Kaiming Guo, Wenting Huang, Kun Chen, Pengkai Huang, Wenshuo Peng, Ruiqing Shi, Tao He, Mulan Zhang, Hao Wang, Jian Hu, Xinshi Wang, Yangping Shentu, Huiqin Xu, Li Lin
Alzheimer's disease (AD) is characterized with senile plaques formed by Aβ deposition, and neurofibrillary tangles composed of hyperphosphorylated tau protein, which ultimately lead to cognitive impairment. Despite the heavy economic and life burdens faced by the patients with AD, effective treatments are still lacking. Previous studies have reported the neuroprotective effects of FGF10 in CNS diseases, but its role in AD remains unclear. In this study, we demonstrated that FGF10 levels were reduced in the serum of AD patients, as well as in the brains of 3xTg-AD mice and APPswe-transfected HT22 cells, suggesting a close relationship between FGF10 and AD. Further investigations revealed that intranasal delivery of FGF10 improved cognitive functions in 3xTg-AD mice. Additionally, FGF10 treatment reduced tau hyperphosphorylation and neuronal apoptosis, thereby mitigating neuronal cell damage and synaptic deficits in the cortex and hippocampus of 3xTg-AD mice, as well as APPswe-transfected HT22 cells. Furthermore, we evaluated the therapeutic potential of FGF10 gene delivery for treating AD symptoms and pathologies. Tail vein delivery of the FGF10 gene using AAV9 improved cognitive and neuronal functions in 3xTg-AD mice. Similarly, endogenous FGF10 overexpression ameliorated tau hyperphosphorylation and neuronal apoptosis in the cortex and hippocampus of 3xTg-AD mice. Importantly, we confirmed that the FGFR2/PI3K/AKT signaling pathway was activated following intranasal FGF10 delivery and AAV9-mediated FGF10 gene delivery in 3xTg-AD mice and APPswe-transfected HT22 cells. Knockdown of FGFR2 attenuated the protective effect of FGF10. Collectively, these findings suggest that intranasal delivery of FGF10 and AAV9-mediated FGF10 gene delivery could be a promising disease-modifying therapy for AD.
{"title":"Fibroblast growth factor 10 ameliorates neurodegeneration in mouse and cellular models of Alzheimer's disease via reducing tau hyperphosphorylation and neuronal apoptosis","authors":"Kaiming Guo, Wenting Huang, Kun Chen, Pengkai Huang, Wenshuo Peng, Ruiqing Shi, Tao He, Mulan Zhang, Hao Wang, Jian Hu, Xinshi Wang, Yangping Shentu, Huiqin Xu, Li Lin","doi":"10.1111/acel.13937","DOIUrl":"https://doi.org/10.1111/acel.13937","url":null,"abstract":"<p>Alzheimer's disease (AD) is characterized with senile plaques formed by Aβ deposition, and neurofibrillary tangles composed of hyperphosphorylated tau protein, which ultimately lead to cognitive impairment. Despite the heavy economic and life burdens faced by the patients with AD, effective treatments are still lacking. Previous studies have reported the neuroprotective effects of FGF10 in CNS diseases, but its role in AD remains unclear. In this study, we demonstrated that FGF10 levels were reduced in the serum of AD patients, as well as in the brains of 3xTg-AD mice and APPswe-transfected HT22 cells, suggesting a close relationship between FGF10 and AD. Further investigations revealed that intranasal delivery of FGF10 improved cognitive functions in 3xTg-AD mice. Additionally, FGF10 treatment reduced tau hyperphosphorylation and neuronal apoptosis, thereby mitigating neuronal cell damage and synaptic deficits in the cortex and hippocampus of 3xTg-AD mice, as well as APPswe-transfected HT22 cells. Furthermore, we evaluated the therapeutic potential of FGF10 gene delivery for treating AD symptoms and pathologies. Tail vein delivery of the FGF10 gene using AAV9 improved cognitive and neuronal functions in 3xTg-AD mice. Similarly, endogenous FGF10 overexpression ameliorated tau hyperphosphorylation and neuronal apoptosis in the cortex and hippocampus of 3xTg-AD mice. Importantly, we confirmed that the FGFR2/PI3K/AKT signaling pathway was activated following intranasal FGF10 delivery and AAV9-mediated FGF10 gene delivery in 3xTg-AD mice and APPswe-transfected HT22 cells. Knockdown of FGFR2 attenuated the protective effect of FGF10. Collectively, these findings suggest that intranasal delivery of FGF10 and AAV9-mediated FGF10 gene delivery could be a promising disease-modifying therapy for AD.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 9","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"7043494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as “red flag” risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.
{"title":"Circadian regulation in aging: Implications for spaceflight and life on earth","authors":"Deeksha Malhan, Britt Schoenrock, Müge Yal?in, Dieter Blottner, Angela Rel?gio","doi":"10.1111/acel.13935","DOIUrl":"https://doi.org/10.1111/acel.13935","url":null,"abstract":"<p>Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as “red flag” risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown <i>Drosophila</i>, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 9","pages":""},"PeriodicalIF":7.8,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13935","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"7024331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cover legend: The cover image is based on the Research Article Spatial resolution of cellular senescence dynamics in human colorectal liver metastasis by Ombretta Garbarino et al., https://doi.org/10.1111/acel.13853