Mitochondrial homeostasis plays a crucial role in degenerative joint diseases, including cartilaginous endplate (CEP) degeneration. To date, research into mitochondrial dynamics in IVDD is at an early stage. Since Piezo1 is a novel Ca2+-permeable channel, we asked whether Piezo1 could modulate mitochondrial fission through Ca2+ signalling during CEP degeneration. In vitro and in vivo models of inflammation-induced CEP degeneration were established with lipopolysaccharide (LPS). We found increased expression of Piezo1 in degenerated CEP tissues and LPS-treated CEP cells. The Piezo1 activator Yoda1 exacerbated CEP cell senescence and apoptosis by triggering Ca2+ influx. Yoda1 also induced mitochondrial fragmentation and dysfunction. In contrast, the Piezo1 inhibitor GsMTx4 exerted cytoprotective effects in LPS-treated CEP cells. Additionally, the CaMKII inhibitor KN-93 reversed Yoda1-induced mitochondrial fission and restored mitochondrial function. Mechanistically, the phosphorylation and mitochondrial translocation of Drp1 were regulated by the Ca2+/CaMKII signalling. The Drp1 inhibitor Mdivi-1 suppressed mitochondrial fission, then reduced mitochondrial dysfunction and CEP cell death. Moreover, knockdown of Piezo1 by siRNA hindered CaMKII and Drp1 activation, facilitating the redistribution of mitochondrial Drp1 to the cytosol in LPS-treated CEP cells. Piezo1 silencing improved mitochondrial morphology and function, thereby rescuing CEP cell senescence and apoptosis under inflammatory conditions. Finally, subendplate injection of GsMTx4 or AAV-shPiezo1 alleviated CEP degeneration in a rat model. Thus, Piezo1 may exacerbate inflammation-induced CEP degeneration by triggering mitochondrial fission and dysfunction via the Ca2+/CaMKII/Drp1 axis.
{"title":"Piezo1 exacerbates inflammation-induced cartilaginous endplate degeneration by activating mitochondrial fission via the Ca<sup>2+</sup>/CaMKII/Drp1 axis.","authors":"Zhidi Lin, Guangyu Xu, Xiao Lu, Hongli Wang, Feizhou Lu, Xinlei Xia, Jian Song, Jianyuan Jiang, Xiaosheng Ma, Fei Zou","doi":"10.1111/acel.14440","DOIUrl":"https://doi.org/10.1111/acel.14440","url":null,"abstract":"<p><p>Mitochondrial homeostasis plays a crucial role in degenerative joint diseases, including cartilaginous endplate (CEP) degeneration. To date, research into mitochondrial dynamics in IVDD is at an early stage. Since Piezo1 is a novel Ca<sup>2+</sup>-permeable channel, we asked whether Piezo1 could modulate mitochondrial fission through Ca<sup>2+</sup> signalling during CEP degeneration. In vitro and in vivo models of inflammation-induced CEP degeneration were established with lipopolysaccharide (LPS). We found increased expression of Piezo1 in degenerated CEP tissues and LPS-treated CEP cells. The Piezo1 activator Yoda1 exacerbated CEP cell senescence and apoptosis by triggering Ca<sup>2+</sup> influx. Yoda1 also induced mitochondrial fragmentation and dysfunction. In contrast, the Piezo1 inhibitor GsMTx4 exerted cytoprotective effects in LPS-treated CEP cells. Additionally, the CaMKII inhibitor KN-93 reversed Yoda1-induced mitochondrial fission and restored mitochondrial function. Mechanistically, the phosphorylation and mitochondrial translocation of Drp1 were regulated by the Ca<sup>2+</sup>/CaMKII signalling. The Drp1 inhibitor Mdivi-1 suppressed mitochondrial fission, then reduced mitochondrial dysfunction and CEP cell death. Moreover, knockdown of Piezo1 by siRNA hindered CaMKII and Drp1 activation, facilitating the redistribution of mitochondrial Drp1 to the cytosol in LPS-treated CEP cells. Piezo1 silencing improved mitochondrial morphology and function, thereby rescuing CEP cell senescence and apoptosis under inflammatory conditions. Finally, subendplate injection of GsMTx4 or AAV-shPiezo1 alleviated CEP degeneration in a rat model. Thus, Piezo1 may exacerbate inflammation-induced CEP degeneration by triggering mitochondrial fission and dysfunction via the Ca<sup>2+</sup>/CaMKII/Drp1 axis.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14440"},"PeriodicalIF":8.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin T Newman, Joshua S Danoff, Morgan E Lynch, Stephanie N Giamberardino, Simon G Gregory, Jessica J Connelly, T Jason Druzgal, James P Morris
Epigenetic clocks provide powerful tools for estimating health and lifespan but their ability to predict brain degeneration and neuronal damage during the aging process is unknown. In this study, we use GrimAge, an epigenetic clock correlated to several blood plasma proteins, to longitudinally investigate brain cellular microstructure in axonal white matter from a cohort of healthy aging individuals. A specific focus was made on white matter hyperintensities, a visible neurological manifestation of small vessel disease, and the axonal pathways throughout each individual's brain affected by their unique white matter hyperintensity location and volume. 98 subjects over 55 years of age were scanned at baseline with 41 returning for a follow-up scan 2 years later. Using diffusion MRI lesionometry, we reconstructed subject-specific networks of affected axonal tracts and examined the diffusion cellular microstructure composition of these areas, both at baseline and longitudinally, for evidence of cellular degeneration. A chronological age-adjusted version of GrimAge was significantly correlated with baseline WMH volume and markers of neuronal decline, indicated by increased extracellular free water, increased intracellular signal, and decreased axonal signal within WMH. By isolating subject-specific axonal regions "lesioned" by crossing through a WMH, age-adjusted GrimAge was also able to predict longitudinal development of similar patterns of neuronal decline throughout the brain. This study is the first to demonstrate WMH lesionometry as a subject-specific precision imaging technique to study degeneration in aging and the first to establish a relationship between accelerated epigenetic GrimAge and brain cellular microstructure in humans.
{"title":"Epigenetic age acceleration predicts subject-specific white matter degeneration in the human brain.","authors":"Benjamin T Newman, Joshua S Danoff, Morgan E Lynch, Stephanie N Giamberardino, Simon G Gregory, Jessica J Connelly, T Jason Druzgal, James P Morris","doi":"10.1111/acel.14426","DOIUrl":"https://doi.org/10.1111/acel.14426","url":null,"abstract":"<p><p>Epigenetic clocks provide powerful tools for estimating health and lifespan but their ability to predict brain degeneration and neuronal damage during the aging process is unknown. In this study, we use GrimAge, an epigenetic clock correlated to several blood plasma proteins, to longitudinally investigate brain cellular microstructure in axonal white matter from a cohort of healthy aging individuals. A specific focus was made on white matter hyperintensities, a visible neurological manifestation of small vessel disease, and the axonal pathways throughout each individual's brain affected by their unique white matter hyperintensity location and volume. 98 subjects over 55 years of age were scanned at baseline with 41 returning for a follow-up scan 2 years later. Using diffusion MRI lesionometry, we reconstructed subject-specific networks of affected axonal tracts and examined the diffusion cellular microstructure composition of these areas, both at baseline and longitudinally, for evidence of cellular degeneration. A chronological age-adjusted version of GrimAge was significantly correlated with baseline WMH volume and markers of neuronal decline, indicated by increased extracellular free water, increased intracellular signal, and decreased axonal signal within WMH. By isolating subject-specific axonal regions \"lesioned\" by crossing through a WMH, age-adjusted GrimAge was also able to predict longitudinal development of similar patterns of neuronal decline throughout the brain. This study is the first to demonstrate WMH lesionometry as a subject-specific precision imaging technique to study degeneration in aging and the first to establish a relationship between accelerated epigenetic GrimAge and brain cellular microstructure in humans.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14426"},"PeriodicalIF":8.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zixuan Wang, Chenyi Yang, Xinyi Wang, Huihui Liao, Xing Liu, Huan Liu, Miao Zhang, Lin Zhang, Haiyun Wang
Perioperative neurocognitive disorders (PND) is common in aged mild cognitive impairment (MCI) patients and can accelerate the progression to dementia. This process involves heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1)-mediated aggregates of stress granules (SGs), while RUVBL2 influences the dynamics of these SGs. Our research explored a new target for modulating hnRNAPA2/B1-SGs dynamics to accelerate their disassembly and potentially delay MCI progression due to PND. We assessed the effect of hippocampal RUVBL2 knockdown on hnRNPA2/B1-SGs in aged MCI rats through behavioral studies, biochemical experiments and MRI. We also examined hnRNPA2/B1-SGs dynamics using immunofluorescence staining and fluorescence recovery after photobleaching (FRAP) in rat primary hippocampal neurons. Our results revealed that hnRNPA2/B1 in the hippocampus of aged MCI rats translocates to the cytoplasm to form SGs following anesthesia. RUVBL2 knockdown promotes the disappearance of hnRNPA2/B1-SGs, allowing hnRNPA2/B1 to return to the nucleus and enhancing functional activity in the brain regions of aged MCI rats. In primary hippocampal neurons, RUVBL2 deletion facilitated hnRNPA2/B1-SGs transition from hydrogel to liquid, promoting disassembly. We compared three commonly used general anesthetics-3% sevoflurane, 40 mg·kg-1·h-1 propofol, and 9% desflurane. Sevoflurane upregulated RUVBL2, which decreased the intraneuronal pH and disrupted energy metabolism. These changes resulted in greater stabilization of hnRNPA2/B1- SGs. In conclusion, our findings indicated that the knockdown of RUVBL2 expression contributes to the transition of hnRNPA2/B1-SGs from the hydrogel phase to the liquid phase. Targeted interference with RUVBL2 may represent a novel approach to delay the progression to dementia due to PND in aged MCI patients.
{"title":"Knockdown of RUVBL2 improves hnRNPA2/B1-stress granules dynamics to inhibit perioperative neurocognitive disorders in aged mild cognitive impairment rats.","authors":"Zixuan Wang, Chenyi Yang, Xinyi Wang, Huihui Liao, Xing Liu, Huan Liu, Miao Zhang, Lin Zhang, Haiyun Wang","doi":"10.1111/acel.14418","DOIUrl":"https://doi.org/10.1111/acel.14418","url":null,"abstract":"<p><p>Perioperative neurocognitive disorders (PND) is common in aged mild cognitive impairment (MCI) patients and can accelerate the progression to dementia. This process involves heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1)-mediated aggregates of stress granules (SGs), while RUVBL2 influences the dynamics of these SGs. Our research explored a new target for modulating hnRNAPA2/B1-SGs dynamics to accelerate their disassembly and potentially delay MCI progression due to PND. We assessed the effect of hippocampal RUVBL2 knockdown on hnRNPA2/B1-SGs in aged MCI rats through behavioral studies, biochemical experiments and MRI. We also examined hnRNPA2/B1-SGs dynamics using immunofluorescence staining and fluorescence recovery after photobleaching (FRAP) in rat primary hippocampal neurons. Our results revealed that hnRNPA2/B1 in the hippocampus of aged MCI rats translocates to the cytoplasm to form SGs following anesthesia. RUVBL2 knockdown promotes the disappearance of hnRNPA2/B1-SGs, allowing hnRNPA2/B1 to return to the nucleus and enhancing functional activity in the brain regions of aged MCI rats. In primary hippocampal neurons, RUVBL2 deletion facilitated hnRNPA2/B1-SGs transition from hydrogel to liquid, promoting disassembly. We compared three commonly used general anesthetics-3% sevoflurane, 40 mg·kg<sup>-1</sup>·h<sup>-1</sup> propofol, and 9% desflurane. Sevoflurane upregulated RUVBL2, which decreased the intraneuronal pH and disrupted energy metabolism. These changes resulted in greater stabilization of hnRNPA2/B1- SGs. In conclusion, our findings indicated that the knockdown of RUVBL2 expression contributes to the transition of hnRNPA2/B1-SGs from the hydrogel phase to the liquid phase. Targeted interference with RUVBL2 may represent a novel approach to delay the progression to dementia due to PND in aged MCI patients.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14418"},"PeriodicalIF":8.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akilavalli Narasimhan, Seok Hong Min, Laura L Johnson, Heidi Roehrich, William Cho, Tracy K Her, Caeden Windschitl, Ryan D O'Kelly, Luise Angelini, Matthew J Yousefzadeh, Linda K McLoon, William W Hauswirth, Paul D Robbins, Dorota Skowronska-Krawczyk, Laura J Niedernhofer
Age-related macular degeneration (AMD) is a major cause of vision loss in older adults. AMD is caused by degeneration in the macula of the retina. The retina is the highest oxygen consuming tissue in our body and is prone to oxidative damage. DNA damage is one hallmark of aging implicated in loss of organ function. Genome instability has been associated with several disorders that result in premature vision loss. We hypothesized that endogenous DNA damage plays a causal role in age-related retinal changes. To address this, we used a genetic model of systemic depletion of expression of the DNA repair enzyme ERCC1-XPF. The neural retina and retinal pigment epithelium (RPE) from Ercc1-/Δ mice, which models a human progeroid syndrome, were compared to age-matched wild-type (WT) and old WT mice. By 3-months-of age, Ercc1-/Δ mice presented abnormal optokinetic and electroretinogram responses consistent with photoreceptor dysfunction and visual impairment. Ercc1-/Δ mice shared many ocular characteristics with old WT mice including morphological changes, elevated DNA damage markers (γ-H2AX and 53BP1), and increased cellular senescence in the neural retinal and RPE, as well as pathological angiogenesis. The RPE is essential for the metabolic health of photoreceptors. The RPE from Ercc1-/Δ mice displayed mitochondrial dysfunction causing a compensatory glycolytic shift, a characteristic feature of aging RPE. Hence, our study suggests spontaneous endogenous DNA damage promotes the hallmarks of age-related retinal degeneration.
老年性黄斑变性(AMD)是导致老年人视力下降的主要原因。老年黄斑变性是由视网膜黄斑变性引起的。视网膜是人体耗氧量最高的组织,很容易受到氧化损伤。DNA 损伤是导致器官功能丧失的衰老标志之一。基因组的不稳定性与多种导致视力过早丧失的疾病有关。我们假设,内源性 DNA 损伤在与年龄相关的视网膜变化中起着因果作用。为了解决这个问题,我们使用了一种遗传模型,即系统性地抑制 DNA 修复酶 ERCC1-XPF 的表达。我们将 Ercc1-/Δ 小鼠(人类类早衰综合征的模型)的神经视网膜和视网膜色素上皮(RPE)与年龄匹配的野生型(WT)小鼠和老龄 WT 小鼠进行了比较。3月龄时,Ercc1-/Δ小鼠出现异常的视运动和视网膜电图反应,这与光感受器功能障碍和视力损伤一致。Ercc1-/Δ 小鼠的许多眼部特征与老龄 WT 小鼠相同,包括形态变化、DNA 损伤标记物(γ-H2AX 和 53BP1)升高、神经视网膜和 RPE 的细胞衰老增加以及病理性血管生成。RPE 对感光细胞的新陈代谢健康至关重要。Ercc1-/Δ 小鼠的 RPE 表现出线粒体功能障碍,导致代偿性糖酵解转变,这是老化 RPE 的一个特征。因此,我们的研究表明,自发的内源性 DNA 损伤促进了与年龄相关的视网膜变性的特征。
{"title":"The Ercc1<sup>-/Δ</sup> mouse model of XFE progeroid syndrome undergoes accelerated retinal degeneration.","authors":"Akilavalli Narasimhan, Seok Hong Min, Laura L Johnson, Heidi Roehrich, William Cho, Tracy K Her, Caeden Windschitl, Ryan D O'Kelly, Luise Angelini, Matthew J Yousefzadeh, Linda K McLoon, William W Hauswirth, Paul D Robbins, Dorota Skowronska-Krawczyk, Laura J Niedernhofer","doi":"10.1111/acel.14419","DOIUrl":"https://doi.org/10.1111/acel.14419","url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is a major cause of vision loss in older adults. AMD is caused by degeneration in the macula of the retina. The retina is the highest oxygen consuming tissue in our body and is prone to oxidative damage. DNA damage is one hallmark of aging implicated in loss of organ function. Genome instability has been associated with several disorders that result in premature vision loss. We hypothesized that endogenous DNA damage plays a causal role in age-related retinal changes. To address this, we used a genetic model of systemic depletion of expression of the DNA repair enzyme ERCC1-XPF. The neural retina and retinal pigment epithelium (RPE) from Ercc1<sup>-/Δ</sup> mice, which models a human progeroid syndrome, were compared to age-matched wild-type (WT) and old WT mice. By 3-months-of age, Ercc1<sup>-/Δ</sup> mice presented abnormal optokinetic and electroretinogram responses consistent with photoreceptor dysfunction and visual impairment. Ercc1<sup>-/Δ</sup> mice shared many ocular characteristics with old WT mice including morphological changes, elevated DNA damage markers (γ-H2AX and 53BP1), and increased cellular senescence in the neural retinal and RPE, as well as pathological angiogenesis. The RPE is essential for the metabolic health of photoreceptors. The RPE from Ercc1<sup>-/Δ</sup> mice displayed mitochondrial dysfunction causing a compensatory glycolytic shift, a characteristic feature of aging RPE. Hence, our study suggests spontaneous endogenous DNA damage promotes the hallmarks of age-related retinal degeneration.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14419"},"PeriodicalIF":8.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
June-Hyun Jeong, Dong Kyu Kim, Sunwoo Chung, Jong Won Han, Jihui Han, Inhee Mook-Jung
Alzheimer's disease (AD) is marked by the presence of intraneuronal neurofibrillary tangles (NFTs), which are primarily composed of hyperphosphorylated tau protein. The locus coeruleus (LC), the brain's main source of norepinephrine (NE), is one of the earliest regions to develop NFTs and experience neurodegeneration in AD. While LC-derived NE plays beneficial roles in cognition, emotion, locomotion, and the sleep-wake cycle, its impact on tau pathology is unclear. To explore this relationship, we administered intraperitoneal injections of either N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), a selective neurotoxin for noradrenergic neurons, or reboxetine (RBX), a norepinephrine reuptake inhibitor, to decrease or increase NE levels, respectively, in early tau transgenic mice expressing mutant human P301L tau (ADLPTau) for two months. Only the RBX-treated mice exhibited cognitive deficits, as evidenced by their performance in the Y-maze, novel object recognition, and contextual fear conditioning tests. Immunohistochemical analysis revealed increased hyperphosphorylated tau aggregates in the LC and hippocampus of the RBX-treated mice. Furthermore, neuronal apoptosis was observed in the hippocampal CA1 region of these mice. Western blotting showed that RBX injections led to the overactivation of tau kinases PKA and GSK3β, resulting in hyperphosphorylated tau, neuronal loss, and cognitive impairments. Consistent with these findings, human brain organoids exposed to higher NE concentrations also displayed elevated hyperphosphorylated tau and increased activity of the same tau kinases. These findings suggest that excessive NE exposure accelerates tau pathology by overactivating the tau kinases. Thus, modulating NE levels in the brain via the LC-NE system could be a potential therapeutic strategy for tau-related AD.
阿尔茨海默病(AD)的特征是出现神经元内神经纤维缠结(NFT),主要由过度磷酸化的 tau 蛋白组成。脑部去甲肾上腺素(NE)的主要来源--脑室小叶(LC)是最早出现 NFT 和神经退行性变的区域之一。虽然LC来源的去甲肾上腺素在认知、情感、运动和睡眠-觉醒周期中发挥着有益的作用,但其对tau病理学的影响尚不清楚。为了探索这种关系,我们在表达突变型人类 P301L tau(ADLPTau)的早期 tau 转基因小鼠腹腔内注射了 N-(2-氯乙基)-N-乙基-2-溴苄胺(DSP4)(一种针对去甲肾上腺素能神经元的选择性神经毒素)或雷贝西汀(RBX)(一种去甲肾上腺素再摄取抑制剂),以分别降低或增加 NE 的水平,为期两个月。只有经RBX处理的小鼠表现出认知障碍,这体现在它们在Y迷宫、新物体识别和情境恐惧条件反射测试中的表现上。免疫组化分析显示,RBX 治疗小鼠的 LC 和海马中的高磷酸化 tau 聚集增加。此外,在这些小鼠的海马 CA1 区还观察到了神经元凋亡。Western blotting显示,注射RBX会导致tau激酶PKA和GSK3β过度激活,从而导致tau过度磷酸化、神经元缺失和认知障碍。与这些研究结果一致的是,暴露于较高浓度 NE 的人脑器官组织也显示出高水平的高磷酸化 tau 和相同 tau 激酶活性的增加。这些研究结果表明,过量暴露于 NE 会通过过度激活 tau 激酶而加速 tau 病变。因此,通过LC-NE系统调节大脑中的NE水平可能是治疗tau相关性AD的一种潜在策略。
{"title":"Long-term exposure to excessive norepinephrine in the brain induces tau aggregation, neuronal death, and cognitive deficits in early tau transgenic mice.","authors":"June-Hyun Jeong, Dong Kyu Kim, Sunwoo Chung, Jong Won Han, Jihui Han, Inhee Mook-Jung","doi":"10.1111/acel.14420","DOIUrl":"https://doi.org/10.1111/acel.14420","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is marked by the presence of intraneuronal neurofibrillary tangles (NFTs), which are primarily composed of hyperphosphorylated tau protein. The locus coeruleus (LC), the brain's main source of norepinephrine (NE), is one of the earliest regions to develop NFTs and experience neurodegeneration in AD. While LC-derived NE plays beneficial roles in cognition, emotion, locomotion, and the sleep-wake cycle, its impact on tau pathology is unclear. To explore this relationship, we administered intraperitoneal injections of either N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), a selective neurotoxin for noradrenergic neurons, or reboxetine (RBX), a norepinephrine reuptake inhibitor, to decrease or increase NE levels, respectively, in early tau transgenic mice expressing mutant human P301L tau (ADLP<sup>Tau</sup>) for two months. Only the RBX-treated mice exhibited cognitive deficits, as evidenced by their performance in the Y-maze, novel object recognition, and contextual fear conditioning tests. Immunohistochemical analysis revealed increased hyperphosphorylated tau aggregates in the LC and hippocampus of the RBX-treated mice. Furthermore, neuronal apoptosis was observed in the hippocampal CA1 region of these mice. Western blotting showed that RBX injections led to the overactivation of tau kinases PKA and GSK3β, resulting in hyperphosphorylated tau, neuronal loss, and cognitive impairments. Consistent with these findings, human brain organoids exposed to higher NE concentrations also displayed elevated hyperphosphorylated tau and increased activity of the same tau kinases. These findings suggest that excessive NE exposure accelerates tau pathology by overactivating the tau kinases. Thus, modulating NE levels in the brain via the LC-NE system could be a potential therapeutic strategy for tau-related AD.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14420"},"PeriodicalIF":8.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The age-associated decline in intestinal stem cell (ISC) function is a key factor in intestinal aging in organisms, resulting in impaired intestinal function and increased susceptibility to age-related diseases. Consequently, it is imperative to develop effective therapeutic strategies to prevent ISC aging and functional decline. In this study, we utilized an aging Drosophila model screening of amino acids and found that asparagine (Asn), a nonessential amino acid in vivo, exhibits its profound anti-aging properties on ISCs. Asn inhibits the hyperproliferation of aging ISCs in Drosophila, maintains intestinal homeostasis, and extends the lifespan of aging flies. Complementarily, Asn promotes the growth and branching of elderly murine intestinal organoids, indicating its anti-aging capacity to enhance ISC function. Mechanistic analyses have revealed that Asn exerts its effects via the activation of the autophagic signaling pathway. In summary, this study has preliminarily explored the potential supportive role of Asn in ameliorating intestinal aging, providing a foundation for further research into therapeutic interventions targeting age-related intestinal dysfunction.
{"title":"Asparagine prevents intestinal stem cell aging via the autophagy-lysosomal pathway.","authors":"Ting Luo, Liusha Zhao, Chenxi Feng, Jinhua Yan, Yu Yuan, Haiyang Chen","doi":"10.1111/acel.14423","DOIUrl":"https://doi.org/10.1111/acel.14423","url":null,"abstract":"<p><p>The age-associated decline in intestinal stem cell (ISC) function is a key factor in intestinal aging in organisms, resulting in impaired intestinal function and increased susceptibility to age-related diseases. Consequently, it is imperative to develop effective therapeutic strategies to prevent ISC aging and functional decline. In this study, we utilized an aging Drosophila model screening of amino acids and found that asparagine (Asn), a nonessential amino acid in vivo, exhibits its profound anti-aging properties on ISCs. Asn inhibits the hyperproliferation of aging ISCs in Drosophila, maintains intestinal homeostasis, and extends the lifespan of aging flies. Complementarily, Asn promotes the growth and branching of elderly murine intestinal organoids, indicating its anti-aging capacity to enhance ISC function. Mechanistic analyses have revealed that Asn exerts its effects via the activation of the autophagic signaling pathway. In summary, this study has preliminarily explored the potential supportive role of Asn in ameliorating intestinal aging, providing a foundation for further research into therapeutic interventions targeting age-related intestinal dysfunction.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14423"},"PeriodicalIF":8.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maheedhar Kodali, Leelavathi N Madhu, Yogish Somayaji, Sahithi Attaluri, Charles Huard, Prashanta Kumar Panda, Goutham Shankar, Shama Rao, Bing Shuai, Jenny J Gonzalez, Chris Oake, Catherine Hering, Roshni Sara Babu, Sanya Kotian, Ashok K Shetty
While moderately activated microglia in Alzheimer's disease (AD) are pivotal in clearing amyloid beta (Aβ), hyperactivated microglia perpetuate neuroinflammation. Prior investigations reported that the elimination of ~80% of microglia through inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration. Furthermore, prolonged CSF1R inhibition diminished the development of parenchymal plaques. Nonetheless, the effects of short-term CSF1R inhibition during the early stages of neuroinflammation on residual microglia are unknown. Therefore, we investigated the effects of 10-day CSF1R inhibition using PLX5622 in three-month-old female 5xFAD mice, a stage characterized by the onset of neuroinflammation and minimal Aβ plaques. We observed ~65% microglia depletion in the hippocampus and cerebral cortex. The leftover microglia displayed a noninflammatory phenotype with reduced NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complexes. Moreover, plaque-associated microglia were reduced with diminished Clec7a expression. Additionally, phosphorylated S6 ribosomal protein and the protein sequestosome 1 analysis suggested reduced mechanistic targets of rapamycin (mTOR) signaling and autophagy in microglia and neurons within the hippocampus and cerebral cortex. Biochemical assays validated the inhibition of NLRP3 inflammasome activation, decreased mTOR signaling in the hippocampus and cerebral cortex, and enhanced autophagy in the hippocampus. However, short-term CSF1R inhibition did not influence Aβ plaques, soluble Aβ-42 levels, astrocyte hypertrophy, or hippocampal neurogenesis. Thus, short-term CSF1R inhibition during the early stages of neuroinflammation in 5xFAD mice promotes the retention of homeostatic microglia with diminished inflammasome activation and mTOR signaling, alongside increased autophagy.
{"title":"Residual microglia following short-term PLX5622 treatment in 5xFAD mice exhibit diminished NLRP3 inflammasome and mTOR signaling, and enhanced autophagy.","authors":"Maheedhar Kodali, Leelavathi N Madhu, Yogish Somayaji, Sahithi Attaluri, Charles Huard, Prashanta Kumar Panda, Goutham Shankar, Shama Rao, Bing Shuai, Jenny J Gonzalez, Chris Oake, Catherine Hering, Roshni Sara Babu, Sanya Kotian, Ashok K Shetty","doi":"10.1111/acel.14398","DOIUrl":"10.1111/acel.14398","url":null,"abstract":"<p><p>While moderately activated microglia in Alzheimer's disease (AD) are pivotal in clearing amyloid beta (Aβ), hyperactivated microglia perpetuate neuroinflammation. Prior investigations reported that the elimination of ~80% of microglia through inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration. Furthermore, prolonged CSF1R inhibition diminished the development of parenchymal plaques. Nonetheless, the effects of short-term CSF1R inhibition during the early stages of neuroinflammation on residual microglia are unknown. Therefore, we investigated the effects of 10-day CSF1R inhibition using PLX5622 in three-month-old female 5xFAD mice, a stage characterized by the onset of neuroinflammation and minimal Aβ plaques. We observed ~65% microglia depletion in the hippocampus and cerebral cortex. The leftover microglia displayed a noninflammatory phenotype with reduced NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complexes. Moreover, plaque-associated microglia were reduced with diminished Clec7a expression. Additionally, phosphorylated S6 ribosomal protein and the protein sequestosome 1 analysis suggested reduced mechanistic targets of rapamycin (mTOR) signaling and autophagy in microglia and neurons within the hippocampus and cerebral cortex. Biochemical assays validated the inhibition of NLRP3 inflammasome activation, decreased mTOR signaling in the hippocampus and cerebral cortex, and enhanced autophagy in the hippocampus. However, short-term CSF1R inhibition did not influence Aβ plaques, soluble Aβ-42 levels, astrocyte hypertrophy, or hippocampal neurogenesis. Thus, short-term CSF1R inhibition during the early stages of neuroinflammation in 5xFAD mice promotes the retention of homeostatic microglia with diminished inflammasome activation and mTOR signaling, alongside increased autophagy.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14398"},"PeriodicalIF":8.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Commensal bacteria and their derivatives hold significant promise as therapeutic interventions to delay aging. However, with the diverse nature of the soil microbiome and the long lifespan of mammalian models, the exploration of the influence of soil bacteria and bacteria-derived molecules on host aging remains limited. We conducted a lifespan screening in Caenorhabditis elegans using plant root bacterial collection. Our screening identified 8 genera of bacterial isolates capable of extending lifespan, with Mycobacterium sp. Root265 exhibits the most pronounced effect on lifespan extension. Biochemical analysis revealed two specific molecules derived from Root265, polysaccharides (PSs) and arabinogalactan peptidoglycan (AGP), responsible for lifespan extension via daf-16-dependent and -independent pathways, respectively. Notably, AGP exhibited a unique ability to enhance protein homeostasis effectively. Moreover, polar lipids originating from Root265 were found to extend lifespan while mitigating age-related BAS-1 decline in neurons. Intriguingly, even brief exposures to these bioactive compounds were sufficient to achieve the lifespan-promoting effects. We found diverse beneficial bacteria and anti-aging active compounds from soil bacteria. These findings highlight the potential of exploring bacterial derivatives as therapies targeting aging without the constraints associated with direct microbial interventions.
{"title":"The soil Mycobacterium sp. promotes health and longevity through different bacteria-derived molecules in Caenorhabditis elegans.","authors":"Limeng Liu, Xusheng Hao, Yang Bai, Ye Tian","doi":"10.1111/acel.14416","DOIUrl":"10.1111/acel.14416","url":null,"abstract":"<p><p>Commensal bacteria and their derivatives hold significant promise as therapeutic interventions to delay aging. However, with the diverse nature of the soil microbiome and the long lifespan of mammalian models, the exploration of the influence of soil bacteria and bacteria-derived molecules on host aging remains limited. We conducted a lifespan screening in Caenorhabditis elegans using plant root bacterial collection. Our screening identified 8 genera of bacterial isolates capable of extending lifespan, with Mycobacterium sp. Root265 exhibits the most pronounced effect on lifespan extension. Biochemical analysis revealed two specific molecules derived from Root265, polysaccharides (PSs) and arabinogalactan peptidoglycan (AGP), responsible for lifespan extension via daf-16-dependent and -independent pathways, respectively. Notably, AGP exhibited a unique ability to enhance protein homeostasis effectively. Moreover, polar lipids originating from Root265 were found to extend lifespan while mitigating age-related BAS-1 decline in neurons. Intriguingly, even brief exposures to these bioactive compounds were sufficient to achieve the lifespan-promoting effects. We found diverse beneficial bacteria and anti-aging active compounds from soil bacteria. These findings highlight the potential of exploring bacterial derivatives as therapies targeting aging without the constraints associated with direct microbial interventions.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14416"},"PeriodicalIF":8.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shi-Wei Ye, Shuang-Di Song, Xi-Juan Liu, Yun Luo, Shi-Qing Cai
The risk of many human diseases including cardiovascular diseases, cancer, neurodegenerative diseases, and musculoskeletal disorders rises significantly in the elderly. With the increase in the aging population, it is becoming increasingly important to understand the biology of healthy aging and develop interventions that slow down the aging process or prevent age-related diseases. In this study, by a high-throughput screen in Caenorhabditis elegans (C. elegans), we identified 11 small molecules that promote healthy aging. Among them, Carbamazepine (a voltage-gated channels inhibitor) and Calmagite (a calcium and magnesium indicator) enhanced serotonin (5-HT) and dopamine (DA) levels, extended lifespan, and preserved several important behaviors in aging C. elegans. These behaviors include slowing responses to food, pharyngeal pumping, locomotion, and male mating. Interestingly, we further found that administration of Carbamazepine or Calmagite alleviated hyperexcitability of aging male diagonal muscles and improved behavioral performance by ameliorating Ca2+ homeostasis. Mechanistically, administration of Carbamazepine or Calmagite induced nuclear translocation of the transcription factor DAF-16 and thus up-regulated its downstream genes numr-1/-2, which are known to promote resistance to metal-induced stresses and longevity. Taken together, our study offers a way for the discovery of drugs that promote healthy aging, and provides potential interventions for preventing behavioral deterioration in the elderly.
{"title":"A small-molecule screen identifies novel aging modulators by targeting 5-HT/DA signaling pathway.","authors":"Shi-Wei Ye, Shuang-Di Song, Xi-Juan Liu, Yun Luo, Shi-Qing Cai","doi":"10.1111/acel.14411","DOIUrl":"https://doi.org/10.1111/acel.14411","url":null,"abstract":"<p><p>The risk of many human diseases including cardiovascular diseases, cancer, neurodegenerative diseases, and musculoskeletal disorders rises significantly in the elderly. With the increase in the aging population, it is becoming increasingly important to understand the biology of healthy aging and develop interventions that slow down the aging process or prevent age-related diseases. In this study, by a high-throughput screen in Caenorhabditis elegans (C. elegans), we identified 11 small molecules that promote healthy aging. Among them, Carbamazepine (a voltage-gated channels inhibitor) and Calmagite (a calcium and magnesium indicator) enhanced serotonin (5-HT) and dopamine (DA) levels, extended lifespan, and preserved several important behaviors in aging C. elegans. These behaviors include slowing responses to food, pharyngeal pumping, locomotion, and male mating. Interestingly, we further found that administration of Carbamazepine or Calmagite alleviated hyperexcitability of aging male diagonal muscles and improved behavioral performance by ameliorating Ca<sup>2+</sup> homeostasis. Mechanistically, administration of Carbamazepine or Calmagite induced nuclear translocation of the transcription factor DAF-16 and thus up-regulated its downstream genes numr-1/-2, which are known to promote resistance to metal-induced stresses and longevity. Taken together, our study offers a way for the discovery of drugs that promote healthy aging, and provides potential interventions for preventing behavioral deterioration in the elderly.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14411"},"PeriodicalIF":8.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Casper Soendenbroe, Peter Schjerling, Cecilie J L Bechshøft, Rene B Svensson, Laurent Schaeffer, Michael Kjaer, Bénédicte Chazaud, Arnaud Jacquier, Abigail L Mackey
Exercise preserves neuromuscular function in aging through unknown mechanisms. Skeletal muscle fibroblasts (FIB) and stem cells (MuSC) are abundant in skeletal muscle and reside close to neuromuscular junctions, but their relative roles in motor neuron maintenance remain undescribed. Using direct cocultures of embryonic rat motor neurons with either human MuSC or FIB, RNA sequencing revealed profound differential regulation of the motor neuron transcriptome, with FIB generally favoring neuron growth and cell migration and MuSC favoring production of ribosomes and translational machinery. Conditioned medium from FIB was superior to MuSC in preserving motor neurons and increasing their maturity. Lastly, we established the importance of donor age and exercise status and found an age-related distortion of motor neuron and muscle cell interaction that was fully mitigated by lifelong physical activity. In conclusion, we show that human muscle FIB and MuSC synergistically stimulate the growth and viability of motor neurons, which is further amplified by regular exercise.
{"title":"Muscle fibroblasts and stem cells stimulate motor neurons in an age and exercise-dependent manner.","authors":"Casper Soendenbroe, Peter Schjerling, Cecilie J L Bechshøft, Rene B Svensson, Laurent Schaeffer, Michael Kjaer, Bénédicte Chazaud, Arnaud Jacquier, Abigail L Mackey","doi":"10.1111/acel.14413","DOIUrl":"https://doi.org/10.1111/acel.14413","url":null,"abstract":"<p><p>Exercise preserves neuromuscular function in aging through unknown mechanisms. Skeletal muscle fibroblasts (FIB) and stem cells (MuSC) are abundant in skeletal muscle and reside close to neuromuscular junctions, but their relative roles in motor neuron maintenance remain undescribed. Using direct cocultures of embryonic rat motor neurons with either human MuSC or FIB, RNA sequencing revealed profound differential regulation of the motor neuron transcriptome, with FIB generally favoring neuron growth and cell migration and MuSC favoring production of ribosomes and translational machinery. Conditioned medium from FIB was superior to MuSC in preserving motor neurons and increasing their maturity. Lastly, we established the importance of donor age and exercise status and found an age-related distortion of motor neuron and muscle cell interaction that was fully mitigated by lifelong physical activity. In conclusion, we show that human muscle FIB and MuSC synergistically stimulate the growth and viability of motor neurons, which is further amplified by regular exercise.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14413"},"PeriodicalIF":8.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}