from the exit of the shock tube. The aspect ratios of the rectangular grooves vary from 0.33, 0.5, and 0.67. The circular and triangular grooves have an aspect ratio of 0.33. The trajectories and velocities of the primary vortex are calculated by tracking the location of the vortex in the shadowgraph images. Our observations revealed that a large portion of the incident blast wave is abducted inside the groove as the aspect ratio increases in rectangular grooves, resulting in better attenuation of the blast wave. The grooves, which have circular shapes, produced weaker diffraction, which resulted in delayed and weak primary vortex. The triangular grooves produced the strongest primary vortex and have the highest attenuation characteristics among other grooves. The strength and trajectory of the primary vortex formed over the grooves strongly depend on the aspect ratio and the curvature of the leading edge for a given Mach number. Vortices generated from rectangular and triangular grooves exhibit considerable strength and longevity.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 166-179"},"PeriodicalIF":2.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1016/j.euromechflu.2024.07.011
Geoffrey S. Gray, Scott J. Ormiston, Hassan M. Soliman
An airlift pump is a vertical tube that utilizes the buoyant effects of a gas to lift a liquid. Unlike a standard mechanical pump, the liquid flow rate through the airlift pump is not directly controlled; rather, it depends on the supplied gas flow rate, the tube length and diameter, and the relative height of the liquid supply free surface (submergence ratio). The present study uses the commercial CFD code ANSYS CFX to model the isothermal, 3D, transient flow in an airlift pump using water and air. The model applies pressure boundary conditions at both ends of the tube and specifies the mass flow rate of air through multiple openings in the side of the tube. The bottom of the tube is an inlet of water only and the outlet is a two-phase flow opening. A time-dependent, homogeneous, VOF two-phase RANS CFD modelling approach is used with the air treated as an ideal gas. This work found that a complete 3D domain was necessary for consistent prediction of the airlift performance and physically realistic two-phase flow structures. Statistical analysis of the two-phase flow structures was applied to characterize airlift pump instability and better understand the physics of the airlift pump.
{"title":"Detailed 3D URANS analysis of two-phase flow in an airlift pump","authors":"Geoffrey S. Gray, Scott J. Ormiston, Hassan M. Soliman","doi":"10.1016/j.euromechflu.2024.07.011","DOIUrl":"10.1016/j.euromechflu.2024.07.011","url":null,"abstract":"<div><p>An airlift pump is a vertical tube that utilizes the buoyant effects of a gas to lift a liquid. Unlike a standard mechanical pump, the liquid flow rate through the airlift pump is not directly controlled; rather, it depends on the supplied gas flow rate, the tube length and diameter, and the relative height of the liquid supply free surface (submergence ratio). The present study uses the commercial CFD code ANSYS CFX to model the isothermal, 3D, transient flow in an airlift pump using water and air. The model applies pressure boundary conditions at both ends of the tube and specifies the mass flow rate of air through multiple openings in the side of the tube. The bottom of the tube is an inlet of water only and the outlet is a two-phase flow opening. A time-dependent, homogeneous, VOF two-phase RANS CFD modelling approach is used with the air treated as an ideal gas. This work found that a complete 3D domain was necessary for consistent prediction of the airlift performance and physically realistic two-phase flow structures. Statistical analysis of the two-phase flow structures was applied to characterize airlift pump instability and better understand the physics of the airlift pump.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 134-150"},"PeriodicalIF":2.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.euromechflu.2024.07.008
H.J.H. Clercx , C. Livi , G. Di Staso , F. Toschi
Transport of particles in flows is often modeled in a combined Eulerian–Lagrangian framework. The flow is evaluated on an Eulerian grid, while particles are modeled as Lagrangian points whose positions and velocities are evolved in time, resulting in particle trajectories embedded in the time-dependent flow field. The method essentially resolves the flow field in complex geometries in detail but uses a closure model for the particle dynamics aimed at including the essential particle–fluid interactions at the cost of detailed small-scale physics. Rarefaction effects are usually included through the phenomenological Cunningham correction on the drag force experienced by the particles. In this Lagrangian point-particle approach, any explicit reference to the finite size and the shape of the particles, and their local orientation in the flow field, is typically ignored. In this work we aim to address this gap by deriving, from fully-resolved Direct Simulation Monte Carlo (DSMC) studies, heuristic or closure models for the drag force acting on prolate and oblate spheroidal particles with different aspect ratios, and a fixed orientation, in uniform ambient rarefied flows covering the transition regime between the continuum and free-molecular limits. These closure models predict the drag in the transition regime for all considered parameter settings (validated with DSMC data). The continuum limit is enforced a priori and we retrieve the free-molecular limit with reasonable accuracy (based on comparisons with literature data). We also include in the models the capability to predict effects related to basic gas-surface interactions via the tangential momentum accommodation coefficient. We furthermore assess the validity of the proposed closure model for particle dynamics in proximity to solid walls. This investigation extends our previous work, which focused on small aspect ratio spheroids with exclusively diffusive gas-surface interactions [see Livi et al. (2022)]. The derived models are obtained for isothermal, subsonic flows relevant for particle contamination control in semiconductor manufacturing.
{"title":"Modeling drag coefficients of spheroidal particles in rarefied flow conditions","authors":"H.J.H. Clercx , C. Livi , G. Di Staso , F. Toschi","doi":"10.1016/j.euromechflu.2024.07.008","DOIUrl":"10.1016/j.euromechflu.2024.07.008","url":null,"abstract":"<div><p>Transport of particles in flows is often modeled in a combined Eulerian–Lagrangian framework. The flow is evaluated on an Eulerian grid, while particles are modeled as Lagrangian points whose positions and velocities are evolved in time, resulting in particle trajectories embedded in the time-dependent flow field. The method essentially resolves the flow field in complex geometries in detail but uses a closure model for the particle dynamics aimed at including the essential particle–fluid interactions at the cost of detailed small-scale physics. Rarefaction effects are usually included through the phenomenological Cunningham correction on the drag force experienced by the particles. In this Lagrangian point-particle approach, any explicit reference to the finite size and the shape of the particles, and their local orientation in the flow field, is typically ignored. In this work we aim to address this gap by deriving, from fully-resolved Direct Simulation Monte Carlo (DSMC) studies, heuristic or closure models for the drag force acting on prolate and oblate spheroidal particles with different aspect ratios, and a fixed orientation, in uniform ambient rarefied flows covering the transition regime between the continuum and free-molecular limits. These closure models predict the drag in the transition regime for all considered parameter settings (validated with DSMC data). The continuum limit is enforced a priori and we retrieve the free-molecular limit with reasonable accuracy (based on comparisons with literature data). We also include in the models the capability to predict effects related to basic gas-surface interactions via the tangential momentum accommodation coefficient. We furthermore assess the validity of the proposed closure model for particle dynamics in proximity to solid walls. This investigation extends our previous work, which focused on small aspect ratio spheroids with exclusively diffusive gas-surface interactions [see Livi et al. (2022)]. The derived models are obtained for isothermal, subsonic flows relevant for particle contamination control in semiconductor manufacturing.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 90-103"},"PeriodicalIF":2.5,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000967/pdfft?md5=02cbba47811cf272f4b0537ed161d5ab&pid=1-s2.0-S0997754624000967-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141693336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.euromechflu.2024.07.009
Mohd Hafiz Ab Satar, N.A. Razak, Mohd Safie Abdullah, Farzad Ismal
Flow control techniques used on wind turbines have been shown to significantly increase energy generation when compared to traditional wind turbines. Although various flow control methods have been introduced in the last two decades, the comparison between these methods is still the least conducted by researchers. Therefore, the present study aims to evaluate the performance of an airfoil utilizing both single and dual passive flow control methods, such as droop, flap, microcylinder, slot, and spoiler with optimal parameters. In this study, a numerical model was developed and applied with the same boundary conditions as those in the experiment. The results of the developed numerical simulation were then validated with experimental and other numerical studies. Mosaic mesh was utilized and the results were compared with conventional mesh types. Even though the mosaic mesh requires a lower number of computational elements, it demonstrated higher computational accuracy when compared to hexcore, polyhedra and tetrahedral type meshes. After obtaining an accurate numerical model, parametric studies were then conducted. The findings mainly highlighted that the airfoil with a microcylinder consistently generated higher performance than droop, flap, spoiler, slot and conventional airfoil. The mean relative improvement was about 2.6%. In an extensive study, eight combinations of flow controls were proposed and evaluated. The highest performances were achieved with the combination of microcylinder and flap, up to 27.9% and the combination of microcylinder and slot, reaching up to 50.2%, for low and high AOAs, respectively.
{"title":"A comprehensive comparison of passive flow controls on the wind turbine blade lift and drag performances: A CFD approach","authors":"Mohd Hafiz Ab Satar, N.A. Razak, Mohd Safie Abdullah, Farzad Ismal","doi":"10.1016/j.euromechflu.2024.07.009","DOIUrl":"10.1016/j.euromechflu.2024.07.009","url":null,"abstract":"<div><p>Flow control techniques used on wind turbines have been shown to significantly increase energy generation when compared to traditional wind turbines. Although various flow control methods have been introduced in the last two decades, the comparison between these methods is still the least conducted by researchers. Therefore, the present study aims to evaluate the performance of an airfoil utilizing both single and dual passive flow control methods, such as droop, flap, microcylinder, slot, and spoiler with optimal parameters. In this study, a numerical model was developed and applied with the same boundary conditions as those in the experiment. The results of the developed numerical simulation were then validated with experimental and other numerical studies. Mosaic mesh was utilized and the results were compared with conventional mesh types. Even though the mosaic mesh requires a lower number of computational elements, it demonstrated higher computational accuracy when compared to hexcore, polyhedra and tetrahedral type meshes. After obtaining an accurate numerical model, parametric studies were then conducted. The findings mainly highlighted that the airfoil with a microcylinder consistently generated higher performance than droop, flap, spoiler, slot and conventional airfoil. The mean relative improvement was about 2.6%. In an extensive study, eight combinations of flow controls were proposed and evaluated. The highest performances were achieved with the combination of microcylinder and flap, up to 27.9% and the combination of microcylinder and slot, reaching up to 50.2%, for low and high AOAs, respectively.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 119-133"},"PeriodicalIF":2.5,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141693985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1016/j.euromechflu.2024.07.007
Alessandro Chiarini , Marco Edoardo Rosti , Andrea Mazzino
This review delves into the dynamics of fibre-laden turbulent flows, a field that has garnered substantial attention due to its relevance in both natural and engineering contexts. The focus here is mainly on finite-size fibres, those exceeding the Kolmogorov scale, diverging from the commonly studied smaller ones. The study synthesises current understanding of the behaviour and organisation of both rigid and flexible finite-size fibres within turbulent flows, underscoring the added complexity these anisotropic particles introduce compared to their spherical counterparts. The influence of the length, the curvature and the inertia on the dynamics of rigid and flexible fibres is addressed. Fibre-based novel experimental methods, such as Fibre Tracking Velocimetry, are highlighted. Ultimately, this paper seeks to provide a clearer picture of the intricate dynamics at play in fibre-laden turbulent flows and their practical implications in various fields.
{"title":"Dynamics and applications of finite-size fibre-like objects in turbulent flows","authors":"Alessandro Chiarini , Marco Edoardo Rosti , Andrea Mazzino","doi":"10.1016/j.euromechflu.2024.07.007","DOIUrl":"10.1016/j.euromechflu.2024.07.007","url":null,"abstract":"<div><p>This review delves into the dynamics of fibre-laden turbulent flows, a field that has garnered substantial attention due to its relevance in both natural and engineering contexts. The focus here is mainly on finite-size fibres, those exceeding the Kolmogorov scale, diverging from the commonly studied smaller ones. The study synthesises current understanding of the behaviour and organisation of both rigid and flexible finite-size fibres within turbulent flows, underscoring the added complexity these anisotropic particles introduce compared to their spherical counterparts. The influence of the length, the curvature and the inertia on the dynamics of rigid and flexible fibres is addressed. Fibre-based novel experimental methods, such as Fibre Tracking Velocimetry, are highlighted. Ultimately, this paper seeks to provide a clearer picture of the intricate dynamics at play in fibre-laden turbulent flows and their practical implications in various fields.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 104-118"},"PeriodicalIF":2.5,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000955/pdfft?md5=aa7ebb504cf4ff04056cad591a8a3955&pid=1-s2.0-S0997754624000955-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141700730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1016/j.euromechflu.2024.06.006
Ashok K. Barik , Prafulla K. Swain
This paper explores the combined influence of an axial electric field and a perpendicular magnetic field imposed on rotating micro-parallel plates immersed in an electrolyte solution. A specialized computer program was developed to solve the velocity as well as the EDL potential fields using the finite difference method, employing the Debye-Hückel (DH) approximation to linearization the EDL potential. The study examines the influence of various non-dimensional parameters, including rotational speed (), Hartmann number (Ha), Debye-Hückel parameter (), and the non-dimensional parameter ‘S’, on axial, and transverse velocities, wall shear stress, and net flow rate. Results demonstrate that, both velocity components decrease with increased rotational speed and Hartmann number, while the net flow rate increases with the Debye-Hückel parameter for both rotating and non-rotating systems. The impact of these parameters on shear stress was also analyzed. Analysis of Ekmann spirals in the velocity plane revealed closed spirals at a higher rotational speed and open spirals at lower speeds, with spiral size reducing as rotational speed increases.
{"title":"Effects of axial electric and transverse magnetic fields on a rotating electro-osmotic flow in micro-parallel plates","authors":"Ashok K. Barik , Prafulla K. Swain","doi":"10.1016/j.euromechflu.2024.06.006","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.06.006","url":null,"abstract":"<div><p>This paper explores the combined influence of an axial electric field and a perpendicular magnetic field imposed on rotating micro-parallel plates immersed in an electrolyte solution. A specialized computer program was developed to solve the velocity as well as the EDL potential fields using the finite difference method, employing the Debye-Hückel (DH) approximation to linearization the EDL potential. The study examines the influence of various non-dimensional parameters, including rotational speed (<span><math><mi>ω</mi></math></span>), Hartmann number (<em>Ha</em>), Debye-Hückel parameter (<span><math><mi>κ</mi></math></span>), and the non-dimensional parameter ‘<em>S’,</em> on axial, and transverse velocities, wall shear stress, and net flow rate. Results demonstrate that, both velocity components decrease with increased rotational speed and Hartmann number, while the net flow rate increases with the Debye-Hückel parameter for both rotating and non-rotating systems. The impact of these parameters on shear stress was also analyzed. Analysis of Ekmann spirals in the velocity plane revealed closed spirals at a higher rotational speed and open spirals at lower speeds, with spiral size reducing as rotational speed increases.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"107 ","pages":"Pages 148-164"},"PeriodicalIF":2.5,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141595812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1016/j.euromechflu.2024.07.005
Caroline O.L. Hamilton Smith , Nicholas Lawson , Gareth A. Vio
This paper provides a detailed historical review of the cavity flow phenomena in fluid mechanics, from recorded studies in the late 19th century to more recent work. Research has been reviewed, independently and in culmination with other studies, to summarise the major and minor governing parameters of the flow. Outlined are influences of technology, regarding numerical models, experimental methods, analysis, and control techniques. All Mach regimes are assessed; low incompressible, sub-, trans-, super- and hypersonic where substantial research was available. A large variety of cavity geometry was presented, mostly rectangular, with more complex features akin to industry application, and where available, assessment of the boundary layer structure is also included. Conclusions on present understanding, and requirements for future work are given, with an aligned set of available data.
Cavity flow-field initialisation and development is dependent on; upstream (U/S) flow conditions of; airspeed , boundary layer (BL) disturbance (), displacement () and momentum () thickness, either laminar or turbulent, and cavity geometry; length (), depth () and width (), with ratios and defining cavity response. I.e., a narrow cavity with a thin BL U/S tends toward a periodic 3D flow-field, with 3D effects and periodicity decreasing as and increase. Control is achievable through SL stabilisation via spanwise disturbance from the leading edge (LE), or thickening the BL, thus shear layer (SL). Experiments are preferred over numerical models, due to the inefficiency and high cost of required models (Colonius, 2001; Rowley and Williams, 2006; Lawson and Barakos, 2011). We understand effects of , , , and , thus future work should focus on , BL and how they impact mode switching and stream/spanwise flow propagation. Also introducing more complex geometry, realistic to application, to observe additional 3D effects and U/S momentum change, in contribution to a scaling parameter and determination of criteria for activation of material displacement.
{"title":"History, review and summary of the cavity flow phenomena","authors":"Caroline O.L. Hamilton Smith , Nicholas Lawson , Gareth A. Vio","doi":"10.1016/j.euromechflu.2024.07.005","DOIUrl":"10.1016/j.euromechflu.2024.07.005","url":null,"abstract":"<div><p>This paper provides a detailed historical review of the cavity flow phenomena in fluid mechanics, from recorded studies in the late 19th century to more recent work. Research has been reviewed, independently and in culmination with other studies, to summarise the major and minor governing parameters of the flow. Outlined are influences of technology, regarding numerical models, experimental methods, analysis, and control techniques. All Mach regimes are assessed; low incompressible, sub-, trans-, super- and hypersonic where substantial research was available. A large variety of cavity geometry was presented, mostly rectangular, with more complex features akin to industry application, and where available, assessment of the boundary layer structure is also included. Conclusions on present understanding, and requirements for future work are given, with an aligned set of available data.</p><p>Cavity flow-field initialisation and development is dependent on; upstream (U/S) flow conditions of; airspeed <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span>, boundary layer (BL) disturbance (<span><math><mi>δ</mi></math></span>), displacement (<span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>) and momentum (<span><math><mi>θ</mi></math></span>) thickness, either laminar or turbulent, and cavity geometry; length (<span><math><mi>L</mi></math></span>), depth (<span><math><mi>D</mi></math></span>) and width (<span><math><mi>W</mi></math></span>), with ratios <span><math><mrow><mi>L</mi><mo>/</mo><mi>D</mi><mo>,</mo><mi>L</mi><mo>/</mo><mi>W</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mi>D</mi></mrow></math></span> and <span><math><mrow><mi>L</mi><mo>/</mo><mi>θ</mi></mrow></math></span> defining cavity response. I.e., a narrow cavity with a thin BL U/S tends toward a periodic 3D flow-field, with 3D effects and periodicity decreasing as <span><math><mi>W</mi></math></span> and <span><math><mi>δ</mi></math></span> increase. Control is achievable through SL stabilisation via spanwise disturbance from the leading edge (LE), or thickening the BL, thus shear layer (SL). Experiments are preferred over numerical models, due to the inefficiency and high cost of required models (Colonius, 2001; Rowley and Williams, 2006; Lawson and Barakos, 2011). We understand effects of <span><math><mi>L</mi></math></span>, <span><math><mi>D</mi></math></span>, <span><math><mrow><mi>L</mi><mo>/</mo><mi>D</mi></mrow></math></span>, and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span>, thus future work should focus on <span><math><mi>W</mi></math></span>, BL and how they impact mode switching and stream/spanwise flow propagation. Also introducing more complex geometry, realistic to application, to observe additional 3D effects and U/S momentum change, in contribution to a scaling parameter and determination of criteria for activation of material displacement.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 32-72"},"PeriodicalIF":2.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000931/pdfft?md5=16170beb85af69fa56b723cbcc601b67&pid=1-s2.0-S0997754624000931-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1016/j.euromechflu.2024.07.006
M.V. Kurgansky
Developing the ideas from the author’s previous publication in the European Journal of Mechanics / B Fluids (https://doi.org/10.1016/j.euromechflu.2024.02.008), an interpolation formula is proposed for the angular velocity of mean retrograde flow in a fluid-filled oblate spheroid with arbitrary eccentricity, in the limit of very low longitudinal libration frequencies.
{"title":"Comment to the article “Mean flow induced by longitudinal libration of a fluid-filled rotating container bounded by two conical surfaces”","authors":"M.V. Kurgansky","doi":"10.1016/j.euromechflu.2024.07.006","DOIUrl":"10.1016/j.euromechflu.2024.07.006","url":null,"abstract":"<div><p>Developing the ideas from the author’s previous publication in the European Journal of Mechanics / B Fluids (<span><span>https://doi.org/10.1016/j.euromechflu.2024.02.008</span><svg><path></path></svg></span>), an interpolation formula is proposed for the angular velocity of mean retrograde flow in a fluid-filled oblate spheroid with arbitrary eccentricity, in the limit of very low longitudinal libration frequencies.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"107 ","pages":"Pages 188-189"},"PeriodicalIF":2.5,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141701404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1016/j.euromechflu.2024.07.004
Yaser Hadad , Ghazal Mohsenian , Paul Chiarot, Bahgat Sammakia
In the design of high-performance heat and mass transfer devices such as liquid-cooled heat sinks, catalytic reactors, and catalytic convertors, parallel mini/microchannels are favored owing to their special potentials. Offering low pressure drop, providing high transfer surface area to volume ratio, and being easy to manufacture and optimize have been drawing thermal and chemical engineers attention to parallel channels for past decades. When working with parallel channels, the challenge of flow maldistribution is commonly faced which decreases their efficiency significantly. System total pressure drop and flow uniformity are two parameters that determine the system performance. In the present study, a variety of practical ideas, aiming to enhance parallel channels performance, are studied numerically. Inventive manifold designs with high hydraulic performance are created through the course of this study. The results of these designs are compared with basic conventional designs which show substantial enhancement. Analyzing less successful designs lead us to deep understanding of fluid dynamics in parallel channel heat and mass transfer devices.
{"title":"On the design of manifolds for parallel channel systems","authors":"Yaser Hadad , Ghazal Mohsenian , Paul Chiarot, Bahgat Sammakia","doi":"10.1016/j.euromechflu.2024.07.004","DOIUrl":"10.1016/j.euromechflu.2024.07.004","url":null,"abstract":"<div><p>In the design of high-performance heat and mass transfer devices such as liquid-cooled heat sinks, catalytic reactors, and catalytic convertors, parallel mini/microchannels are favored owing to their special potentials. Offering low pressure drop, providing high transfer surface area to volume ratio, and being easy to manufacture and optimize have been drawing thermal and chemical engineers attention to parallel channels for past decades. When working with parallel channels, the challenge of flow maldistribution is commonly faced which decreases their efficiency significantly. System total pressure drop and flow uniformity are two parameters that determine the system performance. In the present study, a variety of practical ideas, aiming to enhance parallel channels performance, are studied numerically. Inventive manifold designs with high hydraulic performance are created through the course of this study. The results of these designs are compared with basic conventional designs which show substantial enhancement. Analyzing less successful designs lead us to deep understanding of fluid dynamics in parallel channel heat and mass transfer devices.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 1-31"},"PeriodicalIF":2.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this research is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (Le). The model considers the effect of Le on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the Le. The validity of the model was evaluated under the conditions of propane and iso-octane with Le ≠ 1 and methane with Le = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. the validity of the model is confirmed by a comparison with the experimental results of a turbulent methane flame. It was confirmed that the model is in good agreement with experimental results and other turbulence models, and represents approximately a conventional turbulence model.
本研究的目的是开发一种燃烧模型,该模型可统一应用于层流和湍流预混火焰,同时考虑刘易斯数(Le)的影响。该模型考虑了 Le 对反应进程传输方程的影响,反应进程随化学物种和温度的变化而变化。反应进展变量的分布由双曲正切函数近似表示,而反应进展变量的其他分布则使用近似分布和考虑到 Le 的反应进展变量的传输方程进行估算。在 Le ≠ 1 的丙烷和异辛烷以及 Le = 1 的甲烷(当量比为 0.5 和 1)条件下,对模型的有效性进行了评估。结果发现,在所有条件下,估算结果都与之前的研究结果十分吻合。此外,还介绍了将湍流模型引入该模型的方法。通过与甲烷湍流火焰的实验结果进行比较,证实了该模型的有效性。结果证实,该模型与实验结果和其他湍流模型十分吻合,近似于传统的湍流模型。
{"title":"A proposal for a combustion model considering the Lewis number and its evaluation","authors":"Fujio Akagi , Hiroaki Ito , Gento Hamada , Shin-ichi Inage","doi":"10.1016/j.euromechflu.2024.07.003","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.07.003","url":null,"abstract":"<div><p>The purpose of this research is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (<em>Le</em>). The model considers the effect of <em>Le</em> on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the <em>Le</em>. The validity of the model was evaluated under the conditions of propane and iso-octane with <em>Le</em> ≠ 1 and methane with <em>Le</em> = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. the validity of the model is confirmed by a comparison with the experimental results of a turbulent methane flame. It was confirmed that the model is in good agreement with experimental results and other turbulence models, and represents approximately a conventional turbulence model.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"107 ","pages":"Pages 175-186"},"PeriodicalIF":2.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}