Johan K. Lassen, Tingting Wang, Kirstine L. Nielsen, J?rgen B. Hasselstr?m, Mogens Johannsen, Palle Villesen
Untargeted metabolomics is the study of all detectable small molecules, and in geroscience, metabolomics has shown great potential to describe the biological age—a complex trait impacted by many factors. Unfortunately, the sample sizes are often insufficient to achieve sufficient power and minimize potential biases caused by, for example, demographic factors. In this study, we present the analysis of biological age in ~10,000 toxicologic routine blood measurements. The untargeted screening samples obtained from ultra-high pressure liquid chromatography-quadruple time of flight mass spectrometry (UHPLC- QTOF) cover + 300 batches and + 30 months, lack pooled quality controls, lack controlled sample collection, and has previously only been used in small-scale studies. To overcome experimental effects, we developed and tested a custom neural network model and compared it with existing prediction methods. Overall, the neural network was able to predict the chronological age with an rmse of 5.88 years (r2 = 0.63) improving upon the 6.15 years achieved by existing normalization methods. We used the feature importance algorithm, Shapley Additive exPlanations (SHAP), to identify compounds related to the biological age. Most importantly, the model returned known aging markers such as kynurenine, indole-3-aldehyde, and acylcarnitines along with a potential novel aging marker, cyclo (leu-pro). Our results validate the association of tryptophan and acylcarnitine metabolism to aging in a highly uncontrolled large-s cale sample. Also, we have shown that by using robust computational methods it is possible to deploy large LC-MS datasets for metabolomics studies to reduce the risk of bias and empower aging studies.
{"title":"Large-Scale metabolomics: Predicting biological age using 10,133 routine untargeted LC–MS measurements","authors":"Johan K. Lassen, Tingting Wang, Kirstine L. Nielsen, J?rgen B. Hasselstr?m, Mogens Johannsen, Palle Villesen","doi":"10.1111/acel.13813","DOIUrl":"https://doi.org/10.1111/acel.13813","url":null,"abstract":"<p>Untargeted metabolomics is the study of all detectable small molecules, and in geroscience, metabolomics has shown great potential to describe the biological age—a complex trait impacted by many factors. Unfortunately, the sample sizes are often insufficient to achieve sufficient power and minimize potential biases caused by, for example, demographic factors. In this study, we present the analysis of biological age in ~10,000 toxicologic routine blood measurements. The untargeted screening samples obtained from ultra-high pressure liquid chromatography-quadruple time of flight mass spectrometry (UHPLC- QTOF) cover + 300 batches and + 30 months, lack pooled quality controls, lack controlled sample collection, and has previously only been used in small-scale studies. To overcome experimental effects, we developed and tested a custom neural network model and compared it with existing prediction methods. Overall, the neural network was able to predict the chronological age with an rmse of 5.88 years (<i>r</i><sup><i>2</i></sup> = 0.63) improving upon the 6.15 years achieved by existing normalization methods. We used the feature importance algorithm, Shapley Additive exPlanations (SHAP), to identify compounds related to the biological age. Most importantly, the model returned known aging markers such as kynurenine, indole-3-aldehyde, and acylcarnitines along with a potential novel aging marker, cyclo (leu-pro). Our results validate the association of tryptophan and acylcarnitine metabolism to aging in a highly uncontrolled large-s cale sample. Also, we have shown that by using robust computational methods it is possible to deploy large LC-MS datasets for metabolomics studies to reduce the risk of bias and empower aging studies.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 5","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13813","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5730977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The quantification of the biological age of cells yields great promises for accelerating the discovery of novel rejuvenation strategies. Here, we present MultiTIMER, the first multi-tissue aging clock that measures the biological, rather than chronological, age of cells from their transcriptional profiles by evaluating key cellular processes. We applied MultiTIMER to more than 70,000 transcriptional profiles and demonstrate that it accurately responds to cellular stressors and known interventions while informing about dysregulated cellular functions.
{"title":"Measuring biological age using a functionally interpretable multi-tissue RNA clock","authors":"Sascha Jung, Javier Arcos?Hodar, Antonio del?Sol","doi":"10.1111/acel.13799","DOIUrl":"https://doi.org/10.1111/acel.13799","url":null,"abstract":"<p>The quantification of the biological age of cells yields great promises for accelerating the discovery of novel rejuvenation strategies. Here, we present MultiTIMER, the first multi-tissue aging clock that measures the biological, rather than chronological, age of cells from their transcriptional profiles by evaluating key cellular processes. We applied MultiTIMER to more than 70,000 transcriptional profiles and demonstrate that it accurately responds to cellular stressors and known interventions while informing about dysregulated cellular functions.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 5","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13799","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5673705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deng Wu, Xiaoman Bi, Peihu Li, Dahua Xu, Jianmin Qiu, Kongning Li, Shaojiang Zheng, Kim Hei-Man Chow
The immune system plays a central role in many processes of age-related disorders and it remains unclear if the innate immune system may play roles in shaping extreme longevity. By an integrated analysis with multiple bulk and single cell transcriptomic, so as DNA methylomic datasets of white blood cells, a previously unappreciated yet commonly activated status of the innate monocyte phagocytic activities is identified. Detailed analyses revealed that the life cycle of these monocytes is enhanced and primed to a M2-like macrophage phenotype. Functional characterization unexpectedly revealed an insulin-driven immunometabolic network which supports multiple aspects of phagocytosis. Such reprogramming is associated to a skewed trend of DNA demethylation at the promoter regions of multiple phagocytic genes, so as a direct transcriptional effect induced by nuclear-localized insulin receptor. Together, these highlighted that preservation of insulin sensitivity is a key to healthy lifespan and extended longevity, via boosting the function of innate immune system in advanced ages.
{"title":"Enhanced insulin-regulated phagocytic activities support extreme health span and longevity in multiple populations","authors":"Deng Wu, Xiaoman Bi, Peihu Li, Dahua Xu, Jianmin Qiu, Kongning Li, Shaojiang Zheng, Kim Hei-Man Chow","doi":"10.1111/acel.13810","DOIUrl":"https://doi.org/10.1111/acel.13810","url":null,"abstract":"<p>The immune system plays a central role in many processes of age-related disorders and it remains unclear if the innate immune system may play roles in shaping extreme longevity. By an integrated analysis with multiple bulk and single cell transcriptomic, so as DNA methylomic datasets of white blood cells, a previously unappreciated yet commonly activated status of the innate monocyte phagocytic activities is identified. Detailed analyses revealed that the life cycle of these monocytes is enhanced and primed to a M2-like macrophage phenotype. Functional characterization unexpectedly revealed an insulin-driven immunometabolic network which supports multiple aspects of phagocytosis. Such reprogramming is associated to a skewed trend of DNA demethylation at the promoter regions of multiple phagocytic genes, so as a direct transcriptional effect induced by nuclear-localized insulin receptor. Together, these highlighted that preservation of insulin sensitivity is a key to healthy lifespan and extended longevity, via boosting the function of innate immune system in advanced ages.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 5","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13810","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6154298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyo Min Kim, Shinheun Kim, Jueun Sim, Boo Soo Ma, Insung Yong, Youngmin Jo, Taek-Soo Kim, Jae-Byum Chang, Sung-Hye Park, Yong Jeong, Pilnam Kim
Collagen is a prominent target of nonenzymatic glycation, which is a hallmark of aging and causes functional alteration of the matrix. Here, we uncover glycation-mediated structural and functional changes in the collagen-enriched meningeal membrane of the human and mouse brain. Using an in vitro culture platform mimicking the meningeal membrane composed of fibrillar collagen, we showed that the accumulation of advanced glycation end products (AGEs) in the collagen membrane is responsible for glycation-mediated matrix remodeling. These changes influence fibroblast-matrix interactions, inducing cell-mediated ECM remodeling. The adherence of meningeal fibroblasts to the glycated collagen membrane was mediated by the discoidin domain-containing receptor 2 (DDR2), whereas integrin-mediated adhesion was inhibited. A-kinase anchoring protein 12 (AKAP12)-positive meningeal fibroblasts in the meningeal membrane of aged mice exhibited substantially increased expression of DDR2 and depletion of integrin beta-1 (ITGB1). In the glycated collagen membrane, meningeal fibroblasts increased the expression of matrix metalloproteinase 14 (MMP14) and less tissue inhibitor of metalloproteinase-1 (TIMP1). In contrast, the cells exhibited decreased expression of type I collagen (COL1A1). These results suggest that glycation modification by meningeal fibroblasts is intimately linked to aging-related structural and functional alterations in the meningeal membrane.
{"title":"Glycation-mediated tissue-level remodeling of brain meningeal membrane by aging","authors":"Hyo Min Kim, Shinheun Kim, Jueun Sim, Boo Soo Ma, Insung Yong, Youngmin Jo, Taek-Soo Kim, Jae-Byum Chang, Sung-Hye Park, Yong Jeong, Pilnam Kim","doi":"10.1111/acel.13805","DOIUrl":"https://doi.org/10.1111/acel.13805","url":null,"abstract":"<p>Collagen is a prominent target of nonenzymatic glycation, which is a hallmark of aging and causes functional alteration of the matrix. Here, we uncover glycation-mediated structural and functional changes in the collagen-enriched meningeal membrane of the human and mouse brain. Using an in vitro culture platform mimicking the meningeal membrane composed of fibrillar collagen, we showed that the accumulation of advanced glycation end products (AGEs) in the collagen membrane is responsible for glycation-mediated matrix remodeling. These changes influence fibroblast-matrix interactions, inducing cell-mediated ECM remodeling. The adherence of meningeal fibroblasts to the glycated collagen membrane was mediated by the discoidin domain-containing receptor 2 (<i>DDR2</i>), whereas integrin-mediated adhesion was inhibited. A-kinase anchoring protein 12 (AKAP12)-positive meningeal fibroblasts in the meningeal membrane of aged mice exhibited substantially increased expression of <i>DDR2</i> and depletion of integrin beta-1 (<i>ITGB1</i>). In the glycated collagen membrane, meningeal fibroblasts increased the expression of matrix metalloproteinase 14 (<i>MMP14</i>) and less tissue inhibitor of metalloproteinase-1 (<i>TIMP1</i>). In contrast, the cells exhibited decreased expression of type I collagen (<i>COL1A1</i>). These results suggest that glycation modification by meningeal fibroblasts is intimately linked to aging-related structural and functional alterations in the meningeal membrane.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 5","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13805","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5846643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiuli Dan, Beimeng Yang, Ross A. McDevitt, Samuel Gray, Xixia Chu, Quia Claybourne, David M. Figueroa, Yongqing Zhang, Deborah L. Croteau, Vilhelm A. Bohr
Olfactory dysfunction is a prevalent symptom and an early marker of age-related neurodegenerative diseases in humans, including Alzheimer's and Parkinson's Diseases. However, as olfactory dysfunction is also a common symptom of normal aging, it is important to identify associated behavioral and mechanistic changes that underlie olfactory dysfunction in nonpathological aging. In the present study, we systematically investigated age-related behavioral changes in four specific domains of olfaction and the molecular basis in C57BL/6J mice. Our results showed that selective loss of odor discrimination was the earliest smelling behavioral change with aging, followed by a decline in odor sensitivity and detection while odor habituation remained in old mice. Compared to behavioral changes related with cognitive and motor functions, smelling loss was among the earliest biomarkers of aging. During aging, metabolites related with oxidative stress, osmolytes, and infection became dysregulated in the olfactory bulb, and G protein coupled receptor-related signaling was significantly down regulated in olfactory bulbs of aged mice. Poly ADP-ribosylation levels, protein expression of DNA damage markers, and inflammation increased significantly in the olfactory bulb of older mice. Lower NAD+ levels were also detected. Supplementation of NAD+ through NR in water improved longevity and partially enhanced olfaction in aged mice. Our studies provide mechanistic and biological insights into the olfaction decline during aging and highlight the role of NAD+ for preserving smelling function and general health.
{"title":"Loss of smelling is an early marker of aging and is associated with inflammation and DNA damage in C57BL/6J mice","authors":"Xiuli Dan, Beimeng Yang, Ross A. McDevitt, Samuel Gray, Xixia Chu, Quia Claybourne, David M. Figueroa, Yongqing Zhang, Deborah L. Croteau, Vilhelm A. Bohr","doi":"10.1111/acel.13793","DOIUrl":"https://doi.org/10.1111/acel.13793","url":null,"abstract":"<p>Olfactory dysfunction is a prevalent symptom and an early marker of age-related neurodegenerative diseases in humans, including Alzheimer's and Parkinson's Diseases. However, as olfactory dysfunction is also a common symptom of normal aging, it is important to identify associated behavioral and mechanistic changes that underlie olfactory dysfunction in nonpathological aging. In the present study, we systematically investigated age-related behavioral changes in four specific domains of olfaction and the molecular basis in C57BL/6J mice. Our results showed that selective loss of odor discrimination was the earliest smelling behavioral change with aging, followed by a decline in odor sensitivity and detection while odor habituation remained in old mice. Compared to behavioral changes related with cognitive and motor functions, smelling loss was among the earliest biomarkers of aging. During aging, metabolites related with oxidative stress, osmolytes, and infection became dysregulated in the olfactory bulb, and G protein coupled receptor-related signaling was significantly down regulated in olfactory bulbs of aged mice. Poly ADP-ribosylation levels, protein expression of DNA damage markers, and inflammation increased significantly in the olfactory bulb of older mice. Lower NAD<sup>+</sup> levels were also detected. Supplementation of NAD<sup>+</sup> through NR in water improved longevity and partially enhanced olfaction in aged mice. Our studies provide mechanistic and biological insights into the olfaction decline during aging and highlight the role of NAD<sup>+</sup> for preserving smelling function and general health.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 4","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13793","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5846523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lihong Sheng, Emily J. Shields, Janko Gospocic, Masato Sorida, Linyang Ju, China N. Byrns, Faith Carranza, Shelley L. Berger, Nancy Bonini, Roberto Bonasio
Glia have an emergent role in brain aging and disease. In the Drosophila melanogaster brain, ensheathing glia function as phagocytic cells and respond to acute neuronal damage, analogous to mammalian microglia. We previously reported changes in glia composition over the life of ants and fruit flies, including a decline in the relative proportion of ensheathing glia with time. How these changes influence brain health and life expectancy is unknown. Here, we show that ensheathing glia but not astrocytes decrease in number during Drosophila melanogaster brain aging. The remaining ensheathing glia display dysregulated expression of genes involved in lipid metabolism and apoptosis, which may lead to lipid droplet accumulation, cellular dysfunction, and death. Inhibition of apoptosis rescued the decline of ensheathing glia with age, improved the neuromotor performance of aged flies, and extended lifespan. Furthermore, an expanded ensheathing glia population prevented amyloid-beta accumulation in a fly model of Alzheimer's disease and delayed the premature death of the diseased animals. These findings suggest that ensheathing glia play a vital role in regulating brain health and animal longevity.
{"title":"Ensheathing glia promote increased lifespan and healthy brain aging","authors":"Lihong Sheng, Emily J. Shields, Janko Gospocic, Masato Sorida, Linyang Ju, China N. Byrns, Faith Carranza, Shelley L. Berger, Nancy Bonini, Roberto Bonasio","doi":"10.1111/acel.13803","DOIUrl":"https://doi.org/10.1111/acel.13803","url":null,"abstract":"<p>Glia have an emergent role in brain aging and disease. In the <i>Drosophila melanogaster</i> brain, ensheathing glia function as phagocytic cells and respond to acute neuronal damage, analogous to mammalian microglia. We previously reported changes in glia composition over the life of ants and fruit flies, including a decline in the relative proportion of ensheathing glia with time. How these changes influence brain health and life expectancy is unknown. Here, we show that ensheathing glia but not astrocytes decrease in number during <i>Drosophila melanogaster</i> brain aging. The remaining ensheathing glia display dysregulated expression of genes involved in lipid metabolism and apoptosis, which may lead to lipid droplet accumulation, cellular dysfunction, and death. Inhibition of apoptosis rescued the decline of ensheathing glia with age, improved the neuromotor performance of aged flies, and extended lifespan. Furthermore, an expanded ensheathing glia population prevented amyloid-beta accumulation in a fly model of Alzheimer's disease and delayed the premature death of the diseased animals. These findings suggest that ensheathing glia play a vital role in regulating brain health and animal longevity.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 5","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13803","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5787831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sudipta Panja, Rooban B. Nahomi, Johanna Rankenberg, Cole R. Michel, Hanmant Gaikwad, Mi-Hyun Nam, Ram H. Nagaraj
Aging proteins in the lens become increasingly aggregated and insoluble, contributing to presbyopia. In this study, we investigated the ability of aggrelyte-2 (N,S-diacetyl-L-cysteine methyl ester) to reverse the water insolubility of aged human lens proteins and to decrease stiffness in cultured human and mouse lenses. Water-insoluble proteins (WI) of aged human lenses (65–75 years) were incubated with aggrelyte-2 (500 μM) for 24 or 48 h. A control compound that lacked the S-acetyl group (aggrelyte-2C) was also tested. We observed 19%–30% solubility of WI upon treatment with aggrelyte-2. Aggrelyte-2C also increased protein solubility, but its effect was approximately 1.4-fold lower than that of aggrelyte-2. The protein thiol contents were 1.9- to 4.9-fold higher in the aggrelyte-2- and aggrelyte-2C-treated samples than in the untreated samples. The LC–MS/MS results showed Nε-acetyllysine (AcK) levels of 1.5 to 2.1 nmol/mg protein and 0.6 to 0.9 nmol/mg protein in the aggrelyte-2- and aggrelyte-2C-treated samples. Mouse (C57BL/6J) lenses (incubated for 24 h) and human lenses (incubated for 72 h) with 1.0 mM aggrelyte-2 showed significant decreases in stiffness with simultaneous increases in soluble proteins (human lenses) and protein-AcK levels, and such changes were not observed in aggrelyte-2C-treated lenses. Mass spectrometry of the solubilized protein revealed AcK in all crystallins, but more was observed in α-crystallins. These results suggest that aggrelyte-2 increases protein solubility and decreases lens stiffness through acetylation and disulfide reduction. Aggrelyte-2 might be useful in treating presbyopia in humans.
{"title":"Aggrelyte-2 promotes protein solubility and decreases lens stiffness through lysine acetylation and disulfide reduction: Implications for treating presbyopia","authors":"Sudipta Panja, Rooban B. Nahomi, Johanna Rankenberg, Cole R. Michel, Hanmant Gaikwad, Mi-Hyun Nam, Ram H. Nagaraj","doi":"10.1111/acel.13797","DOIUrl":"https://doi.org/10.1111/acel.13797","url":null,"abstract":"<p>Aging proteins in the lens become increasingly aggregated and insoluble, contributing to presbyopia. In this study, we investigated the ability of aggrelyte-2 (N,S-diacetyl-L-cysteine methyl ester) to reverse the water insolubility of aged human lens proteins and to decrease stiffness in cultured human and mouse lenses. Water-insoluble proteins (WI) of aged human lenses (65–75 years) were incubated with aggrelyte-2 (500 μM) for 24 or 48 h. A control compound that lacked the S-acetyl group (aggrelyte-2C) was also tested. We observed 19%–30% solubility of WI upon treatment with aggrelyte-2. Aggrelyte-2C also increased protein solubility, but its effect was approximately 1.4-fold lower than that of aggrelyte-2. The protein thiol contents were 1.9- to 4.9-fold higher in the aggrelyte-2- and aggrelyte-2C-treated samples than in the untreated samples. The LC–MS/MS results showed <i>N</i><sup><i>ε</i></sup>-acetyllysine (AcK) levels of 1.5 to 2.1 nmol/mg protein and 0.6 to 0.9 nmol/mg protein in the aggrelyte-2- and aggrelyte-2C-treated samples. Mouse (C57BL/6J) lenses (incubated for 24 h) and human lenses (incubated for 72 h) with 1.0 mM aggrelyte-2 showed significant decreases in stiffness with simultaneous increases in soluble proteins (human lenses) and protein-AcK levels, and such changes were not observed in aggrelyte-2C-treated lenses. Mass spectrometry of the solubilized protein revealed AcK in all crystallins, but more was observed in α-crystallins. These results suggest that aggrelyte-2 increases protein solubility and decreases lens stiffness through acetylation and disulfide reduction. Aggrelyte-2 might be useful in treating presbyopia in humans.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 4","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13797","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5786054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Kasim Fatmi, Di Ren, Julia Fedorova, Linda Ines Zoungrana, Hao Wang, Kayla Davitt, Zehui Li, Migdalia Iglesias, Edward J. Lesnefsky, Meredith Krause-Hauch, Ji Li
Ischemic heart disease (IHD) is the leading cause of death, with age range being the primary factor for development. The mechanisms by which aging increases vulnerability to ischemic insult are not well understood. We aim to use single-cell RNA sequencing to discover transcriptional differences in various cell types between aged and young mice, which may contribute to aged-related vulnerability to ischemic insult. Utilizing 10× Genomics Single-Cell RNA sequencing, we were able to complete bioinformatic analysis to identity novel differential gene expression. During the analysis of our collected samples, we detected Pyruvate Dehydrogenase Kinase 4 (Pdk4) expression to be remarkably differentially expressed. Particularly in cardiomyocyte cell populations, Pdk4 was found to be significantly upregulated in the young mouse population compared to the aged mice under ischemic/reperfusion conditions. Pdk4 is responsible for inhibiting the enzyme pyruvate dehydrogenase, resulting in the regulation of glucose metabolism. Due to decreased Pdk4 expression in aged cardiomyocytes, there may be an increased reliance on glucose oxidization for energy. Through biochemical metabolomics analysis, it was observed that there is a greater abundance of pyruvate in young hearts in contrast to their aged counterparts, indicating less glycolytic activity. We believe that Pdk4 response provides valuable insight towards mechanisms that allow for the young heart to handle ischemic insult stress more effectively than the aged heart.
{"title":"Cardiomyocyte Pdk4 response is associated with metabolic maladaptation in aging","authors":"Mohammad Kasim Fatmi, Di Ren, Julia Fedorova, Linda Ines Zoungrana, Hao Wang, Kayla Davitt, Zehui Li, Migdalia Iglesias, Edward J. Lesnefsky, Meredith Krause-Hauch, Ji Li","doi":"10.1111/acel.13800","DOIUrl":"https://doi.org/10.1111/acel.13800","url":null,"abstract":"<p>Ischemic heart disease (IHD) is the leading cause of death, with age range being the primary factor for development. The mechanisms by which aging increases vulnerability to ischemic insult are not well understood. We aim to use single-cell RNA sequencing to discover transcriptional differences in various cell types between aged and young mice, which may contribute to aged-related vulnerability to ischemic insult. Utilizing 10× Genomics Single-Cell RNA sequencing, we were able to complete bioinformatic analysis to identity novel differential gene expression. During the analysis of our collected samples, we detected Pyruvate Dehydrogenase Kinase 4 (Pdk4) expression to be remarkably differentially expressed. Particularly in cardiomyocyte cell populations, Pdk4 was found to be significantly upregulated in the young mouse population compared to the aged mice under ischemic/reperfusion conditions. Pdk4 is responsible for inhibiting the enzyme pyruvate dehydrogenase, resulting in the regulation of glucose metabolism. Due to decreased Pdk4 expression in aged cardiomyocytes, there may be an increased reliance on glucose oxidization for energy. Through biochemical metabolomics analysis, it was observed that there is a greater abundance of pyruvate in young hearts in contrast to their aged counterparts, indicating less glycolytic activity. We believe that Pdk4 response provides valuable insight towards mechanisms that allow for the young heart to handle ischemic insult stress more effectively than the aged heart.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 4","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13800","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5683141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cui Zhu, Duilio M. Potenza, Yang Yang, Guillaume Ajalbert, Kirsten D. Mertz, Stephan von Gunten, Xiu-Fen Ming, Zhihong Yang
Elevated arginases including type-I (Arg-I) and type-II isoenzyme (Arg-II) are reported to play a role in aging, age-associated organ inflammaging, and fibrosis. A role of arginase in pulmonary aging and underlying mechanisms are not explored. Our present study shows increased Arg-II levels in aging lung of female mice, which is detected in bronchial ciliated epithelium, club cells, alveolar type 2 (AT2) pneumocytes, and fibroblasts (but not vascular endothelial and smooth muscle cells). Similar cellular localization of Arg-II is also observed in human lung biopsies. The age-associated increase in lung fibrosis and inflammatory cytokines, including IL-1β and TGF-β1 that are highly expressed in bronchial epithelium, AT2 cells, and fibroblasts, are ameliorated in arg-ii deficient (arg-ii−/−) mice. The effects of arg-ii−/− on lung inflammaging are weaker in male as compared to female animals. Conditioned medium (CM) from human Arg-II-positive bronchial and alveolar epithelial cells, but not that from arg-ii−/− cells, activates fibroblasts to produce various cytokines including TGF-β1 and collagen, which is abolished by IL-1β receptor antagonist or TGF-β type I receptor blocker. Conversely, TGF-β1 or IL-1β also increases Arg-II expression. In the mouse models, we confirmed the age-associated increase in IL-1β and TGF-β1 in epithelial cells and activation of fibroblasts, which is inhibited in arg-ii−/− mice. Taken together, our study demonstrates a critical role of epithelial Arg-II in activation of pulmonary fibroblasts via paracrine release of IL-1β and TGF-β1, contributing to pulmonary inflammaging and fibrosis. The results provide a novel mechanistic insight in the role of Arg-II in pulmonary aging.
{"title":"Role of pulmonary epithelial arginase-II in activation of fibroblasts and lung inflammaging","authors":"Cui Zhu, Duilio M. Potenza, Yang Yang, Guillaume Ajalbert, Kirsten D. Mertz, Stephan von Gunten, Xiu-Fen Ming, Zhihong Yang","doi":"10.1111/acel.13790","DOIUrl":"https://doi.org/10.1111/acel.13790","url":null,"abstract":"<p>Elevated arginases including type-I (Arg-I) and type-II isoenzyme (Arg-II) are reported to play a role in aging, age-associated organ inflammaging, and fibrosis. A role of arginase in pulmonary aging and underlying mechanisms are not explored. Our present study shows increased Arg-II levels in aging lung of female mice, which is detected in bronchial ciliated epithelium, club cells, alveolar type 2 (AT2) pneumocytes, and fibroblasts (but not vascular endothelial and smooth muscle cells). Similar cellular localization of Arg-II is also observed in human lung biopsies. The age-associated increase in lung fibrosis and inflammatory cytokines, including IL-1β and TGF-β1 that are highly expressed in bronchial epithelium, AT2 cells, and fibroblasts, are ameliorated in <i>arg-ii</i> deficient (<i>arg-ii</i><sup><i>−/−</i></sup>) mice. The effects of <i>arg-ii</i><sup><i>−</i>/−</sup> on lung inflammaging are weaker in male as compared to female animals. Conditioned medium (CM) from human Arg-II-positive bronchial and alveolar epithelial cells, but not that from <i>arg-ii</i><sup><i>−/−</i></sup> cells, activates fibroblasts to produce various cytokines including TGF-β1 and collagen, which is abolished by IL-1β receptor antagonist or TGF-β type I receptor blocker. Conversely, TGF-β1 or IL-1β also increases Arg-II expression. In the mouse models, we confirmed the age-associated increase in IL-1β and TGF-β1 in epithelial cells and activation of fibroblasts, which is inhibited in <i>arg-ii</i><sup><i>−</i>/−</sup> mice. Taken together, our study demonstrates a critical role of epithelial Arg-II in activation of pulmonary fibroblasts via paracrine release of IL-1β and TGF-β1, contributing to pulmonary inflammaging and fibrosis. The results provide a novel mechanistic insight in the role of Arg-II in pulmonary aging.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 4","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13790","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5651727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Konstorum, Subhasis Mohanty, Yujiao Zhao, Anthony Melillo, Brent Vander Wyk, Allison Nelson, Sui Tsang, Tamara P. Blevins, Robert?B. Belshe, Daniel G. Chawla, Matthew T. Rondina, Thomas M. Gill, Ruth R. Montgomery, Heather G. Allore, Steven H. Kleinstein, Albert C. Shaw
Cover legend: The cover image is based on the Research Article Platelet response to infl uenza vaccination refl ects effects of aging by Anna Konstorum et al., https://doi.org/10.1111/acel.13749. Image Credit: Hannah Wang