首页 > 最新文献

European Journal of Mechanics B-fluids最新文献

英文 中文
Numerical simulation of deep-water wave breaking using RANS: Comparison with experiments 利用 RANS 对深水破浪进行数值模拟:与实验的比较
IF 2.5 3区 工程技术 Q2 MECHANICS Pub Date : 2024-08-14 DOI: 10.1016/j.euromechflu.2024.08.003
Yuxuan Liu , Ton S. van den Bremer , Thomas A.A. Adcock

Wave breaking is a multifaceted physical phenomenon that is not fully understood and remains challenging to model. An effective method for investigating wave breaking involves utilising the two-phase Reynolds-averaged Navier–Stokes (RANS) equations to directly simulate breaking waves. In this study, we apply a RANS model with an adaptively refined mesh to simulate breaking waves in deep water using the stabilised RANS model proposed by Larsen and Fuhrman. This approach enables a more efficient simulation of the physics of breaking waves compared to Direct Numerical Simulations, as it places less stringent demands on grid resolution. Our findings demonstrate that the RANS model compares well with deep water wave breaking experiments in terms of surface elevation. We also give estimates of the breaking strength parameter of our RANS simulations and compared them with the literature.

破浪是一种多层面的物理现象,目前尚未被完全理解,建模工作仍具有挑战性。研究破浪的有效方法是利用两相雷诺平均纳维-斯托克斯(RANS)方程直接模拟破浪。在本研究中,我们利用 Larsen 和 Fuhrman 提出的稳定 RANS 模型,应用带有自适应细化网格的 RANS 模型模拟深水中的破浪。与直接数值模拟相比,这种方法对网格分辨率的要求更低,因此能更有效地模拟破浪的物理过程。我们的研究结果表明,RANS 模型在表面高程方面与深水破浪实验有很好的可比性。我们还给出了 RANS 模拟的破浪强度参数估计值,并与文献进行了比较。
{"title":"Numerical simulation of deep-water wave breaking using RANS: Comparison with experiments","authors":"Yuxuan Liu ,&nbsp;Ton S. van den Bremer ,&nbsp;Thomas A.A. Adcock","doi":"10.1016/j.euromechflu.2024.08.003","DOIUrl":"10.1016/j.euromechflu.2024.08.003","url":null,"abstract":"<div><p>Wave breaking is a multifaceted physical phenomenon that is not fully understood and remains challenging to model. An effective method for investigating wave breaking involves utilising the two-phase Reynolds-averaged Navier–Stokes (RANS) equations to directly simulate breaking waves. In this study, we apply a RANS model with an adaptively refined mesh to simulate breaking waves in deep water using the stabilised RANS model proposed by Larsen and Fuhrman. This approach enables a more efficient simulation of the physics of breaking waves compared to Direct Numerical Simulations, as it places less stringent demands on grid resolution. Our findings demonstrate that the RANS model compares well with deep water wave breaking experiments in terms of surface elevation. We also give estimates of the breaking strength parameter of our RANS simulations and compared them with the literature.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 211-225"},"PeriodicalIF":2.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624001171/pdfft?md5=1253dc6f0b798143b233d424bd1fb24d&pid=1-s2.0-S0997754624001171-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Newtonian flow with slip and pressure-drop predictions in hyperbolic confined geometries 双曲约束几何中带有滑移的牛顿流和压降预测
IF 2.5 3区 工程技术 Q2 MECHANICS Pub Date : 2024-08-13 DOI: 10.1016/j.euromechflu.2024.08.002
Panagiotis Sialmas, Kostas D. Housiadas

We study theoretically the steady Newtonian flow in confined and hyperbolic long tubes (symmetric channels and axisymmetric pipes) considering slip along the walls. Using a stream function formulation, and the extended (or high-order) lubrication method in terms of the square of the aspect ratio of the tube, ε, the solution for the stream function is found analytically up to twentieth order in ε. At the classic lubrication limit, i.e. i.e. for a vanishing small aspect ratio, and for perfect slip conditions, the analysis predicts a plug-like velocity profile and a constant strain-rate on the midplane/axis of symmetry of the tube. A constant strain-rate is also predicted for the non-slip case. Furthermore, the high order asymptotic results for the stream function and fluid velocity are post-processed with an acceleration technique to investigate the convergence and accuracy of the solution. The results reveal the existence of a boundary layer at the inlet of the tube, the influence of which diminishes in a very short distance from the entrance. We discuss the effect of the contraction ratio of the tube and the dimensionless slip coefficient on the midplane/centerline and wall (slip) velocities, as well as on the average pressure-drop, required to maintain a constant flow-rate. The acceleration of converge technique on the solution for the pressure-drop revealed a remarkable convergence at a value slightly larger (∼1 %) than the value predicted by the classic lubrication theory. Finally, we comment on the common practice in the literature for approaching the velocity profile with the velocity profile at the classic lubrication limit, and we compare the high-order results for the strain rate at the midplane/centerline with the effective strain rate previously derived in the literature by Housiadas & Beris, J. Rheology, 68(3), 327–339, 2024.

我们从理论上研究了考虑到沿管壁滑移的封闭双曲长管(对称通道和轴对称管道)中的牛顿稳定流。使用流函数公式和以管子纵横比 ε 的平方为单位的扩展(或高阶)润滑方法,流函数的解可以分析到 ε 的二十阶。在经典的润滑极限,即小纵横比消失和完全滑移条件下,分析预测了管子中平面/对称轴上的塞状速度曲线和恒定应变率。对于非滑移情况,也预测了恒定的应变率。此外,还利用加速技术对流函数和流体速度的高阶渐近结果进行了后处理,以研究求解的收敛性和准确性。结果表明,管道入口处存在边界层,其影响在距离入口很短的距离内就会减弱。我们讨论了管道收缩率和无量纲滑移系数对中平面/中心线和管壁(滑移)速度的影响,以及对保持恒定流速所需的平均压降的影响。对压力降求解的加速收敛技术显示,在比经典润滑理论预测值稍大(∼1 %)时,收敛效果显著。最后,我们评论了文献中用经典润滑极限的速度曲线来接近速度曲线的常见做法,并将中平面/中心线应变率的高阶结果与 Housiadas & Beris, J. Rheology, 68(3), 327-339, 2024 等文献中先前得出的有效应变率进行了比较。
{"title":"Newtonian flow with slip and pressure-drop predictions in hyperbolic confined geometries","authors":"Panagiotis Sialmas,&nbsp;Kostas D. Housiadas","doi":"10.1016/j.euromechflu.2024.08.002","DOIUrl":"10.1016/j.euromechflu.2024.08.002","url":null,"abstract":"<div><p>We study theoretically the steady Newtonian flow in confined and hyperbolic long tubes (symmetric channels and axisymmetric pipes) considering slip along the walls. Using a stream function formulation, and the extended (or high-order) lubrication method in terms of the square of the aspect ratio of the tube, <em>ε</em>, the solution for the stream function is found analytically up to twentieth order in <em>ε</em>. At the classic lubrication limit, i.e. i.e. for a vanishing small aspect ratio, and for perfect slip conditions, the analysis predicts a plug-like velocity profile and a constant strain-rate on the midplane/axis of symmetry of the tube. A constant strain-rate is also predicted for the non-slip case. Furthermore, the high order asymptotic results for the stream function and fluid velocity are post-processed with an acceleration technique to investigate the convergence and accuracy of the solution. The results reveal the existence of a boundary layer at the inlet of the tube, the influence of which diminishes in a very short distance from the entrance. We discuss the effect of the contraction ratio of the tube and the dimensionless slip coefficient on the midplane/centerline and wall (slip) velocities, as well as on the average pressure-drop, required to maintain a constant flow-rate. The acceleration of converge technique on the solution for the pressure-drop revealed a remarkable convergence at a value slightly larger (∼1 %) than the value predicted by the classic lubrication theory. Finally, we comment on the common practice in the literature for approaching the velocity profile with the velocity profile at the classic lubrication limit, and we compare the high-order results for the strain rate at the midplane/centerline with the effective strain rate previously derived in the literature by <em>Housiadas &amp; Beris, J. Rheology, 68(3), 327–339, 2024</em>.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 272-285"},"PeriodicalIF":2.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivation and numerical resolution of 2D shallow water equations for multi-regime flows of Herschel–Bulkley fluids 赫歇尔-布克雷流体多态流动的二维浅水方程的推导与数值解析
IF 2.5 3区 工程技术 Q2 MECHANICS Pub Date : 2024-08-03 DOI: 10.1016/j.euromechflu.2024.07.010
David K. Muchiri , Jerome Monnier , Mathieu Sellier

This paper presents mathematical modelling and simulation of thin free-surface flows of viscoplastic fluids with a Herschel–Bulkley rheology over complex topographies with basal perturbations. Using the asymptotic expansion method, depth-averaged models (lubrication and shallow water type models) are derived for 3D (three-dimensional) multi-regime flows on non-flat inclined topographies with varying basal slipperiness. Starting from the Navier–Stokes equations, two flow regimes corresponding to different balances between shear and pressure forces are presented. Flow models corresponding to these regimes are calculated as perturbations of the zeroth-order solutions. The classical reference models in the literature are recovered by considering their respective cases on a flat-inclined surface. In the second regime case, a pressure term is non-negligible. Mathematically, it leads to a corrective term to the classical regime equations. Flow solutions of the two regimes are compared; the difference appears in particular in the vicinity of sharp changes of slopes. Nonetheless, both regime models are compared with experiments and are found to be in good agreement. Furthermore, numerical examples are shown to illustrate the robustness of the present shallow water models to simulate viscoplastic flows in 3D and over an inclined topography with local perturbations in basal elevation and basal slipperiness. The derived models are adequate for direct (engineering and geophysical) applications to real-world flow problems presenting Herschel–Bulkley rheology like lava and mud flows.

本文介绍了具有赫歇尔-布尔克利流变学的粘塑性流体在具有基底扰动的复杂地形上的稀薄自由表面流动的数学建模和模拟。利用渐近展开法,推导出了在具有不同基底滑动性的非平坦倾斜地形上的三维(三维)多工况流动的深度平均模型(润滑和浅水类型模型)。从纳维-斯托克斯方程出发,提出了与剪切力和压力之间的不同平衡相对应的两种流动状态。与这些状态相对应的流动模型是作为零阶解的扰动来计算的。文献中的经典参考模型是通过考虑各自在倾斜平面上的情况而复原的。在第二种情况下,压力项不可忽略。从数学上讲,它导致了对经典制度方程的修正项。我们比较了两种状态下的流体解;尤其是在坡度急剧变化的附近,两种状态下的流体解出现了差异。尽管如此,将这两种流态模型与实验进行比较后发现,两者的一致性很好。此外,还通过数值示例说明了现有浅水模型在模拟三维和倾斜地形上的粘塑性流动时的稳健性,以及基底高程和基底滑度的局部扰动。推导出的模型足以直接(工程和地球物理)应用于现实世界中呈现赫歇尔-布克雷流变学的流动问题,如熔岩流和泥浆流。
{"title":"Derivation and numerical resolution of 2D shallow water equations for multi-regime flows of Herschel–Bulkley fluids","authors":"David K. Muchiri ,&nbsp;Jerome Monnier ,&nbsp;Mathieu Sellier","doi":"10.1016/j.euromechflu.2024.07.010","DOIUrl":"10.1016/j.euromechflu.2024.07.010","url":null,"abstract":"<div><p>This paper presents mathematical modelling and simulation of thin free-surface flows of viscoplastic fluids with a Herschel–Bulkley rheology over complex topographies with basal perturbations. Using the asymptotic expansion method, depth-averaged models (lubrication and shallow water type models) are derived for 3D (three-dimensional) multi-regime flows on non-flat inclined topographies with varying basal slipperiness. Starting from the Navier–Stokes equations, two flow regimes corresponding to different balances between shear and pressure forces are presented. Flow models corresponding to these regimes are calculated as perturbations of the zeroth-order solutions. The classical reference models in the literature are recovered by considering their respective cases on a flat-inclined surface. In the second regime case, a pressure term is non-negligible. Mathematically, it leads to a corrective term to the classical regime equations. Flow solutions of the two regimes are compared; the difference appears in particular in the vicinity of sharp changes of slopes. Nonetheless, both regime models are compared with experiments and are found to be in good agreement. Furthermore, numerical examples are shown to illustrate the robustness of the present shallow water models to simulate viscoplastic flows in 3D and over an inclined topography with local perturbations in basal elevation and basal slipperiness. The derived models are adequate for direct (engineering and geophysical) applications to real-world flow problems presenting Herschel–Bulkley rheology like lava and mud flows.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"109 ","pages":"Pages 22-36"},"PeriodicalIF":2.5,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation on different volume of fluid methods in unstructured solver under the optimized condition 在优化条件下评估非结构化求解器中的不同流体体积法
IF 2.5 3区 工程技术 Q2 MECHANICS Pub Date : 2024-08-02 DOI: 10.1016/j.euromechflu.2024.07.016
Takuya Yamamoto , Sergey V. Komarov

We compared the accuracy of volume of fluid (VOF) methods in unstructured solvers using the following five different methods: 1 - the algebraically compressive VOF method, 2 – simple coupled VOF method with Level Set (S-CLSVOF) method, 3 - interface-compressing VOF method incorporated with Laplacian filter (VOFL), 4 - isoAdvector method, and 5 - isoAdvector method incorporated with Laplacian filter (isoAdvectorL) by incorporating them into OpenFOAM®, an open-source software. To evaluate these methods under proper conditions, we compared the calculation accuracy using the optimized parameters, which are explored by Bayesian optimization. The test cases for advection accuracy of volume fraction and for imbalance of surface tension force in static multiphase fluid fields were considered. In this study, we found that the compression parameters and maximum Courant number should be adjusted to obtain high accuracy simulation according to the simulation condition in VOF and S-CLSVOF method. In VOFL and isoAdvectorL methods, the spurious current can be extremely reduced, which means that these methods are suitable for slow flow with higher Laplace number conditions.

我们使用以下五种不同的方法比较了非结构化求解器中流体体积(VOF)方法的精度:1 - 代数压缩 VOF 方法;2 - 带水平集(S-CLSVOF)的简单耦合 VOF 方法;3 - 结合拉普拉斯滤波器(VOFL)的界面压缩 VOF 方法;4 - 等矢量方法;5 - 结合拉普拉斯滤波器(isoAdvectorL)的等矢量方法。为了在适当条件下对这些方法进行评估,我们使用贝叶斯优化探索的优化参数对计算精度进行了比较。我们考虑了静态多相流体场中体积分数平流精度和表面张力不平衡的测试案例。研究发现,根据 VOF 和 S-CLSVOF 方法的模拟条件,应调整压缩参数和最大库仑数,以获得高精度模拟。在 VOFL 和 isoAdvectorL 方法中,杂散电流可以大大减少,这意味着这些方法适用于拉普拉斯数较高条件下的慢速流动。
{"title":"Evaluation on different volume of fluid methods in unstructured solver under the optimized condition","authors":"Takuya Yamamoto ,&nbsp;Sergey V. Komarov","doi":"10.1016/j.euromechflu.2024.07.016","DOIUrl":"10.1016/j.euromechflu.2024.07.016","url":null,"abstract":"<div><p>We compared the accuracy of volume of fluid (VOF) methods in unstructured solvers using the following five different methods: 1 - the algebraically compressive VOF method, 2 – simple coupled VOF method with Level Set (S-CLSVOF) method, 3 - interface-compressing VOF method incorporated with Laplacian filter (VOFL), 4 - isoAdvector method, and 5 - isoAdvector method incorporated with Laplacian filter (isoAdvectorL) by incorporating them into OpenFOAM®, an open-source software. To evaluate these methods under proper conditions, we compared the calculation accuracy using the optimized parameters, which are explored by Bayesian optimization. The test cases for advection accuracy of volume fraction and for imbalance of surface tension force in static multiphase fluid fields were considered. In this study, we found that the compression parameters and maximum Courant number should be adjusted to obtain high accuracy simulation according to the simulation condition in VOF and S-CLSVOF method. In VOFL and isoAdvectorL methods, the spurious current can be extremely reduced, which means that these methods are suitable for slow flow with higher Laplace number conditions.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 187-210"},"PeriodicalIF":2.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal convection of a liquid metal under an alternating magnetic field 交变磁场下液态金属的热对流
IF 2.5 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-30 DOI: 10.1016/j.euromechflu.2024.07.015
Julien Guillou , Wladimir Bergez , Rémi Zamansky , Hervé Ayroles , Pascal Piluso , Philippe Tordjeman
<div><p>The objective of this work is to measure the heat transfer of a liquid metal in a cylindrical cell under the conjugate effects of a temperature difference and a Lorentz force generated by an alternating current in a coil. The experimental results are compared to recent direct numerical simulations (DNS) (Guillou et al., 2022). 25 experiments are performed for a large range of frequency <span><math><mi>f</mi></math></span>, ac intensity amplitude <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and temperature difference between the top and bottom walls <span><math><mrow><mi>Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>: <span><math><mrow><mn>15</mn><mo>≤</mo><mi>f</mi><mo>≤</mo><mn>1000</mn><mspace></mspace><mi>Hz</mi></mrow></math></span>, <span><math><mrow><mn>2</mn><mo>≤</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>67</mn></mrow></math></span> A and <span><math><mrow><mn>6</mn><mo>≤</mo><mi>Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>11</mn></mrow></math></span> K. In these experiments, the Hartmann number <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>, the shielding parameter <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> and Rayleigh number <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> vary in the following range: <span><math><mrow><mn>6</mn><mo>≤</mo><mi>H</mi><mi>a</mi><mo>≤</mo><mn>200</mn></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>≤</mo><mn>70</mn></mrow></math></span>, <span><math><mrow><mn>2</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>≤</mo><mi>R</mi><mi>a</mi><mo>≤</mo><mn>4</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. The experiments with an ac magnetic field are compared with the Rayleigh–Bénard convection (RBC) experiments under the same thermal conditions. Three rings of thermocouples allow characterizing the fluid temperature distribution during the convection. The heat flux at the bottom and top walls are also measured. We observe a very good agreement between the experimental results and the DNS results. As previously shown by numerical simulations, a master curve of <span><math><mrow><mi>N</mi><mi>u</mi><mo>/</mo><mi>P</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>ω</mi></mrow></msub></mrow></math></span> vs. <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> allows predicting the evolution of the heat transfer under different conditions of temperature difference and Lorentz force. Here <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>P</mi><m
这项工作的目的是测量圆柱形电池中液态金属在温差和线圈中交流电产生的洛伦兹力共同作用下的传热情况。实验结果与最近的直接数值模拟(DNS)(Guillou 等人,2022 年)进行了比较。在这些实验中,哈特曼数、屏蔽参数和瑞利数在以下范围内变化:, , .在相同的热条件下,交流磁场实验与瑞利-贝纳德对流(RBC)实验进行了比较。通过三环热电偶可以确定对流过程中流体温度分布的特征。同时还测量了底部和顶部壁面的热通量。我们观察到实验结果与 DNS 结果非常吻合。正如之前的数值模拟所示,vs.主曲线可以预测不同温差和洛伦兹力条件下的传热演变。这里的 和 分别是基于洛伦兹力的努塞尔特数和佩克莱特数, 和 分别是焦耳效应沉积的总功率和无运动的总传导热通量。实验表明 .
{"title":"Thermal convection of a liquid metal under an alternating magnetic field","authors":"Julien Guillou ,&nbsp;Wladimir Bergez ,&nbsp;Rémi Zamansky ,&nbsp;Hervé Ayroles ,&nbsp;Pascal Piluso ,&nbsp;Philippe Tordjeman","doi":"10.1016/j.euromechflu.2024.07.015","DOIUrl":"10.1016/j.euromechflu.2024.07.015","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The objective of this work is to measure the heat transfer of a liquid metal in a cylindrical cell under the conjugate effects of a temperature difference and a Lorentz force generated by an alternating current in a coil. The experimental results are compared to recent direct numerical simulations (DNS) (Guillou et al., 2022). 25 experiments are performed for a large range of frequency &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, ac intensity amplitude &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and temperature difference between the top and bottom walls &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;: &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;1000&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Hz&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;67&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; A and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;11&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; K. In these experiments, the Hartmann number &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the shielding parameter &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and Rayleigh number &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; vary in the following range: &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;200&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;70&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The experiments with an ac magnetic field are compared with the Rayleigh–Bénard convection (RBC) experiments under the same thermal conditions. Three rings of thermocouples allow characterizing the fluid temperature distribution during the convection. The heat flux at the bottom and top walls are also measured. We observe a very good agreement between the experimental results and the DNS results. As previously shown by numerical simulations, a master curve of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; vs. &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; allows predicting the evolution of the heat transfer under different conditions of temperature difference and Lorentz force. Here &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;m","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 180-186"},"PeriodicalIF":2.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-fidelity simulations of Richtmyer–Meshkov flows triggered by a forward-pentagonal bubble with different Atwood numbers 不同阿特伍德数的正五边形气泡引发的里氏-梅什科夫流的高保真模拟
IF 2.5 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-25 DOI: 10.1016/j.euromechflu.2024.07.013
Satyvir Singh , Salman Saud Alsaeed

In fluid dynamics, the Atwood number is a dimensionless parameter that quantifies the density difference between two fluids. It is calculated as At=(ρ1ρ2)/(ρ1+ρ2), where ρ1 and ρ2 represent the densities of the respective fluids. This research employs high-fidelity numerical simulations to examine the Atwood number impacts on Richtmyer–Meshkov (RM) flows triggered by a shocked forward-pentagonal bubble. Five distinct gases — SF6, Kr, Ar, Ne, and He — are considered within the forward-pentagonal bubble, encompassed by N2 gas. In these simulations, a third-order discontinuous Galerkin approach is applied to solve a two-dimensional set of compressible Navier–Stokes-Fourier (NSF) equations for two-component gas flows. To discretize space, hierarchical modal basis functions based on orthogonal-scaled Legendre polynomials are employed. This approach simplifies the NSF equations into a set of ordinary differential equations over time, which are solved using an explicit third-order SSP Runge–Kutta algorithm. The numerical results highlight the notable impact of the Atwood number on the evolution of RM flows in the shocked forward-pentagonal bubble, a phenomenon not previously reported in the literature. The Atwood number exerts a significant influence on the flow patterns, leading to intricate wave formations, shock focusing, jet generation, and interface distortion. Moreover, a comprehensive analysis of the these impact elucidates the mechanisms driving vorticity formation during the interaction process. Additionally, the study conducts a thorough quantitative examination of the Atwood number impacts on the flow fields based on integral quantities and interface features.

在流体力学中,阿特伍德数是一个量化两种流体密度差的无量纲参数。其计算公式为 At=(ρ1-ρ2)/(ρ1+ρ2) ,其中 ρ1 和 ρ2 分别代表两种流体的密度。本研究采用高保真数值模拟来检验阿特伍德数对由冲击前五边形气泡引发的里氏-梅什科夫(RM)流的影响。在前五角形气泡内考虑了五种不同的气体--SF6、Kr、Ar、Ne 和 He,其中包括 N2 气体。在这些模拟中,采用了三阶非连续伽勒金方法来求解双组分气体流的二维可压缩纳维-斯托克斯-傅里叶(NSF)方程组。为了离散空间,采用了基于正交标度 Legendre 多项式的分层模态基函数。这种方法将 NSF 方程简化为一组随时间变化的常微分方程,并使用显式三阶 SSP Runge-Kutta 算法进行求解。数值结果凸显了阿特伍德数对冲击前五角形气泡中 RM 流动演化的显著影响,而这一现象在以前的文献中从未报道过。阿特伍德数对流动模式产生了重大影响,导致了复杂的波形、冲击聚焦、射流生成和界面扭曲。此外,对这些影响的全面分析阐明了相互作用过程中涡度形成的驱动机制。此外,研究还根据积分量和界面特征,对阿特伍德数对流场的影响进行了全面的定量分析。
{"title":"High-fidelity simulations of Richtmyer–Meshkov flows triggered by a forward-pentagonal bubble with different Atwood numbers","authors":"Satyvir Singh ,&nbsp;Salman Saud Alsaeed","doi":"10.1016/j.euromechflu.2024.07.013","DOIUrl":"10.1016/j.euromechflu.2024.07.013","url":null,"abstract":"<div><p>In fluid dynamics, the Atwood number is a dimensionless parameter that quantifies the density difference between two fluids. It is calculated as <span><math><mrow><mi>A</mi><mi>t</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> represent the densities of the respective fluids. This research employs high-fidelity numerical simulations to examine the Atwood number impacts on Richtmyer–Meshkov (RM) flows triggered by a shocked forward-pentagonal bubble. Five distinct gases — <span><math><msub><mrow><mtext>SF</mtext></mrow><mrow><mn>6</mn></mrow></msub></math></span>, Kr, Ar, Ne, and He — are considered within the forward-pentagonal bubble, encompassed by <span><math><msub><mrow><mtext>N</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> gas. In these simulations, a third-order discontinuous Galerkin approach is applied to solve a two-dimensional set of compressible Navier–Stokes-Fourier (NSF) equations for two-component gas flows. To discretize space, hierarchical modal basis functions based on orthogonal-scaled Legendre polynomials are employed. This approach simplifies the NSF equations into a set of ordinary differential equations over time, which are solved using an explicit third-order SSP Runge–Kutta algorithm. The numerical results highlight the notable impact of the Atwood number on the evolution of RM flows in the shocked forward-pentagonal bubble, a phenomenon not previously reported in the literature. The Atwood number exerts a significant influence on the flow patterns, leading to intricate wave formations, shock focusing, jet generation, and interface distortion. Moreover, a comprehensive analysis of the these impact elucidates the mechanisms driving vorticity formation during the interaction process. Additionally, the study conducts a thorough quantitative examination of the Atwood number impacts on the flow fields based on integral quantities and interface features.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 151-165"},"PeriodicalIF":2.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624001110/pdfft?md5=3f2bce669d02ed1d1a574cae47d7a3d3&pid=1-s2.0-S0997754624001110-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in the analysis of turbulent superstructures 湍流上层结构分析的最新进展
IF 2.6 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-24 DOI: 10.1016/j.euromechflu.2024.07.014
Jörg Schumacher, Wolfgang Schröder
{"title":"Recent advances in the analysis of turbulent superstructures","authors":"Jörg Schumacher, Wolfgang Schröder","doi":"10.1016/j.euromechflu.2024.07.014","DOIUrl":"https://doi.org/10.1016/j.euromechflu.2024.07.014","url":null,"abstract":"","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"9 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on blast wave diffractions and the dynamics of associated vortices inside different grooves kept at various lateral distances from the shock tube 关于冲击波衍射以及与冲击管保持不同横向距离的不同凹槽内相关涡流的动力学研究
IF 2.5 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-22 DOI: 10.1016/j.euromechflu.2024.07.012
Senthilkumar Subramanian , Murugan Thangadurai , Konstantinos Kontis

Diffraction is a fundamental phenomenon that occurs when blast or shock waves pass over sudden discontinuous surfaces. It generates a complex flow field consisting of diffracted waves, expansion waves, slipstream, contact surface, and an unstable shear layer, in addition to emitting acoustic waves. In this study, we investigated the diffraction of a blast wave passing over a series of grooved structures with different aspect ratios and geometrical shapes (rectangular, circular, and triangular) using high-speed shadowgraph images. The blast wave Mach number considered in our investigation is 1.34. The grooves feature leading-edge geometrical variations such as rectangular, circular arc, and wedge shapes positioned at various lateral locations from the exit of the shock tube. The aspect ratios of the rectangular grooves vary from 0.33, 0.5, and 0.67. The circular and triangular grooves have an aspect ratio of 0.33. The trajectories and velocities of the primary vortex are calculated by tracking the location of the vortex in the shadowgraph images. Our observations revealed that a large portion of the incident blast wave is abducted inside the groove as the aspect ratio increases in rectangular grooves, resulting in better attenuation of the blast wave. The grooves, which have circular shapes, produced weaker diffraction, which resulted in delayed and weak primary vortex. The triangular grooves produced the strongest primary vortex and have the highest attenuation characteristics among other grooves. The strength and trajectory of the primary vortex formed over the grooves strongly depend on the aspect ratio and the curvature of the leading edge for a given Mach number. Vortices generated from rectangular and triangular grooves exhibit considerable strength and longevity.

衍射是爆炸波或冲击波经过突然出现的不连续表面时产生的一种基本现象。除了发射声波之外,它还会产生由衍射波、膨胀波、滑流、接触面和不稳定剪切层组成的复杂流场。在本研究中,我们使用高速阴影图图像研究了经过一系列不同长宽比和几何形状(矩形、圆形和三角形)沟槽结构的冲击波的衍射。研究中考虑的冲击波马赫数为 1.34。凹槽的前缘几何形状各不相同,如矩形、圆弧形和楔形,位于冲击管出口的不同横向位置。矩形凹槽的长宽比分别为 0.33、0.5 和 0.67。圆形和三角形凹槽的长宽比为 0.33。主涡流的轨迹和速度是通过跟踪阴影图图像中涡流的位置计算出来的。我们的观察结果表明,随着矩形凹槽长宽比的增加,大部分入射爆炸波被卷入凹槽内部,从而使爆炸波得到更好的衰减。圆形凹槽产生的衍射较弱,导致初级涡旋延迟且较弱。在其他凹槽中,三角形凹槽产生的原生涡旋最强,衰减特性也最高。在给定的马赫数下,凹槽上形成的初级涡旋的强度和轨迹与前缘的长宽比和曲率密切相关。矩形和三角形凹槽产生的涡流具有相当高的强度和寿命。
{"title":"A study on blast wave diffractions and the dynamics of associated vortices inside different grooves kept at various lateral distances from the shock tube","authors":"Senthilkumar Subramanian ,&nbsp;Murugan Thangadurai ,&nbsp;Konstantinos Kontis","doi":"10.1016/j.euromechflu.2024.07.012","DOIUrl":"10.1016/j.euromechflu.2024.07.012","url":null,"abstract":"<div><p>Diffraction is a fundamental phenomenon that occurs when blast or shock waves pass over sudden discontinuous surfaces. It generates a complex flow field consisting of diffracted waves, expansion waves, slipstream, contact surface, and an unstable shear layer, in addition to emitting acoustic waves. In this study, we investigated the diffraction of a blast wave passing over a series of grooved structures with different aspect ratios and geometrical shapes (rectangular, circular, and triangular) using high-speed shadowgraph images. The blast wave Mach number considered in our investigation is 1.34. The grooves feature leading-edge geometrical variations such as rectangular, circular arc, and wedge shapes positioned at various lateral locations from the exit of the shock tube. The aspect ratios of the rectangular grooves vary from 0.33, 0.5, and 0.67. The circular and triangular grooves have an aspect ratio of 0.33. The trajectories and velocities of the primary vortex are calculated by tracking the location of the vortex in the shadowgraph images. Our observations revealed that a large portion of the incident blast wave is abducted inside the groove as the aspect ratio increases in rectangular grooves, resulting in better attenuation of the blast wave. The grooves, which have circular shapes, produced weaker diffraction, which resulted in delayed and weak primary vortex. The triangular grooves produced the strongest primary vortex and have the highest attenuation characteristics among other grooves. The strength and trajectory of the primary vortex formed over the grooves strongly depend on the aspect ratio and the curvature of the leading edge for a given Mach number. Vortices generated from rectangular and triangular grooves exhibit considerable strength and longevity.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 166-179"},"PeriodicalIF":2.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detailed 3D URANS analysis of two-phase flow in an airlift pump 气力提升泵中两相流动的 3D URANS 详细分析
IF 2.5 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-15 DOI: 10.1016/j.euromechflu.2024.07.011
Geoffrey S. Gray, Scott J. Ormiston, Hassan M. Soliman

An airlift pump is a vertical tube that utilizes the buoyant effects of a gas to lift a liquid. Unlike a standard mechanical pump, the liquid flow rate through the airlift pump is not directly controlled; rather, it depends on the supplied gas flow rate, the tube length and diameter, and the relative height of the liquid supply free surface (submergence ratio). The present study uses the commercial CFD code ANSYS CFX to model the isothermal, 3D, transient flow in an airlift pump using water and air. The model applies pressure boundary conditions at both ends of the tube and specifies the mass flow rate of air through multiple openings in the side of the tube. The bottom of the tube is an inlet of water only and the outlet is a two-phase flow opening. A time-dependent, homogeneous, VOF two-phase RANS CFD modelling approach is used with the air treated as an ideal gas. This work found that a complete 3D domain was necessary for consistent prediction of the airlift performance and physically realistic two-phase flow structures. Statistical analysis of the two-phase flow structures was applied to characterize airlift pump instability and better understand the physics of the airlift pump.

气举泵是一种利用气体浮力效应提升液体的垂直管道。与标准机械泵不同的是,通过气举泵的液体流速不是直接控制的,而是取决于提供的气体流速、管子长度和直径以及供液自由表面的相对高度(浸没比)。本研究使用商业 CFD 代码 ANSYS CFX 对使用水和空气的气力提升泵中的等温三维瞬态流动进行建模。该模型在管子两端应用压力边界条件,并通过管子侧面的多个开口指定空气的质量流量。管子底部仅为进水口,出水口为两相流开口。采用随时间变化的均质 VOF 两相 RANS CFD 建模方法,将空气视为理想气体。这项研究发现,要想对气举性能和物理上真实的两相流结构进行一致的预测,就必须有一个完整的三维域。应用两相流结构的统计分析来描述气举泵的不稳定性,并更好地理解气举泵的物理原理。
{"title":"Detailed 3D URANS analysis of two-phase flow in an airlift pump","authors":"Geoffrey S. Gray,&nbsp;Scott J. Ormiston,&nbsp;Hassan M. Soliman","doi":"10.1016/j.euromechflu.2024.07.011","DOIUrl":"10.1016/j.euromechflu.2024.07.011","url":null,"abstract":"<div><p>An airlift pump is a vertical tube that utilizes the buoyant effects of a gas to lift a liquid. Unlike a standard mechanical pump, the liquid flow rate through the airlift pump is not directly controlled; rather, it depends on the supplied gas flow rate, the tube length and diameter, and the relative height of the liquid supply free surface (submergence ratio). The present study uses the commercial CFD code ANSYS CFX to model the isothermal, 3D, transient flow in an airlift pump using water and air. The model applies pressure boundary conditions at both ends of the tube and specifies the mass flow rate of air through multiple openings in the side of the tube. The bottom of the tube is an inlet of water only and the outlet is a two-phase flow opening. A time-dependent, homogeneous, VOF two-phase RANS CFD modelling approach is used with the air treated as an ideal gas. This work found that a complete 3D domain was necessary for consistent prediction of the airlift performance and physically realistic two-phase flow structures. Statistical analysis of the two-phase flow structures was applied to characterize airlift pump instability and better understand the physics of the airlift pump.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 134-150"},"PeriodicalIF":2.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling drag coefficients of spheroidal particles in rarefied flow conditions 稀流条件下球形颗粒的阻力系数建模
IF 2.5 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-14 DOI: 10.1016/j.euromechflu.2024.07.008
H.J.H. Clercx , C. Livi , G. Di Staso , F. Toschi

Transport of particles in flows is often modeled in a combined Eulerian–Lagrangian framework. The flow is evaluated on an Eulerian grid, while particles are modeled as Lagrangian points whose positions and velocities are evolved in time, resulting in particle trajectories embedded in the time-dependent flow field. The method essentially resolves the flow field in complex geometries in detail but uses a closure model for the particle dynamics aimed at including the essential particle–fluid interactions at the cost of detailed small-scale physics. Rarefaction effects are usually included through the phenomenological Cunningham correction on the drag force experienced by the particles. In this Lagrangian point-particle approach, any explicit reference to the finite size and the shape of the particles, and their local orientation in the flow field, is typically ignored. In this work we aim to address this gap by deriving, from fully-resolved Direct Simulation Monte Carlo (DSMC) studies, heuristic or closure models for the drag force acting on prolate and oblate spheroidal particles with different aspect ratios, and a fixed orientation, in uniform ambient rarefied flows covering the transition regime between the continuum and free-molecular limits. These closure models predict the drag in the transition regime for all considered parameter settings (validated with DSMC data). The continuum limit is enforced a priori and we retrieve the free-molecular limit with reasonable accuracy (based on comparisons with literature data). We also include in the models the capability to predict effects related to basic gas-surface interactions via the tangential momentum accommodation coefficient. We furthermore assess the validity of the proposed closure model for particle dynamics in proximity to solid walls. This investigation extends our previous work, which focused on small aspect ratio spheroids with exclusively diffusive gas-surface interactions [see Livi et al. (2022)]. The derived models are obtained for isothermal, subsonic flows relevant for particle contamination control in semiconductor manufacturing.

粒子在流动中的传输通常采用欧拉-拉格朗日组合框架建模。流动在欧拉网格上进行评估,而粒子则被建模为拉格朗日点,其位置和速度随时间变化,从而形成嵌入随时间变化的流场中的粒子轨迹。该方法本质上是详细解析复杂几何形状中的流场,但对粒子动力学采用封闭模型,旨在以详细的小尺度物理为代价,将基本的粒子-流体相互作用包括在内。通常通过对粒子所受阻力的坎宁安现象学修正来包含稀释效应。在这种拉格朗日点粒子方法中,粒子的有限尺寸和形状及其在流场中的局部取向通常都被忽略。在这项研究中,我们通过全分辨率直接模拟蒙特卡洛(DSMC)研究,推导出了启发式或闭合模型,用于在均匀环境稀流中作用于具有不同长径比和固定取向的扁球形和扁球形颗粒的阻力,这些稀流涵盖了连续介质和自由分子极限之间的过渡体制。这些闭合模型预测了所有考虑的参数设置(通过 DSMC 数据验证)在过渡状态下的阻力。连续极限是先验执行的,我们以合理的精度(基于与文献数据的比较)检索了自由分子极限。我们还在模型中加入了通过切向动量容纳系数预测与气体表面基本相互作用相关的效应的功能。此外,我们还进一步评估了所提出的封闭模型对靠近固体壁的粒子动力学的有效性。这项研究扩展了我们之前的工作,之前的工作主要针对完全扩散式气-面相互作用的小长径比球体[见 Livi 等人 (2022)]。推导出的模型适用于等温、亚音速流动,与半导体制造中的粒子污染控制有关。
{"title":"Modeling drag coefficients of spheroidal particles in rarefied flow conditions","authors":"H.J.H. Clercx ,&nbsp;C. Livi ,&nbsp;G. Di Staso ,&nbsp;F. Toschi","doi":"10.1016/j.euromechflu.2024.07.008","DOIUrl":"10.1016/j.euromechflu.2024.07.008","url":null,"abstract":"<div><p>Transport of particles in flows is often modeled in a combined Eulerian–Lagrangian framework. The flow is evaluated on an Eulerian grid, while particles are modeled as Lagrangian points whose positions and velocities are evolved in time, resulting in particle trajectories embedded in the time-dependent flow field. The method essentially resolves the flow field in complex geometries in detail but uses a closure model for the particle dynamics aimed at including the essential particle–fluid interactions at the cost of detailed small-scale physics. Rarefaction effects are usually included through the phenomenological Cunningham correction on the drag force experienced by the particles. In this Lagrangian point-particle approach, any explicit reference to the finite size and the shape of the particles, and their local orientation in the flow field, is typically ignored. In this work we aim to address this gap by deriving, from fully-resolved Direct Simulation Monte Carlo (DSMC) studies, heuristic or closure models for the drag force acting on prolate and oblate spheroidal particles with different aspect ratios, and a fixed orientation, in uniform ambient rarefied flows covering the transition regime between the continuum and free-molecular limits. These closure models predict the drag in the transition regime for all considered parameter settings (validated with DSMC data). The continuum limit is enforced a priori and we retrieve the free-molecular limit with reasonable accuracy (based on comparisons with literature data). We also include in the models the capability to predict effects related to basic gas-surface interactions via the tangential momentum accommodation coefficient. We furthermore assess the validity of the proposed closure model for particle dynamics in proximity to solid walls. This investigation extends our previous work, which focused on small aspect ratio spheroids with exclusively diffusive gas-surface interactions [see Livi et al. (2022)]. The derived models are obtained for isothermal, subsonic flows relevant for particle contamination control in semiconductor manufacturing.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 90-103"},"PeriodicalIF":2.5,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000967/pdfft?md5=02cbba47811cf272f4b0537ed161d5ab&pid=1-s2.0-S0997754624000967-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141693336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Mechanics B-fluids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1