首页 > 最新文献

Aging Cell最新文献

英文 中文
Oral Citrate Supplementation Mitigates Age-Associated Pathologic Intervertebral Disc Calcification in LG/J Mice. 口服柠檬酸盐能减轻 LG/J 小鼠与年龄相关的病理性椎间盘钙化。
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-11 DOI: 10.1111/acel.14504
Olivia K Ottone, Jorge J Mundo, Boahen N Kwakye, Amber Slaweski, John A Collins, Qinglin Wu, Margery A Connelly, Fatemeh Niaziorimi, Koen van de Wetering, Makarand V Risbud

Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. We investigated the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate reduced the incidence of disc calcification without affecting the vertebral bone structure, knee calcification, plasma chemistry, or locomotion in LG/J mice. Notably, a positive effect on grip strength was evident in treated mice. FTIR spectroscopy of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition. Mechanistically, activation of an endochondral differentiation in the cartilaginous endplates and nucleus pulposus (NP) compartment contributed to LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence by Ca2+ chelation throughout the disc while exhibiting a differential effect on NP and endplate cell differentiation. In the NP compartment, K3Citrate reduced the NP cell acquisition of a hypertrophic chondrocytic fate, but the pathologic endochondral program was unimpacted in the endplates. Overall, this study for the first time shows the therapeutic potential of oral K3Citrate as a systemic intervention strategy to ameliorate disc calcification.

尽管与年龄有关的椎间盘钙化发病率很高,但治疗这种使人衰弱的病症的方法却明显缺乏。我们研究了长期口服柠檬酸 K3 对改善 LG/J 小鼠椎间盘钙化的疗效,LG/J 小鼠是一种自发性年龄相关性椎间盘钙化模型。柠檬酸钾降低了椎间盘钙化的发生率,但不影响LG/J小鼠的椎骨结构、膝关节钙化、血浆化学成分或运动能力。值得注意的是,治疗后的小鼠对握力有明显的积极影响。对持续钙化的结节进行的傅立叶变换红外光谱分析表明,柠檬酸钾并没有改变矿物质成分。从机理上讲,软骨终板和髓核(NP)区段内软骨内分化的激活促成了 LG/J 椎间盘钙化。重要的是,柠檬酸钾通过钙离子螯合作用降低了整个椎间盘的钙化发生率,同时对NP和终板细胞的分化产生了不同的影响。在NP区,K3柠檬酸盐降低了NP细胞获得肥大软骨细胞命运的能力,但在终板,病理软骨内分化程序未受影响。总之,这项研究首次显示了口服 K3Citrate 作为系统干预策略改善椎间盘钙化的治疗潜力。
{"title":"Oral Citrate Supplementation Mitigates Age-Associated Pathologic Intervertebral Disc Calcification in LG/J Mice.","authors":"Olivia K Ottone, Jorge J Mundo, Boahen N Kwakye, Amber Slaweski, John A Collins, Qinglin Wu, Margery A Connelly, Fatemeh Niaziorimi, Koen van de Wetering, Makarand V Risbud","doi":"10.1111/acel.14504","DOIUrl":"10.1111/acel.14504","url":null,"abstract":"<p><p>Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. We investigated the efficacy of long-term oral K<sub>3</sub>Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K<sub>3</sub>Citrate reduced the incidence of disc calcification without affecting the vertebral bone structure, knee calcification, plasma chemistry, or locomotion in LG/J mice. Notably, a positive effect on grip strength was evident in treated mice. FTIR spectroscopy of the persisting calcified nodules indicated K<sub>3</sub>Citrate did not alter the mineral composition. Mechanistically, activation of an endochondral differentiation in the cartilaginous endplates and nucleus pulposus (NP) compartment contributed to LG/J disc calcification. Importantly, K<sub>3</sub>Citrate reduced calcification incidence by Ca<sup>2+</sup> chelation throughout the disc while exhibiting a differential effect on NP and endplate cell differentiation. In the NP compartment, K<sub>3</sub>Citrate reduced the NP cell acquisition of a hypertrophic chondrocytic fate, but the pathologic endochondral program was unimpacted in the endplates. Overall, this study for the first time shows the therapeutic potential of oral K<sub>3</sub>Citrate as a systemic intervention strategy to ameliorate disc calcification.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14504"},"PeriodicalIF":8.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longevity Humans Have Youthful Erythrocyte Function and Metabolic Signatures.
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-09 DOI: 10.1111/acel.14482
Fang Yu, Changhan Chen, Wuping Liu, Zhixiang Zhao, Yuhua Fan, Zhenjiang Li, Weilun Huang, Tingting Xie, Cheng Luo, Zhouzhou Yao, Qi Guo, Zhiyu Yang, Juan Liu, Yujin Zhang, Rodney E Kellems, Jian Xia, Ji Li, Yang Xia

Longevity individuals have lower susceptibility to chronic hypoxia, inflammation, oxidative stress, and aging-related diseases. It has long been speculated that "rejuvenation molecules" exist in their blood to promote extended lifespan. We unexpectedly discovered that longevity individuals exhibit erythrocyte oxygen release function similar to young individuals, whereas most elderly show reduced oxygen release capacity. Untargeted erythrocyte metabolomics profiling revealed that longevity individuals are characterized by youth-like metabolic reprogramming and these metabolites effectively differentiate the longevity from the elderly. Quantification analyses led us to identify multiple novel longevity-related metabolites within erythrocytes including adenosine, sphingosine-1-phosphate (S1P), and glutathione (GSH) related amino acids. Mechanistically, we revealed that increased bisphosphoglycerate mutase (BPGM) and reduced MFSD2B protein levels in the erythrocytes of longevity individuals collaboratively work together to induce elevation of intracellular S1P, promote the release of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from membrane to the cytosol, and thereby orchestrate glucose metabolic reprogramming toward Rapoport-Luebering Shunt to induce the 2,3-BPG production and trigger oxygen delivery. Furthermore, increased glutamine and glutamate transporter expression coupled with the enhanced intracellular metabolism underlie the elevated GSH production and the higher anti-oxidative stress capacity in the erythrocytes of longevity individuals. As such, longevity individuals displayed less systemic hypoxia-related metabolites and more antioxidative and anti-inflammatory metabolites in the plasma, thereby healthier clinical outcomes including lower inflammation parameters as well as better glucose-lipid metabolism, and liver and kidney function. Overall, we identified that youthful erythrocyte function and metabolism enable longevity individuals to better counteract peripheral tissue hypoxia, inflammation, and oxidative stress, thus maintaining healthspan.

{"title":"Longevity Humans Have Youthful Erythrocyte Function and Metabolic Signatures.","authors":"Fang Yu, Changhan Chen, Wuping Liu, Zhixiang Zhao, Yuhua Fan, Zhenjiang Li, Weilun Huang, Tingting Xie, Cheng Luo, Zhouzhou Yao, Qi Guo, Zhiyu Yang, Juan Liu, Yujin Zhang, Rodney E Kellems, Jian Xia, Ji Li, Yang Xia","doi":"10.1111/acel.14482","DOIUrl":"https://doi.org/10.1111/acel.14482","url":null,"abstract":"<p><p>Longevity individuals have lower susceptibility to chronic hypoxia, inflammation, oxidative stress, and aging-related diseases. It has long been speculated that \"rejuvenation molecules\" exist in their blood to promote extended lifespan. We unexpectedly discovered that longevity individuals exhibit erythrocyte oxygen release function similar to young individuals, whereas most elderly show reduced oxygen release capacity. Untargeted erythrocyte metabolomics profiling revealed that longevity individuals are characterized by youth-like metabolic reprogramming and these metabolites effectively differentiate the longevity from the elderly. Quantification analyses led us to identify multiple novel longevity-related metabolites within erythrocytes including adenosine, sphingosine-1-phosphate (S1P), and glutathione (GSH) related amino acids. Mechanistically, we revealed that increased bisphosphoglycerate mutase (BPGM) and reduced MFSD2B protein levels in the erythrocytes of longevity individuals collaboratively work together to induce elevation of intracellular S1P, promote the release of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from membrane to the cytosol, and thereby orchestrate glucose metabolic reprogramming toward Rapoport-Luebering Shunt to induce the 2,3-BPG production and trigger oxygen delivery. Furthermore, increased glutamine and glutamate transporter expression coupled with the enhanced intracellular metabolism underlie the elevated GSH production and the higher anti-oxidative stress capacity in the erythrocytes of longevity individuals. As such, longevity individuals displayed less systemic hypoxia-related metabolites and more antioxidative and anti-inflammatory metabolites in the plasma, thereby healthier clinical outcomes including lower inflammation parameters as well as better glucose-lipid metabolism, and liver and kidney function. Overall, we identified that youthful erythrocyte function and metabolism enable longevity individuals to better counteract peripheral tissue hypoxia, inflammation, and oxidative stress, thus maintaining healthspan.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14482"},"PeriodicalIF":8.0,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Short Telomere Zebrafish Model for Accelerated Aging Research and Antiaging Drug Screening.
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-08 DOI: 10.1111/acel.70007
David Hernández-Silva, María D López-Abellán, Francisco J Martínez-Navarro, Jesús García-Castillo, María L Cayuela, Francisca Alcaraz-Pérez

Increased life expectancy is associated with a higher risk of age-related diseases, which represent a major public health challenge. Animal models play a crucial role in aging research, enabling the study of diseases at the organism level and facilitating drug development and repurposing. Among these models, zebrafish stands out as an excellent in vivo system due to its unique characteristics. However, the longevity of zebrafish is a limitation for research, as it often takes too long to obtain results within a reasonable timeframe. To address this, we have developed a short telomere zebrafish line (ST2) with a premature aging phenotype during the larval stage. Although less extreme than the tert-deficient G2 larvae, ST2 larvae exhibit reduced telomerase expression and activity, along with shortened telomeres. they also exhibit increased cellular senescence, apoptosis, and premature death. As a proof of concept, we evaluated the antiaging effects of two compounds: resveratrol (a polyphenol) and navitoclax (a senolytic). Our results confirm the antiaging properties of resveratrol, which improves telomere maintenance. However, navitoclax does not attenuate the ST2 phenotype. Taking advantage of the zebrafish larval model, this premature aging system provides a valuable platform for in vivo testing of rejuvenating molecules through drug screening, using telomere length or survival as a readout.

{"title":"Development of a Short Telomere Zebrafish Model for Accelerated Aging Research and Antiaging Drug Screening.","authors":"David Hernández-Silva, María D López-Abellán, Francisco J Martínez-Navarro, Jesús García-Castillo, María L Cayuela, Francisca Alcaraz-Pérez","doi":"10.1111/acel.70007","DOIUrl":"https://doi.org/10.1111/acel.70007","url":null,"abstract":"<p><p>Increased life expectancy is associated with a higher risk of age-related diseases, which represent a major public health challenge. Animal models play a crucial role in aging research, enabling the study of diseases at the organism level and facilitating drug development and repurposing. Among these models, zebrafish stands out as an excellent in vivo system due to its unique characteristics. However, the longevity of zebrafish is a limitation for research, as it often takes too long to obtain results within a reasonable timeframe. To address this, we have developed a short telomere zebrafish line (ST2) with a premature aging phenotype during the larval stage. Although less extreme than the tert-deficient G2 larvae, ST2 larvae exhibit reduced telomerase expression and activity, along with shortened telomeres. they also exhibit increased cellular senescence, apoptosis, and premature death. As a proof of concept, we evaluated the antiaging effects of two compounds: resveratrol (a polyphenol) and navitoclax (a senolytic). Our results confirm the antiaging properties of resveratrol, which improves telomere maintenance. However, navitoclax does not attenuate the ST2 phenotype. Taking advantage of the zebrafish larval model, this premature aging system provides a valuable platform for in vivo testing of rejuvenating molecules through drug screening, using telomere length or survival as a readout.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70007"},"PeriodicalIF":8.0,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reproductive-Triggered Sterol Competition Exacerbates Age-Related Intestinal Barrier Damage in Drosophila Females.
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-07 DOI: 10.1111/acel.70011
Guixiang Yu, Kejin Chen, Mingyao Yang, Qi Wu

The trade-off between reproduction and lifespan has been documented across a wide array of organisms, ranging from invertebrates to mammals. In malnourishing dietary conditions, inhibition of the reproductive processes generally extends the lifespan of females. However, the underlying mechanisms through which nutritional competition driven by reproduction accelerates aging remain poorly understood. Here, using female Drosophila melanogaster as a model, we show that among various dietary conditions lacking specific nutrients, only sterol deficiency significantly exacerbated both the incidence and severity of intestinal barrier deterioration during aging. Sterile mutation specifically ameliorated such damage in sterol-deprived diets, but failed to alleviate age-related intestinal barrier deterioration under other nutritional conditions. Additionally, we demonstrate that the lifespan extension and intestinal barrier amelioration, accompanied by a reproductive suppression effect, through the pharmacological inhibition of mTOR or Ras-Erk signaling using rapamycin or trametinib, were significantly modulated by cholesterol levels. Our study also identifies the morphological changes in excreta as a sensitive biomarker for early intestinal dysfunction. Collectively, these results suggest that the impairment of the intestinal barrier caused by reproductive-induced sterol competition constitutes a significant factor limiting female lifespan in nutritionally unbalanced diets. This work elucidates a salient aspect of the complex interplay between reproductive resource allocation and somatic maintenance, thereby enhancing our understanding of how diet impacts the aging process.

{"title":"Reproductive-Triggered Sterol Competition Exacerbates Age-Related Intestinal Barrier Damage in Drosophila Females.","authors":"Guixiang Yu, Kejin Chen, Mingyao Yang, Qi Wu","doi":"10.1111/acel.70011","DOIUrl":"https://doi.org/10.1111/acel.70011","url":null,"abstract":"<p><p>The trade-off between reproduction and lifespan has been documented across a wide array of organisms, ranging from invertebrates to mammals. In malnourishing dietary conditions, inhibition of the reproductive processes generally extends the lifespan of females. However, the underlying mechanisms through which nutritional competition driven by reproduction accelerates aging remain poorly understood. Here, using female Drosophila melanogaster as a model, we show that among various dietary conditions lacking specific nutrients, only sterol deficiency significantly exacerbated both the incidence and severity of intestinal barrier deterioration during aging. Sterile mutation specifically ameliorated such damage in sterol-deprived diets, but failed to alleviate age-related intestinal barrier deterioration under other nutritional conditions. Additionally, we demonstrate that the lifespan extension and intestinal barrier amelioration, accompanied by a reproductive suppression effect, through the pharmacological inhibition of mTOR or Ras-Erk signaling using rapamycin or trametinib, were significantly modulated by cholesterol levels. Our study also identifies the morphological changes in excreta as a sensitive biomarker for early intestinal dysfunction. Collectively, these results suggest that the impairment of the intestinal barrier caused by reproductive-induced sterol competition constitutes a significant factor limiting female lifespan in nutritionally unbalanced diets. This work elucidates a salient aspect of the complex interplay between reproductive resource allocation and somatic maintenance, thereby enhancing our understanding of how diet impacts the aging process.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70011"},"PeriodicalIF":8.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging-Associated Liver Sinusoidal Endothelial Cells Dysfunction Aggravates the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease.
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-06 DOI: 10.1111/acel.14502
Qingqing Dai, Quratul Ain, Navodita Seth, Hongchuan Zhao, Michael Rooney, Alexander Zipprich

Aging increases the susceptibility to metabolic dysfunction-associated steatotic liver disease (MASLD). Liver sinusoidal endothelial cells (LSECs) help in maintaining hepatic homeostasis, but the contribution of age-associated LSECs dysfunction to MASLD is not clear. The aim of this study was to investigate the effect of aging-associated LSECs dysfunction on MASLD. Free fatty acid-treated AML12 cells were co-cultured with young and etoposide-induced senescent TSEC cells to evaluate the senescence-associated endothelial effects on the lipid accumulation in hepatocytes. In addition, young and aged rats were subjected to methionine-choline-deficient diet-induced metabolic dysfunction-associated steatohepatitis (MASH). Hepatic hemodynamics and endothelial dysfunction were evaluated by in situ liver perfusion. Liver tissue samples from young and aged healthy controls and MASH patients were also analyzed. Steatotic AML12 cells co-cultured with young TSEC cells showed less lipid accumulation, and such effect was abolished by eNOS inhibitor or with senescent TSEC cells. However, co-culture with resveratrol-treated senescent TSEC cells could partially resume the NO-mediated protective effects of endothelial cells. Furthermore, aged MASH rats showed more severe liver injury, steatosis, fibrosis, and endothelial and microcirculatory dysfunction. In addition, aged MASH patients showed more pronounced liver injury and fibrosis with lower hepatic eNOS, p-eNOS, and SIRT1 protein levels than in young patients. Senescence compromises the protective effects of LSECs against hepatocyte steatosis. In addition, aging aggravates not only liver steatosis and fibrosis but also intensifies LSECs dysfunction in MASH rats. Accordingly aged MASH patients also showed endothelial dysfunction with more severe liver injury and fibrosis.

{"title":"Aging-Associated Liver Sinusoidal Endothelial Cells Dysfunction Aggravates the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease.","authors":"Qingqing Dai, Quratul Ain, Navodita Seth, Hongchuan Zhao, Michael Rooney, Alexander Zipprich","doi":"10.1111/acel.14502","DOIUrl":"https://doi.org/10.1111/acel.14502","url":null,"abstract":"<p><p>Aging increases the susceptibility to metabolic dysfunction-associated steatotic liver disease (MASLD). Liver sinusoidal endothelial cells (LSECs) help in maintaining hepatic homeostasis, but the contribution of age-associated LSECs dysfunction to MASLD is not clear. The aim of this study was to investigate the effect of aging-associated LSECs dysfunction on MASLD. Free fatty acid-treated AML12 cells were co-cultured with young and etoposide-induced senescent TSEC cells to evaluate the senescence-associated endothelial effects on the lipid accumulation in hepatocytes. In addition, young and aged rats were subjected to methionine-choline-deficient diet-induced metabolic dysfunction-associated steatohepatitis (MASH). Hepatic hemodynamics and endothelial dysfunction were evaluated by in situ liver perfusion. Liver tissue samples from young and aged healthy controls and MASH patients were also analyzed. Steatotic AML12 cells co-cultured with young TSEC cells showed less lipid accumulation, and such effect was abolished by eNOS inhibitor or with senescent TSEC cells. However, co-culture with resveratrol-treated senescent TSEC cells could partially resume the NO-mediated protective effects of endothelial cells. Furthermore, aged MASH rats showed more severe liver injury, steatosis, fibrosis, and endothelial and microcirculatory dysfunction. In addition, aged MASH patients showed more pronounced liver injury and fibrosis with lower hepatic eNOS, p-eNOS, and SIRT1 protein levels than in young patients. Senescence compromises the protective effects of LSECs against hepatocyte steatosis. In addition, aging aggravates not only liver steatosis and fibrosis but also intensifies LSECs dysfunction in MASH rats. Accordingly aged MASH patients also showed endothelial dysfunction with more severe liver injury and fibrosis.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14502"},"PeriodicalIF":8.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast.
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-05 DOI: 10.1111/acel.14450
Hokuto Ohtsuka, Sawa Kawai, Yurika Ito, Yuka Kato, Takafumi Shimasaki, Kazuki Imada, Yoko Otsubo, Akira Yamashita, Emi Mishiro-Sato, Keiko Kuwata, Hirofumi Aiba

Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation-dependent control of cellular function.

{"title":"Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast.","authors":"Hokuto Ohtsuka, Sawa Kawai, Yurika Ito, Yuka Kato, Takafumi Shimasaki, Kazuki Imada, Yoko Otsubo, Akira Yamashita, Emi Mishiro-Sato, Keiko Kuwata, Hirofumi Aiba","doi":"10.1111/acel.14450","DOIUrl":"https://doi.org/10.1111/acel.14450","url":null,"abstract":"<p><p>Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation-dependent control of cellular function.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14450"},"PeriodicalIF":8.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nicotinamide Riboside Supplementation Alleviates Testicular Aging Induced by Disruption of Qprt-Dependent NAD+ De Novo Synthesis in Mice.
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-04 DOI: 10.1111/acel.70004
Yining Xu, Huan Wang, Hui Li, Chenlu Wei, Zhenye Zhu, Yanqing Zhao, Jiajia Zhu, Min Lei, Yingpu Sun, Qingling Yang

Recent studies have shown that disruptions in the nicotinamide adenine dinucleotide (NAD+) de novo synthesis pathway accelerate ovarian aging, yet its role in spermatogenesis remains largely unknown. In this study, we investigated the impact of the NAD+ de novo synthesis pathway on spermatogenesis by generating Qprt-deficient mice using CRISPR-Cas9 to target quinolinate phosphoribosyl transferase (Qprt), a key enzyme predominantly expressed in spermatocytes. Our results revealed that the deletion of Qprt did not affect NAD+ levels or spermatogenesis in the testes of 3-month-old mice. However, from 6 months of age onward, Qprt-deficient mice exhibited significantly reduced NAD+ levels in the testes compared to wild-type (WT) controls, along with a notable decrease in germ cell numbers and increased apoptosis. Additionally, these mice demonstrated mitochondrial dysfunction in spermatocytes, impaired progression through prophase I of meiosis, defective double-strand break (DSB) repair, and abnormal meiotic sex chromosome inactivation. Importantly, supplementation with the NAD+ precursor nicotinamide riboside (NR) in Qprt-deficient mice restored NAD+ levels and rescued the spermatogenic defects. These findings underscore the critical role of NAD+ de novo synthesis in maintaining NAD+ homeostasis and highlight its importance in meiotic recombination and meiotic sex chromosome inactivation in spermatogenesis.

{"title":"Nicotinamide Riboside Supplementation Alleviates Testicular Aging Induced by Disruption of Qprt-Dependent NAD<sup>+</sup> De Novo Synthesis in Mice.","authors":"Yining Xu, Huan Wang, Hui Li, Chenlu Wei, Zhenye Zhu, Yanqing Zhao, Jiajia Zhu, Min Lei, Yingpu Sun, Qingling Yang","doi":"10.1111/acel.70004","DOIUrl":"https://doi.org/10.1111/acel.70004","url":null,"abstract":"<p><p>Recent studies have shown that disruptions in the nicotinamide adenine dinucleotide (NAD<sup>+</sup>) de novo synthesis pathway accelerate ovarian aging, yet its role in spermatogenesis remains largely unknown. In this study, we investigated the impact of the NAD<sup>+</sup> de novo synthesis pathway on spermatogenesis by generating Qprt-deficient mice using CRISPR-Cas9 to target quinolinate phosphoribosyl transferase (Qprt), a key enzyme predominantly expressed in spermatocytes. Our results revealed that the deletion of Qprt did not affect NAD<sup>+</sup> levels or spermatogenesis in the testes of 3-month-old mice. However, from 6 months of age onward, Qprt-deficient mice exhibited significantly reduced NAD<sup>+</sup> levels in the testes compared to wild-type (WT) controls, along with a notable decrease in germ cell numbers and increased apoptosis. Additionally, these mice demonstrated mitochondrial dysfunction in spermatocytes, impaired progression through prophase I of meiosis, defective double-strand break (DSB) repair, and abnormal meiotic sex chromosome inactivation. Importantly, supplementation with the NAD<sup>+</sup> precursor nicotinamide riboside (NR) in Qprt-deficient mice restored NAD<sup>+</sup> levels and rescued the spermatogenic defects. These findings underscore the critical role of NAD<sup>+</sup> de novo synthesis in maintaining NAD<sup>+</sup> homeostasis and highlight its importance in meiotic recombination and meiotic sex chromosome inactivation in spermatogenesis.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70004"},"PeriodicalIF":8.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disease Aggravation With Age in an Experimental Model of Multiple Sclerosis: Role of Immunosenescence.
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-02-02 DOI: 10.1111/acel.14491
María Dema, Herena Eixarch, Arnau Hervera, Mireia Castillo, Luisa M Villar, Xavier Montalban, Carmen Espejo

The onset of multiple sclerosis (MS) in older individuals correlates with a higher risk of developing primary progressive MS, faster progression to secondary progressive MS, and increased disability accumulation. This phenomenon can be related to age-related changes in the immune system: with age, the immune system undergoes a process called immunosenescence, characterized by a decline in the function of both the innate and adaptive immune responses. This decline can lead to a decreased ability to control inflammation and repair damaged tissue. Additionally, older individuals often experience a shift toward a more pro-inflammatory state, known as inflammaging, which can exacerbate the progression of neurodegenerative diseases like MS. Therefore, age-related alterations in the immune system could be responsible for the difference in the phenotype of MS observed in older and younger patients. In this study, we investigated the effects of age on the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). Our findings indicate that EAE is more severe in aged mice due to a more inflammatory and neurodegenerative environment in the central nervous system. Age-related changes predominantly affect adaptive immunity, characterized by altered T cell ratios, a pro-inflammatory Th1 response, increased regulatory T cells, exhaustion of T cells, altered B cell antigen presentation, and reduced NK cell maturation and cytotoxicity. Transcriptomic analysis reveals that fewer pathways and transcription factors are activated with age in EAE. These findings allow us to identify potential therapeutic targets specific to elderly MS patients and work on their development in the future.

{"title":"Disease Aggravation With Age in an Experimental Model of Multiple Sclerosis: Role of Immunosenescence.","authors":"María Dema, Herena Eixarch, Arnau Hervera, Mireia Castillo, Luisa M Villar, Xavier Montalban, Carmen Espejo","doi":"10.1111/acel.14491","DOIUrl":"https://doi.org/10.1111/acel.14491","url":null,"abstract":"<p><p>The onset of multiple sclerosis (MS) in older individuals correlates with a higher risk of developing primary progressive MS, faster progression to secondary progressive MS, and increased disability accumulation. This phenomenon can be related to age-related changes in the immune system: with age, the immune system undergoes a process called immunosenescence, characterized by a decline in the function of both the innate and adaptive immune responses. This decline can lead to a decreased ability to control inflammation and repair damaged tissue. Additionally, older individuals often experience a shift toward a more pro-inflammatory state, known as inflammaging, which can exacerbate the progression of neurodegenerative diseases like MS. Therefore, age-related alterations in the immune system could be responsible for the difference in the phenotype of MS observed in older and younger patients. In this study, we investigated the effects of age on the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). Our findings indicate that EAE is more severe in aged mice due to a more inflammatory and neurodegenerative environment in the central nervous system. Age-related changes predominantly affect adaptive immunity, characterized by altered T cell ratios, a pro-inflammatory Th1 response, increased regulatory T cells, exhaustion of T cells, altered B cell antigen presentation, and reduced NK cell maturation and cytotoxicity. Transcriptomic analysis reveals that fewer pathways and transcription factors are activated with age in EAE. These findings allow us to identify potential therapeutic targets specific to elderly MS patients and work on their development in the future.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14491"},"PeriodicalIF":8.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary Zinc Limitation Dictates Lifespan and Reproduction Trade-Offs of Drosophila Mothers.
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-01-31 DOI: 10.1111/acel.14498
Sweta Sarmah, Hannah Thi-Hong Hanh Truong, Gawain McColl, Richard Burke, Christen K Mirth, Matthew D W Piper

Dietary metal ions significantly influence the lifespan and reproduction of Drosophila females. In this study, we show that not adding any of the metal ions to the diet adversely affects reproduction and lifespan. By contrast, food with no added Zn negatively impacts reproduction but does not adversely affect maternal lifespan, indicating it can dictate resource reallocation between key fitness traits. Specifically, it indicates that female flies stop producing eggs to conserve their body Zn for somatic maintenance. Although these data show that flies can sense varying dietary Zn levels to adjust their physiology, they cannot maximise egg production when faced with a choice between food with no added Zn or food with sufficient Zn to support maximum reproduction. Nonetheless, they can choose to preferentially oviposit on Zn-containing food, perhaps indicating a strategy to assure offspring survival. We also uncovered a role for the white gene in sustaining high levels of egg viability when Zn is diluted in the diet. These insights into the role of dietary metal ions, particularly Zn, point to a central role for these dietary micronutrients to indicate environmental quality and so govern trade-offs between lifespan and reproduction in flies.

{"title":"Dietary Zinc Limitation Dictates Lifespan and Reproduction Trade-Offs of Drosophila Mothers.","authors":"Sweta Sarmah, Hannah Thi-Hong Hanh Truong, Gawain McColl, Richard Burke, Christen K Mirth, Matthew D W Piper","doi":"10.1111/acel.14498","DOIUrl":"https://doi.org/10.1111/acel.14498","url":null,"abstract":"<p><p>Dietary metal ions significantly influence the lifespan and reproduction of Drosophila females. In this study, we show that not adding any of the metal ions to the diet adversely affects reproduction and lifespan. By contrast, food with no added Zn negatively impacts reproduction but does not adversely affect maternal lifespan, indicating it can dictate resource reallocation between key fitness traits. Specifically, it indicates that female flies stop producing eggs to conserve their body Zn for somatic maintenance. Although these data show that flies can sense varying dietary Zn levels to adjust their physiology, they cannot maximise egg production when faced with a choice between food with no added Zn or food with sufficient Zn to support maximum reproduction. Nonetheless, they can choose to preferentially oviposit on Zn-containing food, perhaps indicating a strategy to assure offspring survival. We also uncovered a role for the white gene in sustaining high levels of egg viability when Zn is diluted in the diet. These insights into the role of dietary metal ions, particularly Zn, point to a central role for these dietary micronutrients to indicate environmental quality and so govern trade-offs between lifespan and reproduction in flies.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14498"},"PeriodicalIF":8.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CAV1 Exacerbates Renal Tubular Epithelial Cell Senescence by Suppressing CaMKK2/AMPK-Mediated Autophagy.
IF 8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2025-01-30 DOI: 10.1111/acel.14501
Liya Sun, Lujun Xu, Tongyue Duan, Yiyun Xi, Zebin Deng, Shilu Luo, Chongbin Liu, Chen Yang, Huafeng Liu, Lin Sun

Renal proximal tubular epithelial cell (PTEC) senescence and defective autophagy contribute to kidney aging, but the mechanisms remain unclear. Caveolin-1 (CAV1), a crucial component of cell membrane caveolae, regulates autophagy and is associated with cellular senescence. However, its specific role in kidney aging is poorly understood. In this study, we generated Cav1 gene knockout mice and induced kidney aging using D-galactose (D-gal). The results showed that CAV1 expression increased in the renal cortex of the aging mice, which was accompanied by exacerbated renal interstitial fibrosis, elevated levels of senescence-associated proteins γH2AX and p16INK4a, and increased β-galactosidase activity. Moreover, autophagy and AMPK phosphorylation in PTECs were reduced. These phenotypes were partially reversed in D-gal-induced Cav1 knockout mice. Similar results were observed in D-gal-induced human proximal tubular epithelial (HK-2) cells, but these effects were blocked when AMPK activation was inhibited. Additionally, in CaMKK2 knockdown HK-2 cells, siCAV1 failed to promote AMPK phosphorylation, whereas this effect persisted when STK11 was knocked down. Besides, we examined the phosphorylation of CaMKK2 and found that siCAV1 increased its activity. Given that CaMKK2 activity is affected by intracellular Ca2+, we examined Ca2+ levels in HK-2 cells and found that D-gal treatment reduced intracellular Ca2+ concentration, but CAV1 knockdown did not alter these levels. Through GST pull-down assays, we demonstrated a direct interaction between CAV1 and CaMKK2. In conclusion, these findings suggest that CAV1 exacerbates renal tubular epithelial cell senescence by directly interacting with CaMKK2, suppressing its activity and AMPK-mediated autophagy via a Ca2+-independent pathway.

{"title":"CAV1 Exacerbates Renal Tubular Epithelial Cell Senescence by Suppressing CaMKK2/AMPK-Mediated Autophagy.","authors":"Liya Sun, Lujun Xu, Tongyue Duan, Yiyun Xi, Zebin Deng, Shilu Luo, Chongbin Liu, Chen Yang, Huafeng Liu, Lin Sun","doi":"10.1111/acel.14501","DOIUrl":"https://doi.org/10.1111/acel.14501","url":null,"abstract":"<p><p>Renal proximal tubular epithelial cell (PTEC) senescence and defective autophagy contribute to kidney aging, but the mechanisms remain unclear. Caveolin-1 (CAV1), a crucial component of cell membrane caveolae, regulates autophagy and is associated with cellular senescence. However, its specific role in kidney aging is poorly understood. In this study, we generated Cav1 gene knockout mice and induced kidney aging using D-galactose (D-gal). The results showed that CAV1 expression increased in the renal cortex of the aging mice, which was accompanied by exacerbated renal interstitial fibrosis, elevated levels of senescence-associated proteins γH2AX and p16<sup>INK4a</sup>, and increased β-galactosidase activity. Moreover, autophagy and AMPK phosphorylation in PTECs were reduced. These phenotypes were partially reversed in D-gal-induced Cav1 knockout mice. Similar results were observed in D-gal-induced human proximal tubular epithelial (HK-2) cells, but these effects were blocked when AMPK activation was inhibited. Additionally, in CaMKK2 knockdown HK-2 cells, siCAV1 failed to promote AMPK phosphorylation, whereas this effect persisted when STK11 was knocked down. Besides, we examined the phosphorylation of CaMKK2 and found that siCAV1 increased its activity. Given that CaMKK2 activity is affected by intracellular Ca<sup>2+</sup>, we examined Ca<sup>2+</sup> levels in HK-2 cells and found that D-gal treatment reduced intracellular Ca<sup>2+</sup> concentration, but CAV1 knockdown did not alter these levels. Through GST pull-down assays, we demonstrated a direct interaction between CAV1 and CaMKK2. In conclusion, these findings suggest that CAV1 exacerbates renal tubular epithelial cell senescence by directly interacting with CaMKK2, suppressing its activity and AMPK-mediated autophagy via a Ca<sup>2+</sup>-independent pathway.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14501"},"PeriodicalIF":8.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Aging Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1