Anders Jorgensen, Ivan Brandslund, Christina Ellervik, Trine Henriksen, Allan Weimann, Per Kragh Andersen, Henrik E. Poulsen
Modifications of nucleic acids (DNA and RNA) from oxidative stress is a potential driver of aging per se and of mortality in age-associated medical disorders such as type 2 diabetes (T2D). In a human cohort, we found a strong prediction of all-cause mortality by a marker of systemic oxidation of RNA in patients with T2D (n = 2672) and in nondiabetic control subjects (n = 4079). The finding persisted after the adjustment of established modifiers of oxidative stress (including BMI, smoking, and glycated hemoglobin). In contrast, systemic levels of DNA damage from oxidation, which traditionally has been causally linked to both T2D and aging, failed to predict mortality. Strikingly, these findings were subsequently replicated in an independent general population study (n = 3649). The data demonstrate a specific importance of RNA damage from oxidation in T2D and general aging.
{"title":"Specific prediction of mortality by oxidative stress-induced damage to RNA vs. DNA in humans","authors":"Anders Jorgensen, Ivan Brandslund, Christina Ellervik, Trine Henriksen, Allan Weimann, Per Kragh Andersen, Henrik E. Poulsen","doi":"10.1111/acel.13839","DOIUrl":"https://doi.org/10.1111/acel.13839","url":null,"abstract":"<p>Modifications of nucleic acids (DNA and RNA) from oxidative stress is a potential driver of aging per se and of mortality in age-associated medical disorders such as type 2 diabetes (T2D). In a human cohort, we found a strong prediction of all-cause mortality by a marker of systemic oxidation of RNA in patients with T2D (<i>n</i> = 2672) and in nondiabetic control subjects (<i>n</i> = 4079). The finding persisted after the adjustment of established modifiers of oxidative stress (including BMI, smoking, and glycated hemoglobin). In contrast, systemic levels of DNA damage from oxidation, which traditionally has been causally linked to both T2D and aging, failed to predict mortality. Strikingly, these findings were subsequently replicated in an independent general population study (<i>n</i> = 3649). The data demonstrate a specific importance of RNA damage from oxidation in T2D and general aging.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 6","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13839","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5659277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ricardo Gómez-Oliva, Sergio Martínez-Ortega, Isabel Atienza-Navarro, Samuel Domínguez-García, Carlos Bernal-Utrera, Noelia Geribaldi-Doldán, Cristina Verástegui, Abdellah Ezzanad, Rosario Hernández-Galán, Pedro Nunez-Abades, Monica Garcia-Alloza, Carmen Castro
Neuropathological aging is associated with memory impairment and cognitive decline, affecting several brain areas including the neurogenic niche of the dentate gyrus of the hippocampus (DG). In the healthy brain, homeostatic mechanisms regulate neurogenesis within the DG to facilitate the continuous generation of neurons from neural stem cells (NSC). Nevertheless, aging reduces the number of activated neural stem cells and diminishes the number of newly generated neurons. Strategies that promote neurogenesis in the DG may improve cognitive performance in the elderly resulting in the development of treatments to prevent the progression of neurological disorders in the aged population. Our work is aimed at discovering targeting molecules to be used in the design of pharmacological agents that prevent the neurological effects of brain aging. We study the effect of age on hippocampal neurogenesis using the SAMP8 mouse as a model of neuropathological aging. We show that in 6-month-old SAMP8 mice, episodic and spatial memory are impaired; concomitantly, the generation of neuroblasts and neurons is reduced and the generation of astrocytes is increased in this model. The novelty of our work resides in the fact that treatment of SAMP8 mice with a transforming growth factor-alpha (TGFα) targeting molecule prevents the observed defects, positively regulating neurogenesis and improving cognitive performance. This compound facilitates the release of TGFα in vitro and in vivo and activates signaling pathways initiated by this growth factor. We conclude that compounds of this kind that stimulate neurogenesis may be useful to counteract the neurological effects of pathological aging.
{"title":"Rescue of neurogenesis and age-associated cognitive decline in SAMP8 mouse: Role of transforming growth factor-alpha","authors":"Ricardo Gómez-Oliva, Sergio Martínez-Ortega, Isabel Atienza-Navarro, Samuel Domínguez-García, Carlos Bernal-Utrera, Noelia Geribaldi-Doldán, Cristina Verástegui, Abdellah Ezzanad, Rosario Hernández-Galán, Pedro Nunez-Abades, Monica Garcia-Alloza, Carmen Castro","doi":"10.1111/acel.13829","DOIUrl":"https://doi.org/10.1111/acel.13829","url":null,"abstract":"<p>Neuropathological aging is associated with memory impairment and cognitive decline, affecting several brain areas including the neurogenic niche of the dentate gyrus of the hippocampus (DG). In the healthy brain, homeostatic mechanisms regulate neurogenesis within the DG to facilitate the continuous generation of neurons from neural stem cells (NSC). Nevertheless, aging reduces the number of activated neural stem cells and diminishes the number of newly generated neurons. Strategies that promote neurogenesis in the DG may improve cognitive performance in the elderly resulting in the development of treatments to prevent the progression of neurological disorders in the aged population. Our work is aimed at discovering targeting molecules to be used in the design of pharmacological agents that prevent the neurological effects of brain aging. We study the effect of age on hippocampal neurogenesis using the SAMP8 mouse as a model of neuropathological aging. We show that in 6-month-old SAMP8 mice, episodic and spatial memory are impaired; concomitantly, the generation of neuroblasts and neurons is reduced and the generation of astrocytes is increased in this model. The novelty of our work resides in the fact that treatment of SAMP8 mice with a transforming growth factor-alpha (TGFα) targeting molecule prevents the observed defects, positively regulating neurogenesis and improving cognitive performance. This compound facilitates the release of TGFα in vitro and in vivo and activates signaling pathways initiated by this growth factor. We conclude that compounds of this kind that stimulate neurogenesis may be useful to counteract the neurological effects of pathological aging.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 6","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5823480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donnie Cameron, David A. Reiter, Fatemeh Adelnia, Ceereena Ubaida-Mohien, Christopher M. Bergeron, Seongjin Choi, Kenneth W. Fishbein, Richard G. Spencer, Luigi Ferrucci
Diffusion-tensor magnetic resonance imaging (DT-MRI) offers objective measures of muscle characteristics, providing insights into age-related changes. We used DT-MRI to probe skeletal muscle microstructure and architecture in a large healthy-aging cohort, with the aim of characterizing age-related differences and comparing these to muscle strength. We recruited 94 participants (43 female; median age = 56, range = 22–89 years) and measured microstructure parameters—fractional anisotropy (FA) and mean diffusivity (MD)—in 12 thigh muscles, and architecture parameters—pennation angle, fascicle length, fiber curvature, and physiological cross-sectional area (PCSA)—in the rectus femoris (RF) and biceps femoris longus (BFL). Knee extension and flexion torques were also measured for comparison to architecture measures. FA and MD were associated with age (β = 0.33, p = 0.001, R2 = 0.10; and β = −0.36, p < 0.001, R2 = 0.12), and FA was negatively associated with Type I fiber proportions from the literature (β = −0.70, p = 0.024, and R2 = 0.43). Pennation angle, fiber curvature, fascicle length, and PCSA were associated with age in the RF (β = −0.22, 0.26, −0.23, and −0.31, respectively; p < 0.05), while in the BFL only curvature and fascicle length were associated with age (β = 0.36, and −0.40, respectively; p < 0.001). In the RF, pennation angle and PCSA were associated with strength (β = 0.29, and 0.46, respectively; p < 0.01); in the BFL, only PCSA was associated with strength (β = 0.43; p < 0.001). Our results show skeletal muscle architectural changes with aging and intermuscular differences in the microstructure. DT-MRI may prove useful for elucidating muscle changes in the early stages of sarcopenia and monitoring interventions aimed at preventing age-associated microstructural changes in muscle that lead to functional impairment.
{"title":"Age-related changes in human skeletal muscle microstructure and architecture assessed by diffusion-tensor magnetic resonance imaging and their association with muscle strength","authors":"Donnie Cameron, David A. Reiter, Fatemeh Adelnia, Ceereena Ubaida-Mohien, Christopher M. Bergeron, Seongjin Choi, Kenneth W. Fishbein, Richard G. Spencer, Luigi Ferrucci","doi":"10.1111/acel.13851","DOIUrl":"https://doi.org/10.1111/acel.13851","url":null,"abstract":"<p>Diffusion-tensor magnetic resonance imaging (DT-MRI) offers objective measures of muscle characteristics, providing insights into age-related changes. We used DT-MRI to probe skeletal muscle microstructure and architecture in a large healthy-aging cohort, with the aim of characterizing age-related differences and comparing these to muscle strength. We recruited 94 participants (43 female; median age = 56, range = 22–89 years) and measured microstructure parameters—fractional anisotropy (FA) and mean diffusivity (MD)—in 12 thigh muscles, and architecture parameters—pennation angle, fascicle length, fiber curvature, and physiological cross-sectional area (PCSA)—in the rectus femoris (RF) and biceps femoris longus (BFL). Knee extension and flexion torques were also measured for comparison to architecture measures. FA and MD were associated with age (<i>β</i> = 0.33, <i>p</i> = 0.001, <i>R</i><sup>2</sup> = 0.10; and <i>β</i> = −0.36, <i>p</i> < 0.001, <i>R</i><sup>2</sup> = 0.12), and FA was negatively associated with Type I fiber proportions from the literature (<i>β</i> = −0.70, <i>p</i> = 0.024, and <i>R</i><sup>2</sup> = 0.43). Pennation angle, fiber curvature, fascicle length, and PCSA were associated with age in the RF (<i>β</i> = −0.22, 0.26, −0.23, and −0.31, respectively; <i>p</i> < 0.05), while in the BFL only curvature and fascicle length were associated with age (<i>β</i> = 0.36, and −0.40, respectively; <i>p</i> < 0.001). In the RF, pennation angle and PCSA were associated with strength (<i>β</i> = 0.29, and 0.46, respectively; <i>p</i> < 0.01); in the BFL, only PCSA was associated with strength (<i>β</i> = 0.43; <i>p</i> < 0.001). Our results show skeletal muscle architectural changes with aging and intermuscular differences in the microstructure. DT-MRI may prove useful for elucidating muscle changes in the early stages of sarcopenia and monitoring interventions aimed at preventing age-associated microstructural changes in muscle that lead to functional impairment.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 7","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6191339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The old age-related loss of immune tolerance inflicts a person with a wide range of autoimmune and inflammatory diseases. Dendritic cells (DCs) are the sentinels of the immune system that maintain immune tolerance through cytokines and regulatory T-cells generation. Aging disturbs the microbial composition of the gut, causing immune system dysregulation. However, the vis-à-vis role of gut dysbiosis on DCs tolerance remains highly elusive. Consequently, we studied the influence of aging on gut dysbiosis and its impact on the loss of DC tolerance. We show that DCs generated from either the aged (DCOld) or gut-dysbiotic young (DCDysbiotic) but not young (DCYoung) mice exhibited loss of tolerance, as evidenced by their failure to optimally induce the generation of Tregs and control the overactivation of CD4+ T cells. The mechanism deciphered for the loss of DCOld and DCDysbiotic tolerance was chiefly through the overactivation of NF-κB, impaired frequency of Tregs, upregulation in the level of pro-inflammatory molecules (IL-6, IL-1β, TNF-α, IL-12, IFN-γ), and decline in the anti-inflammatory moieties (IL-10, TGF-β, IL-4, IDO, arginase, NO, IRF-4, IRF-8, PDL1, BTLA4, ALDH2). Importantly, a significant decline in the frequency of the Lactobacillus genus was noticed in the gut. Replenishing the gut of old mice with the Lactobacillus plantarum reinvigorated the tolerogenic function of DCs through the rewiring of inflammatory and metabolic pathways. Thus, for the first time, we demonstrate the impact of age-related gut dysbiosis on the loss of DC tolerance. This finding may open avenues for therapeutic intervention for treating age-associated disorders with the Lactobacillus plantarum.
{"title":"Age-mediated gut microbiota dysbiosis promotes the loss of dendritic cells tolerance","authors":"Hilal Bashir, Sanpreet Singh, Raghwendra Pratap Singh, Javed N. Agrewala, Rashmi Kumar","doi":"10.1111/acel.13838","DOIUrl":"https://doi.org/10.1111/acel.13838","url":null,"abstract":"<p>The old age-related loss of immune tolerance inflicts a person with a wide range of autoimmune and inflammatory diseases. Dendritic cells (DCs) are the sentinels of the immune system that maintain immune tolerance through cytokines and regulatory T-cells generation. Aging disturbs the microbial composition of the gut, causing immune system dysregulation. However, the <i>vis-à-vis</i> role of gut dysbiosis on DCs tolerance remains highly elusive. Consequently, we studied the influence of aging on gut dysbiosis and its impact on the loss of DC tolerance. We show that DCs generated from either the aged (DC<sup>Old</sup>) or gut-dysbiotic young (DC<sup>Dysbiotic</sup>) but not young (DC<sup>Young</sup>) mice exhibited loss of tolerance, as evidenced by their failure to optimally induce the generation of Tregs and control the overactivation of CD4<sup>+</sup> T cells. The mechanism deciphered for the loss of DC<sup>Old</sup> and DC<sup>Dysbiotic</sup> tolerance was chiefly through the overactivation of NF-κB, impaired frequency of Tregs, upregulation in the level of pro-inflammatory molecules (IL-6, IL-1β, TNF-α, IL-12, IFN-γ), and decline in the anti-inflammatory moieties (IL-10, TGF-β, IL-4, IDO, arginase, NO, IRF-4, IRF-8, PDL1, BTLA4, ALDH2). Importantly, a significant decline in the frequency of the <i>Lactobacillus</i> genus was noticed in the gut. Replenishing the gut of old mice with the <i>Lactobacillus plantarum</i> reinvigorated the tolerogenic function of DCs through the rewiring of inflammatory and metabolic pathways. Thus, for the first time, we demonstrate the impact of age-related gut dysbiosis on the loss of DC tolerance. This finding may open avenues for therapeutic intervention for treating age-associated disorders with the <i>Lactobacillus plantarum</i>.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 6","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13838","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6173254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hepatic metastasis is a clinical challenge for colorectal cancer (CRC). Senescent cancer cells accumulate in CRC favoring tumor dissemination. Whether this mechanism progresses also in metastasis is unexplored. Here, we integrated spatial transcriptomics, 3D-microscopy, and multicellular transcriptomics to study the role of cellular senescence in human colorectal liver metastasis (CRLM). We discovered two distinct senescent metastatic cancer cell (SMCC) subtypes, transcriptionally located at the opposite pole of epithelial (e) to mesenchymal (m) transition. SMCCs differ in chemotherapy susceptibility, biological program, and prognostic roles. Mechanistically, epithelial (e)SMCC initiation relies on nucleolar stress, whereby c-myc dependent oncogene hyperactivation induces ribosomal RPL11 accumulation and DNA damage response. In a 2D pre-clinical model, we demonstrated that RPL11 co-localized with HDM2, a p53-specific ubiquitin ligase, leading to senescence activation in (e)SMCCs. On the contrary, mesenchymal (m)SMCCs undergo TGFβ paracrine activation of NOX4-p15 effectors. SMCCs display opposing effects also in the immune regulation of neighboring cells, establishing an immunosuppressive environment or leading to an active immune workflow. Both SMCC signatures are predictive biomarkers whose unbalanced ratio determined the clinical outcome in CRLM and CRC patients. Altogether, we provide a comprehensive new understanding of the role of SMCCs in CRLM and highlight their potential as new therapeutic targets to limit CRLM progression.
{"title":"Spatial resolution of cellular senescence dynamics in human colorectal liver metastasis","authors":"Ombretta Garbarino, Luca Lambroia, Gianluca Basso, Veronica Marrella, Barbara Franceschini, Cristiana Soldani, Fabio Pasqualini, Desiree Giuliano, Guido Costa, Clelia Peano, Davide Barbarossa, Destro Annarita, Andreina Salvati, Luigi Terracciano, Guido Torzilli, Matteo Donadon, Francesca Faggioli","doi":"10.1111/acel.13853","DOIUrl":"https://doi.org/10.1111/acel.13853","url":null,"abstract":"<p>Hepatic metastasis is a clinical challenge for colorectal cancer (CRC). Senescent cancer cells accumulate in CRC favoring tumor dissemination. Whether this mechanism progresses also in metastasis is unexplored. Here, we integrated spatial transcriptomics, 3D-microscopy, and multicellular transcriptomics to study the role of cellular senescence in human colorectal liver metastasis (CRLM). We discovered two distinct senescent metastatic cancer cell (SMCC) subtypes, transcriptionally located at the opposite pole of epithelial (e) to mesenchymal (m) transition. SMCCs differ in chemotherapy susceptibility, biological program, and prognostic roles. Mechanistically, epithelial (e)SMCC initiation relies on nucleolar stress, whereby c-myc dependent oncogene hyperactivation induces ribosomal RPL11 accumulation and DNA damage response. In a 2D pre-clinical model, we demonstrated that RPL11 co-localized with HDM2, a p53-specific ubiquitin ligase, leading to senescence activation in (e)SMCCs. On the contrary, mesenchymal (m)SMCCs undergo TGFβ paracrine activation of NOX4-p15 effectors. SMCCs display opposing effects also in the immune regulation of neighboring cells, establishing an immunosuppressive environment or leading to an active immune workflow. Both SMCC signatures are predictive biomarkers whose unbalanced ratio determined the clinical outcome in CRLM and CRC patients. Altogether, we provide a comprehensive new understanding of the role of SMCCs in CRLM and highlight their potential as new therapeutic targets to limit CRLM progression.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 7","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13853","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5767380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caloric restriction (CR) can prolong life and ameliorate age-related diseases; thus, its molecular basis might provide new insights for finding biomarker and intervention for aging and age-related disease. Glycosylation is an important post-translational modification, which can timely reflect the changes of intracellular state. Serum N-glycosylation was found changed with aging in humans and mice. CR is widely accepted as an effective anti-aging intervention in mice and could affect mouse serum fucosylated N-glycans. However, the effect of CR on the level of global N-glycans remains unknown. In order to explore whether CR affect the level of global N-glycans, we performed a comprehensive serum glycome profiling in mice of 30% calorie restriction group and ad libitum group at 7 time points across 60 weeks by MALDI-TOF-MS. At each time point, the majority of glycans, including galactosylated and high mannose glycans, showed a consistent low level in CR group. Interestingly, O-acetylated sialoglycans presented an upward change different from other derived traits, which is mainly reflected in two biantennary α2,6-linked sialoglycans (H5N4Ge2Ac1, H5N4Ge2Ac2). Liver transcriptome analysis further revealed a decreased transcriptional level of genes involved in N-glycan biosynthesis while increased level of acetyl-CoA production. This finding is consistent with changes in serum N-glycans and O-acetylated sialic acids. Therefore, we provided one possible molecular basis for the beneficial effect of CR from N-glycosylation perspective.
{"title":"Generalized low levels of serum N-glycans associate with better health status","authors":"Jiteng Fan, Jichen Sha, Shuwai Chang, Huijuan Zhao, Xiaoyun Niu, Yong Gu, Jianxin Gu, Shifang Ren","doi":"10.1111/acel.13855","DOIUrl":"https://doi.org/10.1111/acel.13855","url":null,"abstract":"<p>Caloric restriction (CR) can prolong life and ameliorate age-related diseases; thus, its molecular basis might provide new insights for finding biomarker and intervention for aging and age-related disease. Glycosylation is an important post-translational modification, which can timely reflect the changes of intracellular state. Serum N-glycosylation was found changed with aging in humans and mice. CR is widely accepted as an effective anti-aging intervention in mice and could affect mouse serum fucosylated N-glycans. However, the effect of CR on the level of global N-glycans remains unknown. In order to explore whether CR affect the level of global N-glycans, we performed a comprehensive serum glycome profiling in mice of 30% calorie restriction group and ad libitum group at 7 time points across 60 weeks by MALDI-TOF-MS. At each time point, the majority of glycans, including galactosylated and high mannose glycans, showed a consistent low level in CR group. Interestingly, O-acetylated sialoglycans presented an upward change different from other derived traits, which is mainly reflected in two biantennary α2,6-linked sialoglycans (H5N4Ge2Ac1, H5N4Ge2Ac2). Liver transcriptome analysis further revealed a decreased transcriptional level of genes involved in N-glycan biosynthesis while increased level of acetyl-CoA production. This finding is consistent with changes in serum N-glycans and O-acetylated sialic acids. Therefore, we provided one possible molecular basis for the beneficial effect of CR from N-glycosylation perspective.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 7","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13855","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6036799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tsung-Po Lai, Simon Verhulst, Sharon A. Savage, Shahinaz M. Gadalla, Athanase Benetos, Simon Toupance, Pam Factor-Litvak, Ezra Susser, Abraham Aviv
Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere-Shortest-Length-Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age-dependent buildup of short telomeres (<3 kb) in human hematopoietic cells from 334 individuals (birth-89 years) from the general population, and 18 patients with dyskeratosis congenita-telomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in patients with DC/TBDs. At any age, mean TL was longer and the proportion of short telomeres lower in females than in males. We conclude that though converging to the TL-mediated replicative limit, hematopoietic cell telomeres are unlikely to reach this limit during the lifespan of most contemporary humans.
{"title":"Buildup from birth onward of short telomeres in human hematopoietic cells","authors":"Tsung-Po Lai, Simon Verhulst, Sharon A. Savage, Shahinaz M. Gadalla, Athanase Benetos, Simon Toupance, Pam Factor-Litvak, Ezra Susser, Abraham Aviv","doi":"10.1111/acel.13844","DOIUrl":"https://doi.org/10.1111/acel.13844","url":null,"abstract":"<p>Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere-Shortest-Length-Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age-dependent buildup of short telomeres (<3 kb) in human hematopoietic cells from 334 individuals (birth-89 years) from the general population, and 18 patients with dyskeratosis congenita-telomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in patients with DC/TBDs. At any age, mean TL was longer and the proportion of short telomeres lower in females than in males. We conclude that though converging to the TL-mediated replicative limit, hematopoietic cell telomeres are unlikely to reach this limit during the lifespan of most contemporary humans.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 6","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6078339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick Sch?del, Anna Czapka, Nadja Gebert, Ilse Denise Jacobsen, Alessandro Ori, Oliver Werz
Macrophages adapt distinct pro-inflammatory (M1-like) and pro-resolving (M2-like) phenotypes with specific tasks in the immune response and tissue homeostasis. Altered macrophage responses with age are causative for unresolved inflammation, so-called inflammaging, and lead to higher infection susceptibility with unfavorable progression. Here, we reveal molecular determinants of age-related changes in phenotypic functions of murine peritoneal macrophages (PM) by employing comprehensive mass spectrometry-based proteomics (4746 protein groups) and metabololipidomics (>40 lipid mediators). Divergent expression of various macrophage-specific marker proteins and signaling pathways indicates aberrant PM phenotypes in old mice which detrimentally impact their capabilities to release immunomodulatory chemokines and cytokines. We show that aging strikingly compromises the polarization process of macrophages to adapt either pro-inflammatory or pro-resolving phenotypes, thereby yielding aberrant and afunctional macrophage subtypes that cannot be readily assigned to either a typical M1 or M2 phenotype. In particular, the phenotypic adaptation of the bacteria-challenged metabololipidome in macrophages related to inflammation is severely limited by age, which persists across ex vivo polarization towards M1 and M2a macrophages. Our results establish distinct age-associated PM phenotypes outside of the simplified M1 and M2 dichotomy and challenge the dogma of increased pro-inflammatory macrophage pre-activation due to aging by revealing maladaptive functions throughout all phases of inflammation, including resolution.
{"title":"Metabololipidomic and proteomic profiling reveals aberrant macrophage activation and interrelated immunomodulatory mediator release during aging","authors":"Patrick Sch?del, Anna Czapka, Nadja Gebert, Ilse Denise Jacobsen, Alessandro Ori, Oliver Werz","doi":"10.1111/acel.13856","DOIUrl":"https://doi.org/10.1111/acel.13856","url":null,"abstract":"<p>Macrophages adapt distinct pro-inflammatory (M1-like) and pro-resolving (M2-like) phenotypes with specific tasks in the immune response and tissue homeostasis. Altered macrophage responses with age are causative for unresolved inflammation, so-called inflammaging, and lead to higher infection susceptibility with unfavorable progression. Here, we reveal molecular determinants of age-related changes in phenotypic functions of murine peritoneal macrophages (PM) by employing comprehensive mass spectrometry-based proteomics (4746 protein groups) and metabololipidomics (>40 lipid mediators). Divergent expression of various macrophage-specific marker proteins and signaling pathways indicates aberrant PM phenotypes in old mice which detrimentally impact their capabilities to release immunomodulatory chemokines and cytokines. We show that aging strikingly compromises the polarization process of macrophages to adapt either pro-inflammatory or pro-resolving phenotypes, thereby yielding aberrant and afunctional macrophage subtypes that cannot be readily assigned to either a typical M1 or M2 phenotype. In particular, the phenotypic adaptation of the bacteria-challenged metabololipidome in macrophages related to inflammation is severely limited by age, which persists across ex vivo polarization towards M1 and M2a macrophages. Our results establish distinct age-associated PM phenotypes outside of the simplified M1 and M2 dichotomy and challenge the dogma of increased pro-inflammatory macrophage pre-activation due to aging by revealing maladaptive functions throughout all phases of inflammation, including resolution.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 7","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13856","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5812561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu He, Yimeng Chen, Suzhen Lin, Ruinan Shen, Hong Pan, Yifan Zhou, Ying Wang, Shengdi Chen, Jianqing Ding
Decreased DJ-1 protein impairs antioxidative activity of neurons and plays an important role in the occurrence of Parkinson's disease (PD). We have previously identified hsa-miR-4639-5p as the post-transcriptional regulator of DJ-1. Increased expression of hsa-miR-4639-5p reduced DJ-1 level and increased oxidative stress leading to neuronal death. Therefore, understanding the detailed mechanisms by which hsa-miR-4639-5p expression is regulated will not only facilitate diagnosis but also inform the pathogenesis of PD. We examined hsa-miR-4639-5 in either the plasma or exosomes derived from the central nervous system (CNS) neurons of PD patients and healthy controls. We showed that CNS-derived exosomes gave rise to the increased plasma hsa-miR-4639-5p in PD patients, pointing to hsa-miR-4639-5p dysregulation in the brain of PD patients. Using a dual-luciferase assay and a CRISPR-Cas9 system, we identified a core promoter of hsa-miR-4639 (−560 to −275 upstream the transcriptional starting site) of the gene for myosin regulatory light chain interacting protein. A polymorphism in the core promoter (rs760632 G>A) could enhance hsa-miR-4639-5p expression and increase PD risk. Furthermore, using MethylTarget™ assay, ChIP-qPCR, and specific inhibitors, we demonstrated that hsa-miR4639-5p expression was regulated by HDAC11-mediated histone acetylation but not DNA methylation/demethylation. Taken together, our study provides evidence that hsa-miR-4639-5p is a potential diagnostic marker and therapeutic target for PD. Interventions targeting hsa-miR-4639-5p might represent a novel therapy to promote healthy aging.
{"title":"Regulation of Hsa-miR-4639-5p expression and its potential role in the pathogenesis of Parkinson's disease","authors":"Lu He, Yimeng Chen, Suzhen Lin, Ruinan Shen, Hong Pan, Yifan Zhou, Ying Wang, Shengdi Chen, Jianqing Ding","doi":"10.1111/acel.13840","DOIUrl":"https://doi.org/10.1111/acel.13840","url":null,"abstract":"<p>Decreased DJ-1 protein impairs antioxidative activity of neurons and plays an important role in the occurrence of Parkinson's disease (PD). We have previously identified hsa-miR-4639-5p as the post-transcriptional regulator of DJ-1. Increased expression of hsa-miR-4639-5p reduced DJ-1 level and increased oxidative stress leading to neuronal death. Therefore, understanding the detailed mechanisms by which hsa-miR-4639-5p expression is regulated will not only facilitate diagnosis but also inform the pathogenesis of PD. We examined hsa-miR-4639-5 in either the plasma or exosomes derived from the central nervous system (CNS) neurons of PD patients and healthy controls. We showed that CNS-derived exosomes gave rise to the increased plasma hsa-miR-4639-5p in PD patients, pointing to hsa-miR-4639-5p dysregulation in the brain of PD patients. Using a dual-luciferase assay and a CRISPR-Cas9 system, we identified a core promoter of hsa-miR-4639 (−560 to −275 upstream the transcriptional starting site) of the gene for myosin regulatory light chain interacting protein. A polymorphism in the core promoter (rs760632 G>A) could enhance hsa-miR-4639-5p expression and increase PD risk. Furthermore, using MethylTarget™ assay, ChIP-qPCR, and specific inhibitors, we demonstrated that hsa-miR4639-5p expression was regulated by HDAC11-mediated histone acetylation but not DNA methylation/demethylation. Taken together, our study provides evidence that hsa-miR-4639-5p is a potential diagnostic marker and therapeutic target for PD. Interventions targeting hsa-miR-4639-5p might represent a novel therapy to promote healthy aging.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 6","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13840","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6046518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hemant Srivastava, Alexander Tate Lasher, Akash Nagarajan, Liou Y. Sun
Alzheimer's disease (AD), a prevalent form of dementia, is characterized by the decline of cognitive abilities with age. Available treatment options for AD are limited, making it a significant public health concern. Recent research suggests that metabolic dysfunction plays a role in the development of AD. In addition, insulin therapy has been shown to improve memory in patients with cognitive decline. In this study, we report the first examination of body composition, peripheral insulin sensitivity, and glucose tolerance in relation to behavioral assessments of learning, memory, and anxiety in the TgF344-AD rat model of AD. Results from glucose and insulin tolerance tests show that female TgF344-AD rats exhibit impaired glucose clearance and reduced insulin sensitivity at both 9 and 12 months of age, while males display no differences at 9 months and even improved glucose clearance at 12 months. Results from the Morris Water Maze assessment of learning and memory reveal that male TgF344-AD rats display impairments at both 9 and 12 months of age, while female TgF344-AD rats only show impairments at 12 months. Furthermore, results from open field and elevated plus maze tests suggest that female TgF344-AD rats display increased anxiety at 9 months of age; however, no differences were detected in males or at 12 months of age. Overall, our findings suggest that impairments in metabolism, commonly associated with type 2 diabetes, occur before or simultaneously with cognitive decline and anxiety in a sexually dimorphic manner in the TgF344-AD rat model.
{"title":"Sexual dimorphism in the peripheral metabolic homeostasis and behavior in the TgF344-AD rat model of Alzheimer's disease","authors":"Hemant Srivastava, Alexander Tate Lasher, Akash Nagarajan, Liou Y. Sun","doi":"10.1111/acel.13854","DOIUrl":"https://doi.org/10.1111/acel.13854","url":null,"abstract":"<p>Alzheimer's disease (AD), a prevalent form of dementia, is characterized by the decline of cognitive abilities with age. Available treatment options for AD are limited, making it a significant public health concern. Recent research suggests that metabolic dysfunction plays a role in the development of AD. In addition, insulin therapy has been shown to improve memory in patients with cognitive decline. In this study, we report the first examination of body composition, peripheral insulin sensitivity, and glucose tolerance in relation to behavioral assessments of learning, memory, and anxiety in the TgF344-AD rat model of AD. Results from glucose and insulin tolerance tests show that female TgF344-AD rats exhibit impaired glucose clearance and reduced insulin sensitivity at both 9 and 12 months of age, while males display no differences at 9 months and even improved glucose clearance at 12 months. Results from the Morris Water Maze assessment of learning and memory reveal that male TgF344-AD rats display impairments at both 9 and 12 months of age, while female TgF344-AD rats only show impairments at 12 months. Furthermore, results from open field and elevated plus maze tests suggest that female TgF344-AD rats display increased anxiety at 9 months of age; however, no differences were detected in males or at 12 months of age. Overall, our findings suggest that impairments in metabolism, commonly associated with type 2 diabetes, occur before or simultaneously with cognitive decline and anxiety in a sexually dimorphic manner in the TgF344-AD rat model.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 7","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13854","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5784485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}