Grace E. Kendall, Conor F. Underwood, Louise C. Parr-Brownlie
Gut inflammation is a salient prodromal feature of Parkinson's disease (PD) implicated in pathologic processes leading to nigrostriatal dopaminergic degeneration. However, existing rodent models of PD are suboptimal for investigating the interaction between gut inflammation and neuropathology. This study aimed to develop a rat model of PD in which gut inflammation exacerbated PD symptoms induced by a parkinsonian lesion. This was achieved by combining the 6-hydroxydopamine (6-OHDA) rat model for PD and the dextran sodium sulfate (DSS) rat model for colitis. The model was characterised using behavioural tests, including reaching, step, gait, open-field and cylinder tests, plus stereological quantification of substantia nigra (SN) DA neurodegeneration, and histological analysis of SN microglial activation and distal colon morphology. The combination of 6-OHDA and DSS resulted in greater stool softening and bleeding, shorter colons and greater distal colon histological damage, when compared with the 6-OHDA model. Additionally, 6-OHDA and DSS rats displayed similar DA neurodegeneration, yet less SN microglial activation, when compared to 6-OHDA rats that did not receive DSS. Finally, DSS + 6-OHDA rats exhibited impaired forelimb motor function compared with 6-OHDA rats, with decreased performance in reaching and step tests. In conclusion, DSS administration exacerbated forelimb motor dysfunction in 6-OHDA rats. Behavioural changes in DSS + 6-OHDA rats were associated with lower levels of microglial activation and similar levels of dopamine depletion compared with 6-OHDA-only rats. These results support that the DSS + 6-OHDA rat model is a promising PD animal model to investigate deleterious gut–brain interactions in PD.
{"title":"A Novel Rat Model for Inflammatory Gut–Brain Interactions in Parkinson's Disease","authors":"Grace E. Kendall, Conor F. Underwood, Louise C. Parr-Brownlie","doi":"10.1111/ejn.16667","DOIUrl":"10.1111/ejn.16667","url":null,"abstract":"<p>Gut inflammation is a salient prodromal feature of Parkinson's disease (PD) implicated in pathologic processes leading to nigrostriatal dopaminergic degeneration. However, existing rodent models of PD are suboptimal for investigating the interaction between gut inflammation and neuropathology. This study aimed to develop a rat model of PD in which gut inflammation exacerbated PD symptoms induced by a parkinsonian lesion. This was achieved by combining the 6-hydroxydopamine (6-OHDA) rat model for PD and the dextran sodium sulfate (DSS) rat model for colitis. The model was characterised using behavioural tests, including reaching, step, gait, open-field and cylinder tests, plus stereological quantification of substantia nigra (SN) DA neurodegeneration, and histological analysis of SN microglial activation and distal colon morphology. The combination of 6-OHDA and DSS resulted in greater stool softening and bleeding, shorter colons and greater distal colon histological damage, when compared with the 6-OHDA model. Additionally, 6-OHDA and DSS rats displayed similar DA neurodegeneration, yet less SN microglial activation, when compared to 6-OHDA rats that did not receive DSS. Finally, DSS + 6-OHDA rats exhibited impaired forelimb motor function compared with 6-OHDA rats, with decreased performance in reaching and step tests. In conclusion, DSS administration exacerbated forelimb motor dysfunction in 6-OHDA rats. Behavioural changes in DSS + 6-OHDA rats were associated with lower levels of microglial activation and similar levels of dopamine depletion compared with 6-OHDA-only rats. These results support that the DSS + 6-OHDA rat model is a promising PD animal model to investigate deleterious gut–brain interactions in PD.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra Kaiser, Anna Fritsch, Lena Jakob, Nils Schallner
Traumatic brain injury is one of the most common cerebral incidences worldwide. Repetitive mild traumatic brain injuries occurring, for example, in athletes or victims of abuse, can cause chronic neurodegeneration due to neuroinflammation, in which the crosstalk between reactive astrocytes and activated microglia is crucial for modulating neuronal damage. The inducible enzyme heme oxygenase-1 and its product carbon monoxide are known to be ascribed neuroprotective and anti-inflammatory properties. We caused repetitive mild traumatic brain injuries in wild-type mice compared to mice without microglial heme oxygenase-1 expression. Additionally, mice were treated daily with either air or carbon monoxide exogenously. In wild-type mice, we observed enhanced microglia activation and astrogliosis as well as vasodilation after repetitive trauma. In heme oxygenase-1 knockout mice, we observed enhanced activation of microglia and astrocytes at baseline pretrauma with a lack of an adequate inflammatory response to repetitive injury. However, the knockout led to enhanced NF-κB and IFNγ expression in the post-trauma period. Carbon monoxide exerted neuroprotection, as suggested by reduced wake-up times in mice and by beneficially altering inflammation post-traumatic brain injury. This study further underlines the crucial role of the heme oxygenase-1/carbon monoxide system in the modulation of neuronal damage and the associated neuroinflammatory response after repetitive traumatic brain injury.
{"title":"Severity of Repetitive Mild Traumatic Brain Injury Depends on Microglial Heme Oxygenase-1 and Carbon Monoxide","authors":"Sandra Kaiser, Anna Fritsch, Lena Jakob, Nils Schallner","doi":"10.1111/ejn.16666","DOIUrl":"10.1111/ejn.16666","url":null,"abstract":"<p>Traumatic brain injury is one of the most common cerebral incidences worldwide. Repetitive mild traumatic brain injuries occurring, for example, in athletes or victims of abuse, can cause chronic neurodegeneration due to neuroinflammation, in which the crosstalk between reactive astrocytes and activated microglia is crucial for modulating neuronal damage. The inducible enzyme heme oxygenase-1 and its product carbon monoxide are known to be ascribed neuroprotective and anti-inflammatory properties. We caused repetitive mild traumatic brain injuries in wild-type mice compared to mice without microglial heme oxygenase-1 expression. Additionally, mice were treated daily with either air or carbon monoxide exogenously. In wild-type mice, we observed enhanced microglia activation and astrogliosis as well as vasodilation after repetitive trauma. In heme oxygenase-1 knockout mice, we observed enhanced activation of microglia and astrocytes at baseline pretrauma with a lack of an adequate inflammatory response to repetitive injury. However, the knockout led to enhanced NF-κB and IFNγ expression in the post-trauma period. Carbon monoxide exerted neuroprotection, as suggested by reduced wake-up times in mice and by beneficially altering inflammation post-traumatic brain injury. This study further underlines the crucial role of the heme oxygenase-1/carbon monoxide system in the modulation of neuronal damage and the associated neuroinflammatory response after repetitive traumatic brain injury.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}