首页 > 最新文献

European Journal of Mechanics B-fluids最新文献

英文 中文
Influence of the turbulent closure for the prediction of the linear response of a flow bounded by a corrugated wall 湍流闭合对预测波纹壁水流线性响应的影响
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-02-09 DOI: 10.1016/j.euromechflu.2024.01.015
Maxime Stuck , François Chedevergne , Marina Olazabal-Loumé , Jacques Couzi

We investigate the influence of the turbulent closure in Reynolds-Averaged Navier–Stokes (RANS) simulations for the prediction of the linear response of a turbulent boundary layer developping over a small-amplitude corrugated wall. Experimental studies by Hanratty and co-workers (Zilker et al. 1977; Abrams and Hanratty, 1985; Frederick and Hanratty, 1988) show a phase shift between the wall shear stress and the wall undulation, that depends on the wall wavenumber. Historically, this problem was studied by the means of linear forced response analyses using a mixing length model. It was shown that an ad-hoc correction is required to recover the experimental results (Thorsness et al. 1978; Charru et al. 2013). In this study, we ran Reynolds Averaged Navier–Stokes (RANS) computations using different types of turbulent closures. The results confirm the inadequacy of the Boussinesq assumption, leading to the failure of Eddy Viscosity Models (EVM) to properly recover the wall shear stress phase angle. Moreover, it is shown that a second moment closure performs better in capturing the effects of a small deformation of the wall. Additionally, a general strategy based on the modification of the balance of the closure coefficients of a kω model is found to be an effective approach to improve the performance of first order turbulence models. We establish corrections adapted to the kω model which can be seen as a pragmatic way to recover the expected behaviors.

我们研究了雷诺平均纳维-斯托克斯(RANS)模拟中湍流闭合对预测小振幅波纹壁上湍流边界层线性响应的影响。Hanratty 和同事的实验研究(Zilker 等人,1977 年;Abrams 和 Hanratty,1985 年;Frederick 和 Hanratty,1988 年)表明,壁面剪应力和壁面起伏之间存在相移,这取决于壁面波数。历史上,对这一问题的研究是通过使用混合长度模型进行线性强迫响应分析。结果表明,需要进行临时修正才能恢复实验结果(Thorsness 等人,1978 年;Charru 等人,2013 年)。在本研究中,我们使用不同类型的湍流闭合进行了雷诺平均纳维-斯托克斯(RANS)计算。结果证实了布森斯克假设的不足,导致涡粘度模型(EVM)无法正确恢复壁面剪应力相位角。此外,结果表明第二矩闭合在捕捉壁面微小变形的影响方面表现更好。此外,基于 k-ω 模型闭合系数平衡修正的一般策略被认为是改善一阶湍流模型性能的有效方法。我们建立了与 k-ω 模型相适应的修正,这可以看作是恢复预期行为的一种实用方法。
{"title":"Influence of the turbulent closure for the prediction of the linear response of a flow bounded by a corrugated wall","authors":"Maxime Stuck ,&nbsp;François Chedevergne ,&nbsp;Marina Olazabal-Loumé ,&nbsp;Jacques Couzi","doi":"10.1016/j.euromechflu.2024.01.015","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.01.015","url":null,"abstract":"<div><p>We investigate the influence of the turbulent closure in Reynolds-Averaged Navier–Stokes (RANS) simulations for the prediction of the linear response of a turbulent boundary layer developping over a small-amplitude corrugated wall. Experimental studies by Hanratty and co-workers (Zilker et al. 1977; Abrams and Hanratty, 1985; Frederick and Hanratty, 1988) show a phase shift between the wall shear stress and the wall undulation, that depends on the wall wavenumber. Historically, this problem was studied by the means of linear forced response analyses using a mixing length model. It was shown that an <em>ad-hoc</em> correction is required to recover the experimental results (Thorsness et al. 1978; Charru et al. 2013). In this study, we ran Reynolds Averaged Navier–Stokes (RANS) computations using different types of turbulent closures. The results confirm the inadequacy of the Boussinesq assumption, leading to the failure of Eddy Viscosity Models (EVM) to properly recover the wall shear stress phase angle. Moreover, it is shown that a second moment closure performs better in capturing the effects of a small deformation of the wall. Additionally, a general strategy based on the modification of the balance of the closure coefficients of a <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></math></span> model is found to be an effective approach to improve the performance of first order turbulence models. We establish corrections adapted to the <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></math></span> model which can be seen as a pragmatic way to recover the expected behaviors.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 275-284"},"PeriodicalIF":2.6,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139732823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vorticity alignment with Lyapunov vectors and rate-of-strain eigenvectors 利用李亚普诺夫矢量和应变速率特征向量进行涡度排列
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-02-08 DOI: 10.1016/j.euromechflu.2024.02.003
A. Encinas-Bartos, G. Haller

We derive asymptotic estimates for the projection of the vorticity onto principal directions of material stretching in 3D flows. In flows with pointwise bounded vorticity, these estimates predict vorticity alignment with Lyapunov vectors along trajectories with positive Lyapunov exponents. Specifically, we find that in inviscid flows with conservative body forces, the vorticity exactly aligns with the intersection of the planes orthogonal to the dominant forward and backward Lyapunov vectors along trajectories with positive Lyapunov exponent. Furthermore, we derive asymptotic estimates for the vorticity alignment with the intermediate eigenvector of the rate-of-strain tensor for viscous flows under general forcing. We illustrate these results on explicit solutions of Euler’s equation and on direct numerical simulations of homogeneous isotropic turbulence.

我们推导出了三维流动中涡度在材料拉伸主方向上投影的渐近估计值。在具有点状有界涡度的流动中,这些估计值预示着涡度将沿着具有正 Lyapunov 指数的轨迹与 Lyapunov 向量对齐。具体地说,我们发现在具有保守体力的不粘性流中,涡度正好与具有正 Lyapunov 指数的轨迹上的主导前向和后向 Lyapunov 向量正交平面的交点对齐。此外,我们还推导出了在一般作用力下粘性流的涡度与应变速率张量中间特征向量对齐的渐近估计值。我们用欧拉方程的显式解和同质各向同性湍流的直接数值模拟来说明这些结果。
{"title":"Vorticity alignment with Lyapunov vectors and rate-of-strain eigenvectors","authors":"A. Encinas-Bartos,&nbsp;G. Haller","doi":"10.1016/j.euromechflu.2024.02.003","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.02.003","url":null,"abstract":"<div><p>We derive asymptotic estimates for the projection of the vorticity onto principal directions of material stretching in 3D flows. In flows with pointwise bounded vorticity, these estimates predict vorticity alignment with Lyapunov vectors along trajectories with positive Lyapunov exponents. Specifically, we find that in inviscid flows with conservative body forces, the vorticity exactly aligns with the intersection of the planes orthogonal to the dominant forward and backward Lyapunov vectors along trajectories with positive Lyapunov exponent. Furthermore, we derive asymptotic estimates for the vorticity alignment with the intermediate eigenvector of the rate-of-strain tensor for viscous flows under general forcing. We illustrate these results on explicit solutions of Euler’s equation and on direct numerical simulations of homogeneous isotropic turbulence.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 259-274"},"PeriodicalIF":2.6,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000281/pdfft?md5=68581c6f83ccaf9e9941f23a4dc5c17f&pid=1-s2.0-S0997754624000281-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139718905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Migration of a multi-core compound droplet in a ratchet microchannel 多核化合物液滴在棘轮微通道中的迁移
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-02-03 DOI: 10.1016/j.euromechflu.2024.01.016
Nang X. Ho , Hung V. Vu , Truong V. Vu

With the unique structure of multi-core compound droplets, they are increasingly used in various industrial production fields, material fabrication, biological sciences, medicine, and other numerous promising large-scale applications. This study focuses on using a front tracking method to study the dynamics of a multi-core compound droplet as it moves within a ratchet microchannel. The dynamics of the multi-core droplet is assessed by deformation (determined by elongation deformation indices, and surface indentation) and the transit time of the droplet within the microchannel. The presence of the ratchet region in the microchannel increases deformation and reduces the transit time of the compound droplets. Increasing the number of ratchets leads to faster droplet motion but has no significant effect on the deformation of the compound droplet. The results indicate that the parameters such as the capillary number, microchannel geometry (i.e., number of ratchets and neck radius), droplet size and structure significantly impact the compound droplet dynamics. The compound droplet radius equal to 0.3 times the microchannel radius results in the most significant elongation deformation. The number of core droplets has minimal effect on the deformation and transit time of the compound droplet. This study provides a profound insight into the dynamics of multi-core compound droplets in a ratchet microchannel and contributes a better understanding of their behavior and potential applications in various fields.

多核化合物液滴结构独特,在各种工业生产领域、材料制造、生物科学、医学等众多大规模应用领域的应用日益广泛。本研究主要采用前沿跟踪方法研究多核化合物液滴在棘轮微通道内移动时的动态。多核液滴的动态通过变形(由伸长变形指数和表面压痕确定)和液滴在微通道内的传输时间进行评估。微通道中棘轮区域的存在会增加变形,缩短复合液滴的传输时间。增加棘轮的数量会加快液滴的运动速度,但对复合液滴的变形没有显著影响。结果表明,毛细管数量、微通道几何形状(即棘轮数和颈部半径)、液滴大小和结构等参数对复合液滴动力学有显著影响。复合液滴半径等于微通道半径的 0.3 倍时,伸长变形最明显。核心液滴的数量对复合液滴的变形和传输时间影响极小。这项研究为棘轮微通道中多核复合液滴的动力学提供了深刻的见解,有助于更好地理解它们的行为和在各个领域的潜在应用。
{"title":"Migration of a multi-core compound droplet in a ratchet microchannel","authors":"Nang X. Ho ,&nbsp;Hung V. Vu ,&nbsp;Truong V. Vu","doi":"10.1016/j.euromechflu.2024.01.016","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.01.016","url":null,"abstract":"<div><p>With the unique structure of multi-core compound droplets, they are increasingly used in various industrial production fields, material fabrication, biological sciences, medicine, and other numerous promising large-scale applications. This study focuses on using a front tracking method to study the dynamics of a multi-core compound droplet as it moves within a ratchet microchannel. The dynamics of the multi-core droplet is assessed by deformation (determined by elongation deformation indices, and surface indentation) and the transit time of the droplet within the microchannel. The presence of the ratchet region in the microchannel increases deformation and reduces the transit time of the compound droplets. Increasing the number of ratchets leads to faster droplet motion but has no significant effect on the deformation of the compound droplet. The results indicate that the parameters such as the capillary number, microchannel geometry (i.e., number of ratchets and neck radius), droplet size and structure significantly impact the compound droplet dynamics. The compound droplet radius equal to 0.3 times the microchannel radius results in the most significant elongation deformation. The number of core droplets has minimal effect on the deformation and transit time of the compound droplet. This study provides a profound insight into the dynamics of multi-core compound droplets in a ratchet microchannel and contributes a better understanding of their behavior and potential applications in various fields.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 285-294"},"PeriodicalIF":2.6,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139732824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transitions in a Poiseuille-Rayleigh-Bénard flow in a vertical slender long duct 垂直细长管道中波伊-雷利-贝纳尔流的转变
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-02-01 DOI: 10.1016/j.euromechflu.2024.01.012
Raúl Rechtman, Alejandra García-Morales, Guadalupe Huelsz
<div><p>The flow of air inside a vertical slender long duct with a temperature difference between the horizontal walls characterized by the Rayleigh number <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> and a pressure gradient in the horizontal direction characterized by the Reynolds number <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> is studied using the lattice Boltzmann method. In this case, the longitudinal rolls found in ducts with a width larger than the height cannot develop and the flow remains quasi-two-dimensional. Therefore, a two-dimensional approach is used, considering periodic boundary conditions on the vertical walls. For <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>c</mi></mrow></msub><mo><</mo><mi>R</mi><mi>a</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>0</mn><mspace></mspace><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> with <span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> the critical Rayleigh number for thermal convection, there are two transitions at <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mi>a</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>C</mi><mi>P</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mi>a</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>C</mi><mi>P</mi></mrow></msub></mrow></math></span>. The first transition at <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> has a sharp decrease in the average Nusselt number and for <span><math><mrow><mn>0</mn><mo><</mo><mi>R</mi><mi>e</mi><mo><</mo><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> the temperature difference between the horizontal walls is more important than the pressure gradient. The second transition at <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>C</mi><mi>P</mi></mrow></msub></mrow></math></span> marks the appearance of a conductive Poiseuille flow with no thermal convection. For <span><math><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> ¡ <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> there is a third transition at <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>M</mi></mrow></msub></mrow></math></span>, <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>M</mi></mrow></msub><mo><</mo><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>C</mi><mi>P</mi></mrow></msub></mrow></m
采用格子波尔兹曼法研究了垂直细长管道内的气流,其水平壁之间的温差以雷利数 Ra 为特征,水平方向上的压力梯度以雷诺数 Re 为特征。在这种情况下,在宽度大于高度的管道中无法形成纵向滚动,流动仍然是准二维的。因此,考虑到垂直壁上的周期性边界条件,采用了二维方法。当 Rac<Ra≤2.0×105 时(Rac 为热对流的临界瑞利数),在 Re0(Ra)和 ReCP(Ra), Re0<ReCP 处有两个过渡。在 Re0 处的第一个过渡阶段,平均努塞尔特数急剧下降,对于 0<Re<Re0,水平壁之间的温度差比压力梯度更重要。ReCP 处的第二个转变标志着出现了无热对流的传导性普瓦赛流。对于 1.0×105 ¡ Ra,ReM 处出现第三个过渡,即 Re0<ReM<ReCP。对于 Ra< 1.0×105 和 Re0<Re<ReCP,以及对于 1.0×105<Ra 和 ReM<Re<ReCP,压力梯度占主导地位。对于 1.0×105 ¡ Ra 和 Re0<Re<ReM,温差和压力梯度都很重要,在 Re0 和 ReM 时平均努塞尔特数明显下降。
{"title":"Transitions in a Poiseuille-Rayleigh-Bénard flow in a vertical slender long duct","authors":"Raúl Rechtman,&nbsp;Alejandra García-Morales,&nbsp;Guadalupe Huelsz","doi":"10.1016/j.euromechflu.2024.01.012","DOIUrl":"10.1016/j.euromechflu.2024.01.012","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The flow of air inside a vertical slender long duct with a temperature difference between the horizontal walls characterized by the Rayleigh number &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and a pressure gradient in the horizontal direction characterized by the Reynolds number &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is studied using the lattice Boltzmann method. In this case, the longitudinal rolls found in ducts with a width larger than the height cannot develop and the flow remains quasi-two-dimensional. Therefore, a two-dimensional approach is used, considering periodic boundary conditions on the vertical walls. For &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; the critical Rayleigh number for thermal convection, there are two transitions at &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The first transition at &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; has a sharp decrease in the average Nusselt number and for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; the temperature difference between the horizontal walls is more important than the pressure gradient. The second transition at &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; marks the appearance of a conductive Poiseuille flow with no thermal convection. For &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; ¡ &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; there is a third transition at &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/m","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 306-312"},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CFD modelling of velocity fields around a fume cupboard: Evaluating static and dynamic meshes with experimental measurements 对通风柜周围的速度场进行 CFD 建模:利用实验测量结果评估静态和动态网格
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-01-31 DOI: 10.1016/j.euromechflu.2024.01.014
A. Manning , L. Qian , R. Erfani

This paper presents a comparison of experimental and numerical modelling results of the velocity field around a fume cupboard with a static and a dynamic mesh. During fume cupboard testing, components are required to move which mimic typical operating conditions, the amount of tracer gas released is then measured. This tracer gas is harmful to the environment and so an alternative is required. Advanced Computational Fluid Dynamics (CFD) techniques, such as dynamic meshing, have been utilised to replicate aspects of the current tests. The fume cupboard was tested in normal operating conditions and under the influence of a board inducing a wake close to the fume cupboard entrance. The velocity fields have been compared and show a reasonable level of accuracy with a percentage difference between experimental and simulated results of around 5% using both a static and a dynamic domain. This is an improvement on the 15–20% accuracy for detecting concentration of tracer gas using previous experimental methods. The aim of this work is to satisfy the scientific community and fume cupboard operators that CFD is sufficiently accurate to assess fume cupboard performance under real world scenarios.

本文比较了采用静态和动态网格的通风柜周围速度场的实验和数值建模结果。在通风柜测试过程中,需要模拟典型工作条件移动部件,然后测量释放的示踪气体量。这种示踪气体对环境有害,因此需要一种替代方法。先进的计算流体动力学(CFD)技术,如动态网格划分,已被用来复制当前测试的各个方面。在正常工作条件下,以及在靠近通风柜入口处的一块板产生尾流的情况下,对通风柜进行了测试。对速度场进行了比较,结果表明其精确度达到了合理的水平,使用静态和动态域,实验结果和模拟结果之间的百分比差异约为 5%。这比以前使用实验方法检测示踪气体浓度时 15-20% 的精度有所提高。这项工作的目的是让科学界和通风柜操作人员相信,CFD 在评估真实情况下的通风柜性能方面具有足够的准确性。
{"title":"CFD modelling of velocity fields around a fume cupboard: Evaluating static and dynamic meshes with experimental measurements","authors":"A. Manning ,&nbsp;L. Qian ,&nbsp;R. Erfani","doi":"10.1016/j.euromechflu.2024.01.014","DOIUrl":"10.1016/j.euromechflu.2024.01.014","url":null,"abstract":"<div><p>This paper presents a comparison of experimental and numerical modelling results of the velocity field around a fume cupboard with a static and a dynamic mesh. During fume cupboard testing, components are required to move which mimic typical operating conditions, the amount of tracer gas released is then measured. This tracer gas is harmful to the environment and so an alternative is required. Advanced Computational Fluid Dynamics (CFD) techniques, such as dynamic meshing, have been utilised to replicate aspects of the current tests. The fume cupboard was tested in normal operating conditions and under the influence of a board inducing a wake close to the fume cupboard entrance. The velocity fields have been compared and show a reasonable level of accuracy with a percentage difference between experimental and simulated results of around 5% using both a static and a dynamic domain. This is an improvement on the 15–20% accuracy for detecting concentration of tracer gas using previous experimental methods. The aim of this work is to satisfy the scientific community and fume cupboard operators that CFD is sufficiently accurate to assess fume cupboard performance under real world scenarios.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 238-246"},"PeriodicalIF":2.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000232/pdfft?md5=75c3e524e9b659060eb2fd9c9620d159&pid=1-s2.0-S0997754624000232-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139644758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An in vitro experimental investigation of oscillatory flow in the cerebral aqueduct 大脑导水管振荡流动的体外实验研究
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-01-23 DOI: 10.1016/j.euromechflu.2024.01.010
S. Sincomb , F. Moral-Pulido , O. Campos , C. Martínez-Bazán , V. Haughton , A.L. Sánchez

This in vitro study aims at clarifying the relation between the oscillatory flow of cerebrospinal fluid (CSF) in the cerebral aqueduct, a narrow conduit connecting the third and fourth ventricles, and the corresponding interventricular pressure difference. Dimensional analysis is used in designing an anatomically correct scaled model of the aqueduct flow, with physical similarity maintained by adjusting the flow frequency and the properties of the working fluid. The time-varying pressure difference across the aqueduct corresponding to a given oscillatory flow rate is measured in parametric ranges covering the range of flow conditions commonly encountered in healthy subjects. Parametric dependences are delineated for the time-averaged pressure fluctuations and for the phase lag between the transaqueductal pressure difference and the flow rate, both having clinical relevance. The results are validated through comparisons with predictions obtained with a previously derived computational model. The parametric quantification in this study enables the derivation of a simple formula for the relation between the transaqueductal pressure and the stroke volume. This relationship can be useful in the quantification of transmantle pressure differences based on non-invasive magnetic-resonance-velocimetry measurements of aqueduct flow for investigation of CSF-related disorders.

这项体外研究旨在阐明脑脊液(CSF)在脑导水管(连接第三脑室和第四脑室的狭窄管道)中的振荡流动与相应的脑室间压差之间的关系。在设计一个解剖学上正确的导水管流动缩放模型时采用了尺寸分析法,通过调整流动频率和工作流体的特性来保持物理相似性。在参数范围内测量了与给定振荡流速相对应的导水管时变压力差,该参数范围涵盖了健康人常见的流动条件。时间平均压力波动和跨导水管压力差与流速之间的相位滞后都与参数相关,两者都具有临床意义。通过与之前推导出的计算模型的预测结果进行比较,对结果进行了验证。这项研究中的参数量化能够推导出跨导管压力和每搏量之间关系的简单公式。这种关系有助于根据无创磁共振法测量导水管流量来量化跨导管压力差,以研究 CSF 相关疾病。
{"title":"An in vitro experimental investigation of oscillatory flow in the cerebral aqueduct","authors":"S. Sincomb ,&nbsp;F. Moral-Pulido ,&nbsp;O. Campos ,&nbsp;C. Martínez-Bazán ,&nbsp;V. Haughton ,&nbsp;A.L. Sánchez","doi":"10.1016/j.euromechflu.2024.01.010","DOIUrl":"10.1016/j.euromechflu.2024.01.010","url":null,"abstract":"<div><p>This <em>in vitro</em> study aims at clarifying the relation between the oscillatory flow of cerebrospinal fluid (CSF) in the cerebral aqueduct, a narrow conduit connecting the third and fourth ventricles, and the corresponding interventricular pressure difference. Dimensional analysis is used in designing an anatomically correct scaled model of the aqueduct flow, with physical similarity maintained by adjusting the flow frequency and the properties of the working fluid. The time-varying pressure difference across the aqueduct corresponding to a given oscillatory flow rate is measured in parametric ranges covering the range of flow conditions commonly encountered in healthy subjects. Parametric dependences are delineated for the time-averaged pressure fluctuations and for the phase lag between the transaqueductal pressure difference and the flow rate, both having clinical relevance. The results are validated through comparisons with predictions obtained with a previously derived computational model. The parametric quantification in this study enables the derivation of a simple formula for the relation between the transaqueductal pressure and the stroke volume. This relationship can be useful in the quantification of transmantle pressure differences based on non-invasive magnetic-resonance-velocimetry measurements of aqueduct flow for investigation of CSF-related disorders.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 180-191"},"PeriodicalIF":2.6,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000189/pdfft?md5=d416acd45c3937f19d6cefe6d2d382ed&pid=1-s2.0-S0997754624000189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations on bifurcation behavior of wind turbine airfoil response at a high angle of attack 高攻角条件下风力涡轮机机翼响应的分岔行为研究
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-01-22 DOI: 10.1016/j.euromechflu.2024.01.013
Bo Lian, Xiaocheng Zhu, Zhaohui Du

Design load and vibration for parked conditions are gaining in importance for large-scale modern wind turbines with increasing flexibility, especially edgewise vibration when the blade is at a high angle of attack. In this work, flow-induced vibration of the wind turbine airfoil at 90 degrees of attack angle is studied with the fluid-structure interaction (FSI) simulation. The unsteady aerodynamic force due to flow separation and vortex shedding at the high angle of attack causes the chordwise vibration of the airfoil. When the vortex shedding frequency fv gets close to the chordwise natural frequency fn of the airfoil, vortex-induced vibration (VIV) of high amplitude occurs accompanied with the frequency lock-in phenomenon. In the post lock-in regime, it is found that period-3 and torus bifurcation occur successively and the vibration response becomes aperiodic. Dynamic mode decomposition(DMD) technique is used to investigate the mechanism of bifurcation from the perspective of energy balance, through analyzing the vorticity field in the wake and pressure distribution on the airfoil surface. For the certain incoming velocity in the post lock-in regime, since the frequency of the DMD mode f=2fv/3 is close to the natural frequencyfn, both the vibration of frequency 2fv/3 and fv get excited, leading to the onset of bifurcation. The Lissajou curves are obtained through reconstructing the transient pressure of each DMD mode, which indicates that energy transfer mainly exists in modes f=fv. In addition, the reconstructed Lissajou curves based on the leading DMD modes agree well with the original time-domain Lissajou curves.

对于灵活性不断提高的大型现代风力涡轮机来说,停机条件下的设计载荷和振动变得越来越重要,尤其是叶片处于高攻角时的边缘振动。在这项工作中,利用流固耦合(FSI)模拟研究了风力涡轮机机翼在 90 度攻角时的流动诱导振动。在高攻角时,由于气流分离和涡流脱落产生的不稳定气动力会引起机翼的弦向振动。当涡流脱落频率 fv 接近机翼的弦向固有频率 fn 时,就会产生高振幅的涡流诱导振动(VIV),并伴有频率锁定现象。在锁频后状态下,会相继出现周期-3 和环形分岔,振动响应变为非周期性。采用动态模态分解(DMD)技术,通过分析尾流涡旋场和翼面压力分布,从能量平衡的角度研究了分岔的机理。在后锁定状态下,对于一定的入射速度,由于 DMD 模式的频率 f=2fv/3 与固有频率fn 相近,频率为 2fv/3 和 fv 的振动都会被激发,从而导致分岔的发生。通过重构每个 DMD 模式的瞬态压力可得到 Lissajou 曲线,这表明能量传递主要存在于 f=fv 模式中。此外,基于主导 DMD 模式重建的利萨祖曲线与原始时域利萨祖曲线吻合得很好。
{"title":"Investigations on bifurcation behavior of wind turbine airfoil response at a high angle of attack","authors":"Bo Lian,&nbsp;Xiaocheng Zhu,&nbsp;Zhaohui Du","doi":"10.1016/j.euromechflu.2024.01.013","DOIUrl":"10.1016/j.euromechflu.2024.01.013","url":null,"abstract":"<div><p><span><span>Design load and vibration for parked conditions are gaining in importance for large-scale modern wind turbines<span> with increasing flexibility, especially edgewise vibration when the blade is at a high angle of attack<span>. In this work, flow-induced vibration of the wind turbine airfoil at 90 degrees of attack angle is studied with the fluid-structure interaction (FSI) simulation. The unsteady </span></span></span>aerodynamic force<span> due to flow separation and vortex shedding at the high angle of attack causes the chordwise vibration of the airfoil. When the vortex shedding frequency </span></span><span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> gets close to the chordwise natural frequency <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span> of the airfoil, vortex-induced vibration (VIV) of high amplitude occurs accompanied with the frequency lock-in phenomenon. In the post lock-in regime, it is found that period-3 and torus bifurcation occur successively and the vibration response becomes aperiodic. Dynamic mode decomposition(DMD) technique is used to investigate the mechanism of bifurcation from the perspective of energy balance, through analyzing the vorticity field in the wake and pressure distribution on the airfoil surface. For the certain incoming velocity in the post lock-in regime, since the frequency of the DMD mode </span><span><math><mrow><mi>f</mi><mo>=</mo><mn>2</mn><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>/</mo><mn>3</mn></mrow></math></span> is close to the natural frequency<span><math><mrow><mspace></mspace><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, both the vibration of frequency <span><math><mrow><mn>2</mn><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>/</mo><mn>3</mn></mrow></math></span> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> get excited, leading to the onset of bifurcation. The Lissajou curves are obtained through reconstructing the transient pressure of each DMD mode, which indicates that energy transfer mainly exists in modes <span><math><mrow><mi>f</mi><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>v</mi></mrow></msub></mrow></math></span>. In addition, the reconstructed Lissajou curves based on the leading DMD modes agree well with the original time-domain Lissajou curves.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 206-218"},"PeriodicalIF":2.6,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on mechanism of VIV causing limited amplitude vibration through LES for a 4:1 rectangular cylinder 通过对 4:1 矩形圆柱体的 LES,研究 VIV 引起有限振幅振动的机理
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-01-22 DOI: 10.1016/j.euromechflu.2024.01.011
Yuanyan Tang, Yi Hui, Ke Li

Vortex-induced vibration (VIV) is characterized as a phenomenon of limited amplitude vibration. Understanding the basic nature and underlying mechanism of VIV is necessary for predicting the vibration amplitude. In this study, using Large Eddy Simulation (LES) of forced vibration, a detailed investigation of the flow pattern and wind load during VIV of a 4:1 rectangular cylinder is conducted. The results indicate that both vibration amplitude (y0/D) and wind speed (UR) significantly influence the flow pattern and wind load. Notably, an increase in vibration amplitude leads to a predominance of motion-induced force and a corresponding amplification of the fluctuating lift coefficient. Additionally, a decrease in the phase difference between lift force and displacement is observed, establishing this phase difference as a critical parameter for predicting vibration amplitude. Regarding wind speed, it is observed that as UR increases, the predominance of motion-induced force diminishes, resulting in a concurrent decrease in the fluctuating lift coefficient. Upon further investigation into the work performed by various forces within a single vibration cycle, it has been determined that as the vibration amplitude escalates, the work of the lift force (energy input WI) initially increases, then diminishes, whereas the work of the damping force (energy dissipation WO) continuously rises. The intersection of these two trajectories signifies the point of energy equilibrium between input and output, thereby establishing the vibration amplitude of VIV. The predicted vibration amplitudes, grounded in this principle, have been corroborated by experimental results.

涡流诱导振动(VIV)是一种有限振幅振动现象。要预测 VIV 的振幅,就必须了解其基本性质和内在机理。在本研究中,利用强迫振动的大涡流模拟(LES),对 4:1 矩形气缸 VIV 期间的流动模式和风载荷进行了详细研究。结果表明,振动振幅(y0/D)和风速(UR)对流动模式和风载荷都有显著影响。值得注意的是,振动振幅的增加会导致运动诱导力占主导地位,并相应地放大波动升力系数。此外,还观察到升力和位移之间的相位差减小,从而确定相位差是预测振动振幅的关键参数。在风速方面,观察到随着 UR 的增加,运动诱导力的主导作用减弱,导致波动升力系数同时减小。在对单个振动周期内各种力的功进行进一步研究后发现,随着振动振幅的增加,升力(能量输入 WI)的功最初增加,然后减小,而阻尼力(能量消耗 WO)的功则持续增加。这两条轨迹的交点标志着输入和输出之间的能量平衡点,从而确定了 VIV 的振动振幅。根据这一原理预测的振动振幅已得到实验结果的证实。
{"title":"Study on mechanism of VIV causing limited amplitude vibration through LES for a 4:1 rectangular cylinder","authors":"Yuanyan Tang,&nbsp;Yi Hui,&nbsp;Ke Li","doi":"10.1016/j.euromechflu.2024.01.011","DOIUrl":"10.1016/j.euromechflu.2024.01.011","url":null,"abstract":"<div><p><span>Vortex-induced vibration (VIV) is characterized as a phenomenon of limited amplitude vibration. Understanding the basic nature and underlying mechanism of VIV is necessary for predicting the vibration amplitude. In this study, using Large Eddy Simulation<span> (LES) of forced vibration, a detailed investigation of the flow pattern and wind load during VIV of a 4:1 rectangular cylinder is conducted. The results indicate that both vibration amplitude (</span></span><em>y</em><sub>0</sub><em>/D</em>) and wind speed (<em>U</em><sub><em>R</em></sub><span>) significantly influence the flow pattern and wind load. Notably, an increase in vibration amplitude leads to a predominance of motion-induced force and a corresponding amplification of the fluctuating lift coefficient. Additionally, a decrease in the phase difference between lift force and displacement is observed, establishing this phase difference as a critical parameter for predicting vibration amplitude. Regarding wind speed, it is observed that as </span><em>U</em><sub><em>R</em></sub> increases, the predominance of motion-induced force diminishes, resulting in a concurrent decrease in the fluctuating lift coefficient. Upon further investigation into the work performed by various forces within a single vibration cycle, it has been determined that as the vibration amplitude escalates, the work of the lift force (energy input <em>W</em><sub><em>I</em></sub><span>) initially increases, then diminishes, whereas the work of the damping force (energy dissipation </span><em>W</em><sub><em>O</em></sub>) continuously rises. The intersection of these two trajectories signifies the point of energy equilibrium between input and output, thereby establishing the vibration amplitude of VIV. The predicted vibration amplitudes, grounded in this principle, have been corroborated by experimental results.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 192-205"},"PeriodicalIF":2.6,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139585379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the steady-oscillatory transition of three-dimensional (3D) natural convection via Hopf bifurcation 通过霍普夫分岔研究三维(3D)自然对流的稳定-振荡转变
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-01-22 DOI: 10.1016/j.euromechflu.2024.01.009
Jingkui Zhang , Jiapeng Chang , Miao Cui , Yi Fan , Qifen Li , Cheng Peng

The transition from steady-state flow to periodic oscillatory flow for the natural convection by Hopf bifurcation is investigated in a three-dimensional (3D) cavity. The spectral collocation method (SCM) in combination with the artificial compressibility method (ACM), which is developed by ourselves as a numerical method SCM-ACM with high accuracy, is employed to solve the governing equations directly instead of linear stability analysis method that is commonly used for the research on flow instability. The results show that the amplitude decays exponentially with time and the decay rate is linear with the Grashof number (Gr). The critical Grashof number for steady-oscillatory transition is obtained as Grcr = 3.423 × 106. The dimensionless angular frequency ωcr = 0.24 is also determined by Fourier analysis. In this work, we also examine the heat-momentum interactions within the boundary layers, visualize the periodic oscillations of temperature and velocity amplitudes, and analyze the origin of instability from multiple angles. The results show that large oscillations of velocity and temperature are observed near the isothermal walls. The oscillation is enhanced by the increase of thermal boundary layer thickness and flow velocity at both ends of isothermal walls. The maximum velocity and temperature amplitudes appear at the lower left and upper right corners of the mid-plane (Z = 0.5), where are the origin of instability, and the spanwise walls are almost independent of oscillations. The oscillatory flow of natural convection in three-dimensional cavity originates from the continuously increasing buoyancy force, and its transition occurs by Hopf bifurcation. Moreover, the temperature amplitude exhibits a wavy distribution on the mid-plane (X = 0.5) and strongly depends on the depth Z. These results provide benchmark data for future numerical studies and engineering application.

通过霍普夫分岔研究了三维(3D)空腔中自然对流从稳态流向周期振荡流的过渡。采用谱配位法(SCM)结合人工可压缩性法(ACM)直接求解对流方程,而非流动不稳定性研究中常用的线性稳定性分析方法。结果表明,振幅随时间呈指数衰减,衰减率与格拉肖夫数(Gr)呈线性关系。稳定-振荡过渡的临界格拉肖夫数为 Grcr = 3.423×106。无量纲角频率 ωcr = 0.24 也是通过傅立叶分析确定的。在这项工作中,我们还研究了边界层内的热量-动量相互作用,直观地显示了温度和速度振幅的周期性振荡,并从多个角度分析了不稳定性的起源。结果表明,在等温壁附近观察到速度和温度的大幅振荡。随着等温壁两端热边界层厚度和流速的增加,振荡增强。最大的速度和温度振幅出现在中心截面的左下角和右上角(Z=0.5),这里是不稳定的起源,而跨向壁几乎与振荡无关。三维空腔中自然对流的振荡流动源于持续增加的浮力,其过渡是通过霍普夫分岔实现的。此外,温度振幅在中平面(X=0.5)呈波浪状分布,并与深度 Z 密切相关。
{"title":"Study on the steady-oscillatory transition of three-dimensional (3D) natural convection via Hopf bifurcation","authors":"Jingkui Zhang ,&nbsp;Jiapeng Chang ,&nbsp;Miao Cui ,&nbsp;Yi Fan ,&nbsp;Qifen Li ,&nbsp;Cheng Peng","doi":"10.1016/j.euromechflu.2024.01.009","DOIUrl":"10.1016/j.euromechflu.2024.01.009","url":null,"abstract":"<div><p><span><span>The transition from steady-state flow to periodic oscillatory flow<span> for the natural convection by </span></span>Hopf bifurcation<span> is investigated in a three-dimensional (3D) cavity. The spectral collocation method (SCM) in combination with the artificial compressibility<span> method (ACM), which is developed by ourselves as a numerical method SCM-ACM with high accuracy, is employed to solve the governing equations directly instead of linear stability analysis<span> method that is commonly used for the research on flow instability. The results show that the amplitude decays exponentially with time and the decay rate is linear with the Grashof number (</span></span></span></span><em>Gr</em>). The critical Grashof number for steady-oscillatory transition is obtained as <em>Gr</em><sub><em>cr</em></sub> = 3.423 × 10<sup>6</sup>. The dimensionless angular frequency <em>ω</em><sub><em>cr</em></sub><span> = 0.24 is also determined by Fourier analysis. In this work, we also examine the heat-momentum interactions within the boundary layers, visualize the periodic oscillations of temperature and velocity amplitudes, and analyze the origin of instability from multiple angles. The results show that large oscillations of velocity and temperature are observed near the isothermal<span> walls. The oscillation is enhanced by the increase of thermal boundary layer thickness and flow velocity at both ends of isothermal walls. The maximum velocity and temperature amplitudes appear at the lower left and upper right corners of the mid-plane (</span></span><em>Z</em><span> = 0.5), where are the origin of instability, and the spanwise walls are almost independent of oscillations. The oscillatory flow of natural convection in three-dimensional cavity originates from the continuously increasing buoyancy force, and its transition occurs by Hopf bifurcation. Moreover, the temperature amplitude exhibits a wavy distribution on the mid-plane (</span><em>X</em> = 0.5) and strongly depends on the depth <em>Z</em><span>. These results provide benchmark data for future numerical studies and engineering application.</span></p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 247-258"},"PeriodicalIF":2.6,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wakes and secondary structures past stator wheel in test turbine VT-400 observed by PIV 通过 PIV 观察到的 VT-400 试验涡轮机定子轮前的漩涡和次级结构
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-01-17 DOI: 10.1016/j.euromechflu.2024.01.008
Daniel Duda , Marek Klimko , Petr Milčák , Matěj Jeřábek , Václav Uruba , Vitalii Yanovych , Pavel Žitek

Flow inside the axial test turbine VT-400 is measured by using a standard methodology of Particle Image Velocimetry (PIV). The studied area lies between the stator and rotor wheel in meridional plane. This area covers both: the regular flow near hub and the endwall secondary structures as well. Regular structure of wakes and jets past stator blades is observed in terms of mean velocities and turbulence intensity. The fluctuations are close to isotropy and the energy distribution across length-scales exhibits almost Kolmogorov scaling. Near the hub, we observe secondary vortices. Despite the positive radial ejections in that regions, these secondary vortices drift towards the hub, they dissipate energy and circulation and their core grows in size.

轴流式试验涡轮机 VT-400 内部的流量是通过粒子图像测速仪(PIV)的标准方法测量的。研究区域位于定子和转子轮之间的子午面上。该区域既包括轮毂附近的规则流,也包括端壁的次级结构。从平均速度和湍流强度的角度观察了定子叶片上方的漩涡和喷流的规则结构。波动接近于各向同性,各长度尺度的能量分布几乎呈现出柯尔莫哥洛夫缩放。在轮毂附近,我们观察到次级涡流。尽管该区域存在正径向喷射,但这些次级漩涡会向枢纽漂移,它们会耗散能量和环流,其核心也会变大。
{"title":"Wakes and secondary structures past stator wheel in test turbine VT-400 observed by PIV","authors":"Daniel Duda ,&nbsp;Marek Klimko ,&nbsp;Petr Milčák ,&nbsp;Matěj Jeřábek ,&nbsp;Václav Uruba ,&nbsp;Vitalii Yanovych ,&nbsp;Pavel Žitek","doi":"10.1016/j.euromechflu.2024.01.008","DOIUrl":"10.1016/j.euromechflu.2024.01.008","url":null,"abstract":"<div><p>Flow inside the axial test turbine VT-400 is measured by using a standard methodology of Particle Image Velocimetry (PIV). The studied area lies between the stator and rotor wheel in meridional plane. This area covers both: the regular flow near hub and the endwall secondary structures as well. Regular structure of wakes and jets past stator blades is observed in terms of mean velocities and turbulence intensity. The fluctuations are close to isotropy and the energy distribution across length-scales exhibits almost Kolmogorov scaling. Near the hub, we observe secondary vortices. Despite the positive radial ejections in that regions, these secondary vortices drift towards the hub, they dissipate energy and circulation and their core grows in size.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 151-163"},"PeriodicalIF":2.6,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000165/pdfft?md5=6b98ca5af03b5c4c8231c7e848eb9db1&pid=1-s2.0-S0997754624000165-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139483556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Mechanics B-fluids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1