Pub Date : 2024-10-18DOI: 10.1021/acscatal.4c0516910.1021/acscatal.4c05169
Bin Chen, Dehuan Shi, Renxia Deng, Xin Xu, Wenxia Liu, Yang Wei, Zheyuan Liu, Shenghong Zhong*, Jianfeng Huang* and Yan Yu*,
Revealing the synergistic catalytic mechanism involving multiple active centers is crucial for understanding multiphase catalysis. However, the complex structures of catalysts and interfacial environments pose a challenge in thoroughly exploring the experimental evidence. This study reports the utilization of a CuNi dual-atom catalyst (Cu/Ni–NC) for the electrochemical reduction of CO2. It demonstrates a high Faradaic efficiency of CO exceeding 99%, remarkable reaction activity with a partial current density surpassing –300 mA cm–2, and prolonged stability for more than 5 days at a current density of –200 mA·cm–2. Operando characterization techniques and density functional theory calculations reveal that Ni atoms function as active sites for the activation and hydrogenation of CO2, while Cu atoms serve as active sites for the dissociation of H2O, supplying protons for the subsequent hydrogenation process. Moreover, the electronic interactions between Ni and Cu atoms facilitate the formation of *COOH and the dissociation of H2O, illustrating a synergistic reduction of CO2 at the dual-atom sites.
揭示涉及多个活性中心的协同催化机制对于理解多相催化至关重要。然而,催化剂和界面环境的复杂结构给深入探索实验证据带来了挑战。本研究报告了利用铜镍双原子催化剂(Cu/Ni-NC)电化学还原 CO2 的情况。该催化剂对一氧化碳的法拉第效率高达 99% 以上,反应活性显著,部分电流密度超过 -300 mA cm-2,并且在电流密度为 -200 mA-cm-2 的条件下可保持 5 天以上的稳定性。运算表征技术和密度泛函理论计算表明,镍原子是活化和氢化二氧化碳的活性位点,而铜原子则是解离 H2O 的活性位点,为随后的氢化过程提供质子。此外,镍原子和铜原子之间的电子相互作用促进了*COOH 的形成和 H2O 的解离,说明了在双原子位点上 CO2 的协同还原作用。
{"title":"Leveraging Atomic-Scale Synergy for Selective CO2 Electrocatalysis to CO over CuNi Dual-Atom Catalysts","authors":"Bin Chen, Dehuan Shi, Renxia Deng, Xin Xu, Wenxia Liu, Yang Wei, Zheyuan Liu, Shenghong Zhong*, Jianfeng Huang* and Yan Yu*, ","doi":"10.1021/acscatal.4c0516910.1021/acscatal.4c05169","DOIUrl":"https://doi.org/10.1021/acscatal.4c05169https://doi.org/10.1021/acscatal.4c05169","url":null,"abstract":"<p >Revealing the synergistic catalytic mechanism involving multiple active centers is crucial for understanding multiphase catalysis. However, the complex structures of catalysts and interfacial environments pose a challenge in thoroughly exploring the experimental evidence. This study reports the utilization of a CuNi dual-atom catalyst (Cu/Ni–NC) for the electrochemical reduction of CO<sub>2</sub>. It demonstrates a high Faradaic efficiency of CO exceeding 99%, remarkable reaction activity with a partial current density surpassing –300 mA cm<sup>–2</sup>, and prolonged stability for more than 5 days at a current density of –200 mA·cm<sup>–2</sup>. <i>Operando</i> characterization techniques and density functional theory calculations reveal that Ni atoms function as active sites for the activation and hydrogenation of CO<sub>2</sub>, while Cu atoms serve as active sites for the dissociation of H<sub>2</sub>O, supplying protons for the subsequent hydrogenation process. Moreover, the electronic interactions between Ni and Cu atoms facilitate the formation of *COOH and the dissociation of H<sub>2</sub>O, illustrating a synergistic reduction of CO<sub>2</sub> at the dual-atom sites.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"14 21","pages":"16224–16233 16224–16233"},"PeriodicalIF":11.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18Epub Date: 2024-09-26DOI: 10.1021/acschembio.4c00286
Karolina Krygier, Anjalee N Wijetunge, Arthur Srayeddin, Harrison Mccann, Anthony F Rullo
<p><p>Recent advances in the field of translational chemical biology use diverse "proximity-inducing" synthetic modalities to elicit new modes of "event driven" pharmacology. These include mechanisms of targeted protein degradation and immune clearance of pathogenic cells. Heterobifunctional "chimeric" compounds like Proteolysis TArgeting Chimeras (PROTACs) and Antibody Recruiting Molecules (ARMs) leverage these mechanisms, respectively. Both systems function through the formation of reversible "ternary" or higher-order biomolecular complexes. Critical to function are key parameters, such as bifunctional molecule affinity for endogenous proteins, target residence time, and turnover. To probe the mechanism and enhance function, covalent chemical approaches have been developed to kinetically stabilize ternary complexes. These include electrophilic PROTACs and Covalent Immune Recruiters (CIRs), the latter designed to uniquely enforce cell-cell induced proximity. Inducing cell-cell proximity is associated with key challenges arising from a combination of steric and/or mechanical based destabilizing forces on the ternary complex. These factors can attenuate the formation of ternary complexes driven by high affinity bifunctional/proximity inducing molecules. This Account describes initial efforts in our lab to address these challenges using the CIR strategy in antibody recruitment or receptor engineered T cell model systems of cell-cell induced proximity. ARMs form ternary complexes with serum antibodies and surface protein antigens on tumor cells that subsequently engage immune cells via Fc receptors. Binding and clustering of Fc receptors trigger immune cell killing of the tumor cell. We applied the CIR strategy to convert ARMs to covalent chimeras, which "irreversibly" recruit serum antibodies to tumor cells. These covalent chimeras leverage electrophile preorganization and kinetic effective molarity to achieve fast and selective covalent engagement of the target ternary complex protein, e.g., serum antibody. Importantly, covalent engagement can proceed via diverse binding site amino acids beyond cysteine. Covalent chimeras demonstrated striking functional enhancements compared to noncovalent ARM analogs in functional immune assays. We revealed this enhancement was in fact due to the increased kinetic stability <i>and not</i> concentration, of ternary complexes. This finding was recapitulated using analogous CIR modalities that integrate peptidic or carbohydrate binding ligands with Sulfur(VI) Fluoride Exchange (SuFEx) electrophiles to induce cell-cell proximity. Mechanistic studies in a distinct model system that uses T cells engineered with receptors that recognize covalent chimeras or ARMs, revealed covalent receptor engagement uniquely enforces downstream activation signaling. Finally, this Account discusses potential challenges and future directions for adapting and optimizing covalent chimeric/bifunctional molecules for diverse applications in
转化化学生物学领域的最新进展是利用各种 "近似诱导 "合成模式来激发新的 "事件驱动 "药理学模式。其中包括靶向降解蛋白质和免疫清除致病细胞的机制。蛋白水解嵌合体(PROTACs)和抗体招募分子(ARMs)等异种功能 "嵌合 "化合物分别利用了这些机制。这两种系统都通过形成可逆的 "三元 "或高阶生物分子复合物来发挥作用。双功能分子对内源性蛋白质的亲和力、目标停留时间和周转率等关键参数对功能至关重要。为了探究机理和增强功能,人们开发了共价化学方法来对三元复合物进行动力学稳定。这些方法包括亲电性 PROTAC 和共价免疫招募剂(CIR),后者旨在独特地加强细胞间的诱导接近。诱导细胞接近与三元复合物上的立体和/或机械不稳定力的组合所带来的关键挑战有关。这些因素会削弱由高亲和力双功能/亲近性诱导分子驱动的三元复合物的形成。本报告介绍了我们实验室在抗体招募或细胞-细胞诱导接近的受体工程 T 细胞模型系统中使用 CIR 策略应对这些挑战的初步努力。ARM 与肿瘤细胞上的血清抗体和表面蛋白抗原形成三元复合物,随后通过 Fc 受体与免疫细胞结合。Fc 受体的结合和聚集会引发免疫细胞对肿瘤细胞的杀伤。我们采用 CIR 策略将 ARM 转化为共价嵌合体,"不可逆地 "将血清抗体吸附到肿瘤细胞上。这些共价嵌合体利用亲电子预组织和动力学有效摩尔度实现目标三元复合蛋白(如血清抗体)的快速和选择性共价啮合。重要的是,共价啮合可通过半胱氨酸以外的多种结合位点氨基酸进行。与非共价 ARM 类似物相比,共价嵌合体在功能免疫测定中表现出惊人的功能增强。我们发现,这种增强实际上是由于三元复合物的动力学稳定性而非浓度增加所致。我们使用类似的 CIR 模式再现了这一发现,这种模式将肽或碳水化合物结合配体与氟(VI)硫交换(SuFEx)亲电体整合在一起,以诱导细胞-细胞接近。在一个独特的模型系统中进行的机理研究显示,共价受体参与能独特地加强下游激活信号的传递。最后,本报告讨论了将共价嵌合体/双功能分子应用于细胞-细胞诱导接近的各种领域并对其进行优化的潜在挑战和未来方向。
{"title":"Leveraging Covalency to Stabilize Ternary Complex Formation For Cell-Cell \"Induced Proximity\".","authors":"Karolina Krygier, Anjalee N Wijetunge, Arthur Srayeddin, Harrison Mccann, Anthony F Rullo","doi":"10.1021/acschembio.4c00286","DOIUrl":"10.1021/acschembio.4c00286","url":null,"abstract":"<p><p>Recent advances in the field of translational chemical biology use diverse \"proximity-inducing\" synthetic modalities to elicit new modes of \"event driven\" pharmacology. These include mechanisms of targeted protein degradation and immune clearance of pathogenic cells. Heterobifunctional \"chimeric\" compounds like Proteolysis TArgeting Chimeras (PROTACs) and Antibody Recruiting Molecules (ARMs) leverage these mechanisms, respectively. Both systems function through the formation of reversible \"ternary\" or higher-order biomolecular complexes. Critical to function are key parameters, such as bifunctional molecule affinity for endogenous proteins, target residence time, and turnover. To probe the mechanism and enhance function, covalent chemical approaches have been developed to kinetically stabilize ternary complexes. These include electrophilic PROTACs and Covalent Immune Recruiters (CIRs), the latter designed to uniquely enforce cell-cell induced proximity. Inducing cell-cell proximity is associated with key challenges arising from a combination of steric and/or mechanical based destabilizing forces on the ternary complex. These factors can attenuate the formation of ternary complexes driven by high affinity bifunctional/proximity inducing molecules. This Account describes initial efforts in our lab to address these challenges using the CIR strategy in antibody recruitment or receptor engineered T cell model systems of cell-cell induced proximity. ARMs form ternary complexes with serum antibodies and surface protein antigens on tumor cells that subsequently engage immune cells via Fc receptors. Binding and clustering of Fc receptors trigger immune cell killing of the tumor cell. We applied the CIR strategy to convert ARMs to covalent chimeras, which \"irreversibly\" recruit serum antibodies to tumor cells. These covalent chimeras leverage electrophile preorganization and kinetic effective molarity to achieve fast and selective covalent engagement of the target ternary complex protein, e.g., serum antibody. Importantly, covalent engagement can proceed via diverse binding site amino acids beyond cysteine. Covalent chimeras demonstrated striking functional enhancements compared to noncovalent ARM analogs in functional immune assays. We revealed this enhancement was in fact due to the increased kinetic stability <i>and not</i> concentration, of ternary complexes. This finding was recapitulated using analogous CIR modalities that integrate peptidic or carbohydrate binding ligands with Sulfur(VI) Fluoride Exchange (SuFEx) electrophiles to induce cell-cell proximity. Mechanistic studies in a distinct model system that uses T cells engineered with receptors that recognize covalent chimeras or ARMs, revealed covalent receptor engagement uniquely enforces downstream activation signaling. Finally, this Account discusses potential challenges and future directions for adapting and optimizing covalent chimeric/bifunctional molecules for diverse applications in","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2103-2117"},"PeriodicalIF":3.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18Epub Date: 2024-09-23DOI: 10.1021/acschembio.4c00494
Alexander McDermott, Leonie M Windeln, Jacob S D Valentine, Leonardo Baldassarre, Andrew D Foster, Ali Tavassoli
Split-intein circular ligation of proteins and peptides (SICLOPPS) is a method for generating intracellular libraries of cyclic peptides that has yielded several first-in-class inhibitors. Here, we detail a revised high-content, high-throughput SICLOPPS screening protocol that utilizes next-generation sequencing, biopanning, and computational tools to identify hits against a given protein-protein interaction. We used this platform for the identification of inhibitors of the HIF-1α/HIF-1β protein-protein interaction. The revised platform resulted in a significantly higher positive hit rate than that previously reported for SICLOPPS screens, and the identified cyclic peptides were more active in vitro and in cells than our previously reported inhibitors. The platform detailed here may be used for the identification of inhibitors of a wide range of other targets.
{"title":"Next Generation SICLOPPS Screening for the Identification of Inhibitors of the HIF-1α/HIF-1β Protein-Protein Interaction.","authors":"Alexander McDermott, Leonie M Windeln, Jacob S D Valentine, Leonardo Baldassarre, Andrew D Foster, Ali Tavassoli","doi":"10.1021/acschembio.4c00494","DOIUrl":"10.1021/acschembio.4c00494","url":null,"abstract":"<p><p>Split-intein circular ligation of proteins and peptides (SICLOPPS) is a method for generating intracellular libraries of cyclic peptides that has yielded several first-in-class inhibitors. Here, we detail a revised high-content, high-throughput SICLOPPS screening protocol that utilizes next-generation sequencing, biopanning, and computational tools to identify hits against a given protein-protein interaction. We used this platform for the identification of inhibitors of the HIF-1α/HIF-1β protein-protein interaction. The revised platform resulted in a significantly higher positive hit rate than that previously reported for SICLOPPS screens, and the identified cyclic peptides were more active in vitro and in cells than our previously reported inhibitors. The platform detailed here may be used for the identification of inhibitors of a wide range of other targets.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2232-2239"},"PeriodicalIF":3.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1021/acscatal.4c0477110.1021/acscatal.4c04771
Andrew Hwang, Andrew “Bean” Getsoian and Enrique Iglesia*,
Ce0.5Zr0.5O2–x (CZO) is widely used for the storage and reaction of O atoms (O*) in chemical looping and emissions control. Reductants react with O* to form vacancies (*) at rates limited by surface reactions with O*, replenished through fast diffusion through CZO crystals. The dynamics and mechanism of these surface reactions remain unresolved because O* stability and reactivity depend very strongly on the extent of CZO reduction during stoichiometric reactions. These thermodynamic nonidealities are evident from free energy penalties in removing O* that increase sharply as intracrystalline O* concentrations decrease, leading to reduction rates that deviate from the expected linear dependence of rates on O* concentrations. Rates of CZO reduction by CO, at conditions resembling “cold start” of vehicle emissions systems, decrease 10-fold when O* concentrations decrease by only a factor of 2; this nonlinearity reflects the strong effects of thermodynamic nonidealities on reaction dynamics. This study addresses and resolves these mechanistic and practical matters using transition state theory, a thermodynamic construct that rigorously accounts for the prevalent nonideal behavior. Such formalisms treat Ce0.5Zr0.5O2 as an ideal solution and O*, *, surface-bound intermediates, and transition states as solutes within a well-mixed Ce0.5Zr0.5O2–x solution with excess free energies that depend strongly on extent of reduction. The nonideal behavior of these solutes and the reactivity of O* in reactions with CO are related to the measured thermodynamics of O* through scaling relations, and the requisite kinetic parameters for the ideal system are independently derived from a mechanism-based interpretation of catalytic CO–O2 reactions on stoichiometric CZO. These approaches and constructs lead to a kinetic model that accurately describes measured transient stoichiometric reduction rates, but only when incorporated into reaction-convection equations that rigorously capture how the thermodynamic activities of kinetically relevant reactants, transition states, and spectators evolve in time and space. These formalisms provide a general framework for the analysis of stoichiometric processes in strongly nonideal systems that are ubiquitous in carbon capture, energy storage, and environmental remediation.
{"title":"Kinetics, Mechanism, and Thermodynamics of Ceria-Zirconia Reduction","authors":"Andrew Hwang, Andrew “Bean” Getsoian and Enrique Iglesia*, ","doi":"10.1021/acscatal.4c0477110.1021/acscatal.4c04771","DOIUrl":"https://doi.org/10.1021/acscatal.4c04771https://doi.org/10.1021/acscatal.4c04771","url":null,"abstract":"<p >Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2–<i>x</i></sub> (CZO) is widely used for the storage and reaction of O atoms (O*) in chemical looping and emissions control. Reductants react with O* to form vacancies (*) at rates limited by surface reactions with O*, replenished through fast diffusion through CZO crystals. The dynamics and mechanism of these surface reactions remain unresolved because O* stability and reactivity depend very strongly on the extent of CZO reduction during stoichiometric reactions. These thermodynamic nonidealities are evident from free energy penalties in removing O* that increase sharply as intracrystalline O* concentrations decrease, leading to reduction rates that deviate from the expected linear dependence of rates on O* concentrations. Rates of CZO reduction by CO, at conditions resembling “cold start” of vehicle emissions systems, decrease 10-fold when O* concentrations decrease by only a factor of 2; this nonlinearity reflects the strong effects of thermodynamic nonidealities on reaction dynamics. This study addresses and resolves these mechanistic and practical matters using transition state theory, a thermodynamic construct that rigorously accounts for the prevalent nonideal behavior. Such formalisms treat Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> as an ideal solution and O*, *, surface-bound intermediates, and transition states as solutes within a well-mixed Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2–<i>x</i></sub> solution with excess free energies that depend strongly on extent of reduction. The nonideal behavior of these solutes and the reactivity of O* in reactions with CO are related to the measured thermodynamics of O* through scaling relations, and the requisite kinetic parameters for the ideal system are independently derived from a mechanism-based interpretation of catalytic CO–O<sub>2</sub> reactions on stoichiometric CZO. These approaches and constructs lead to a kinetic model that accurately describes measured transient stoichiometric reduction rates, but only when incorporated into reaction-convection equations that rigorously capture how the thermodynamic activities of kinetically relevant reactants, transition states, and spectators evolve in time and space. These formalisms provide a general framework for the analysis of stoichiometric processes in strongly nonideal systems that are ubiquitous in carbon capture, energy storage, and environmental remediation.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"14 21","pages":"16184–16204 16184–16204"},"PeriodicalIF":11.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The dissociation and spillover process of hydrogen is one of the key processes in hydrogenation reactions, but this process is very challenging or even impossible in the presence of a S atom, as S atoms can severely poison the surface of supported metal catalysts. Herein, we report that the efficient dissociation and transfer of hydrogen can be achieved in the presence of S poisoning over the synergetic process of hydrogen transfer units together with H2 dissociation units in the hydrogenation of 5-nitrobenzothiazole catalyzed by Pt/MoO3. Pt/MoO3 showcases 99% conversion with ∼99% selectivity under mild reaction conditions and is one of the most active catalysts reported so far for the hydrogenation of sulfur atom-containing compounds. Mechanism studies, in situ characterization, and density functional theory calculations collectively demonstrate that the MoO3 support, with H1.68MoO3 as an intermediate, acts as a bridge for transferring H species between Pt sites and nitrobenzothiazole. The unique H proton storage and release properties of in situ formed H1.68MoO3 not only accelerate the breaking of the N–O bond for the hydrogenation of 5-nitrobenzothiazole but also prevent sulfur poisoning. This work provides a promising strategy to tackle the current challenges in the catalytic hydrogenation of sulfur atom-containing compounds.
氢气的解离和溢出过程是加氢反应的关键过程之一,但这一过程在存在 S 原子的情况下非常具有挑战性,甚至是不可能实现的,因为 S 原子会严重毒害支撑金属催化剂的表面。在此,我们报告了在 Pt/MoO3 催化的 5-硝基苯并噻唑氢化反应中,通过氢转移单元与氢解离单元的协同作用,在 S 中毒的情况下也能实现氢的高效解离和转移。在温和的反应条件下,Pt/MoO3 的转化率高达 99%,选择性高达 99%,是迄今为止报道的含硫原子化合物氢化反应中最活跃的催化剂之一。机理研究、原位表征和密度泛函理论计算共同证明,以 H1.68MoO3 为中间体的 MoO3 支持物是在铂位点和硝基苯并噻唑之间转移 H 物种的桥梁。原位形成的 H1.68MoO3 具有独特的 H 质子存储和释放特性,不仅能加速 5-硝基苯并噻唑氢化过程中 N-O 键的断裂,还能防止硫中毒。这项工作为解决目前含硫原子化合物催化加氢的难题提供了一种前景广阔的策略。
{"title":"Regulation of the Properties of Hydrogen Dissociation and Transfer in the Presence of S Atoms for Efficient Hydrogenations","authors":"Xiaoyan Liu, Mingyuan Zhang, Xin Liu, Jiali Liu, Huicong Dai, Wenhao Luo, Jian Liu*, Rui Gao* and Qihua Yang*, ","doi":"10.1021/acscatal.4c0550110.1021/acscatal.4c05501","DOIUrl":"https://doi.org/10.1021/acscatal.4c05501https://doi.org/10.1021/acscatal.4c05501","url":null,"abstract":"<p >The dissociation and spillover process of hydrogen is one of the key processes in hydrogenation reactions, but this process is very challenging or even impossible in the presence of a S atom, as S atoms can severely poison the surface of supported metal catalysts. Herein, we report that the efficient dissociation and transfer of hydrogen can be achieved in the presence of S poisoning over the synergetic process of hydrogen transfer units together with H<sub>2</sub> dissociation units in the hydrogenation of 5-nitrobenzothiazole catalyzed by Pt/MoO<sub>3</sub>. Pt/MoO<sub>3</sub> showcases 99% conversion with ∼99% selectivity under mild reaction conditions and is one of the most active catalysts reported so far for the hydrogenation of sulfur atom-containing compounds. Mechanism studies, in situ characterization, and density functional theory calculations collectively demonstrate that the MoO<sub>3</sub> support, with H<sub>1.68</sub>MoO<sub>3</sub> as an intermediate, acts as a bridge for transferring H species between Pt sites and nitrobenzothiazole. The unique H proton storage and release properties of in situ formed H<sub>1.68</sub>MoO<sub>3</sub> not only accelerate the breaking of the N–O bond for the hydrogenation of 5-nitrobenzothiazole but also prevent sulfur poisoning. This work provides a promising strategy to tackle the current challenges in the catalytic hydrogenation of sulfur atom-containing compounds.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"14 21","pages":"16214–16223 16214–16223"},"PeriodicalIF":11.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscatal.4c05501","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18Epub Date: 2024-09-24DOI: 10.1021/acschembio.4c00250
Irene Lepori, Marta Roncetti, Marianna Vitiello, Elisabetta Barresi, Raffaella De Paolo, Paolo Maria Tentori, Caterina Baldanzi, Melissa Santi, Monica Evangelista, Giovanni Signore, Lorena Tedeschi, Claudia Gravekamp, Francesco Cardarelli, Sabrina Taliani, Federico Da Settimo, M Sloan Siegrist, Laura Poliseno
Among bacteria used as anticancer vaccines, attenuated Listeria monocytogenes (Lmat) stands out, because it spreads from one infected cancer cell to the next, induces a strong adaptive immune response, and is suitable for repeated injection cycles. Here, we use click chemistry to functionalize the Lmat cell wall and turn the bacterium into an "intelligent carrier" of the chemotherapeutic drug doxorubicin. Doxorubicin-loaded Lmat retains most of its biological properties and, compared to the control fluorophore-functionalized bacteria, shows enhanced cytotoxicity against melanoma cells both in vitro and in a xenograft model in zebrafish. Our results show that drugs can be covalently loaded on the Lmat cell wall and pave the way to the development of new two-in-one therapeutic approaches combining immunotherapy with chemotherapy.
{"title":"Enhancing the Anticancer Activity of Attenuated <i>Listeria monocytogenes</i> by Cell Wall Functionalization with \"Clickable\" Doxorubicin.","authors":"Irene Lepori, Marta Roncetti, Marianna Vitiello, Elisabetta Barresi, Raffaella De Paolo, Paolo Maria Tentori, Caterina Baldanzi, Melissa Santi, Monica Evangelista, Giovanni Signore, Lorena Tedeschi, Claudia Gravekamp, Francesco Cardarelli, Sabrina Taliani, Federico Da Settimo, M Sloan Siegrist, Laura Poliseno","doi":"10.1021/acschembio.4c00250","DOIUrl":"10.1021/acschembio.4c00250","url":null,"abstract":"<p><p>Among bacteria used as anticancer vaccines, attenuated <i>Listeria monocytogenes</i> (Lm<sup>at</sup>) stands out, because it spreads from one infected cancer cell to the next, induces a strong adaptive immune response, and is suitable for repeated injection cycles. Here, we use click chemistry to functionalize the Lm<sup>at</sup> cell wall and turn the bacterium into an \"intelligent carrier\" of the chemotherapeutic drug doxorubicin. Doxorubicin-loaded Lm<sup>at</sup> retains most of its biological properties and, compared to the control fluorophore-functionalized bacteria, shows enhanced cytotoxicity against melanoma cells both in vitro and in a xenograft model in zebrafish. Our results show that drugs can be covalently loaded on the Lm<sup>at</sup> cell wall and pave the way to the development of new two-in-one therapeutic approaches combining immunotherapy with chemotherapy.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2131-2140"},"PeriodicalIF":3.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1021/acscatal.4c0434010.1021/acscatal.4c04340
Yuanhui Yao, Xiaofei Wei, Haiqiao Zhou, Kai Wei, Bin Kui, Fangfang Wu*, Liang Chen, Wei Wang, Fangna Dai*, Peng Gao*, Nana Wang and Wei Ye*,
The electrochemical reduction of nitrate ions to valuable ammonia enables the recovery of nitrate pollutants from industrial wastewater, thereby synchronously balancing the nitrogen cycle and achieving NH3 production. However, the currently reported electrocatalysts still suffer from the low NH3 yield rate, NH3 Faradaic inefficiency, and NH3 partial current density. Herein, a strategy based on the regulation of the d-band center by Ru doping is presented to boost ammonia production. Theoretical calculations unravel that the Ru dopant in Ni metal–organic framework shifts the d-band center of the neighboring Ni sites upward, optimizing the adsorption strength of the N-intermediates, resulting in greatly enhanced nitrate reduction reaction performance. The synthesized Ru-doped Ni metal–organic framework rod array electrode delivers a NH3 yield rate of 1.31 mmol h–1 cm–2 and NH3 Faradaic efficiency of 91.5% at −0.6 V versus reversible hydrogen electrode, as well as good cycling stability. In view of the multielectron transfer in nitrate reduction and electrocatalytic activity, the Zn-NO3– battery is assembled by this electrode and Zn anode, which delivers a high open-circuit voltage of 1.421 V and the maximum output power density of 4.99 mW cm–2, demonstrating potential application value.
通过电化学方法将硝酸根离子还原成有价值的氨,可以回收工业废水中的硝酸盐污染物,从而同步平衡氮循环并实现 NH3 生产。然而,目前报道的电催化剂仍存在 NH3 产率低、NH3 法拉第效率低和 NH3 部分电流密度低等问题。本文提出了一种通过掺杂 Ru 来调节 d 波段中心以提高氨生产的策略。理论计算揭示了掺杂在镍金属有机框架中的 Ru 会使邻近镍位点的 d 带中心上移,从而优化 N 媒质的吸附强度,从而大大提高硝酸盐还原反应的性能。合成的 Ru 掺杂镍金属有机框架棒阵列电极的 NH3 产率为 1.31 mmol h-1 cm-2,在 -0.6 V 电压下与可逆氢电极相比,NH3 法拉第效率为 91.5%,并且具有良好的循环稳定性。鉴于硝酸盐还原过程中的多电子转移和电催化活性,该电极与锌阳极组装成 Zn-NO3- 电池,可提供 1.421 V 的高开路电压和 4.99 mW cm-2 的最大输出功率密度,具有潜在的应用价值。
{"title":"Regulating the d-Band Center of Metal–Organic Frameworks for Efficient Nitrate Reduction Reaction and Zinc-Nitrate Battery","authors":"Yuanhui Yao, Xiaofei Wei, Haiqiao Zhou, Kai Wei, Bin Kui, Fangfang Wu*, Liang Chen, Wei Wang, Fangna Dai*, Peng Gao*, Nana Wang and Wei Ye*, ","doi":"10.1021/acscatal.4c0434010.1021/acscatal.4c04340","DOIUrl":"https://doi.org/10.1021/acscatal.4c04340https://doi.org/10.1021/acscatal.4c04340","url":null,"abstract":"<p >The electrochemical reduction of nitrate ions to valuable ammonia enables the recovery of nitrate pollutants from industrial wastewater, thereby synchronously balancing the nitrogen cycle and achieving NH<sub>3</sub> production. However, the currently reported electrocatalysts still suffer from the low NH<sub>3</sub> yield rate, NH<sub>3</sub> Faradaic inefficiency, and NH<sub>3</sub> partial current density. Herein, a strategy based on the regulation of the d-band center by Ru doping is presented to boost ammonia production. Theoretical calculations unravel that the Ru dopant in Ni metal–organic framework shifts the d-band center of the neighboring Ni sites upward, optimizing the adsorption strength of the N-intermediates, resulting in greatly enhanced nitrate reduction reaction performance. The synthesized Ru-doped Ni metal–organic framework rod array electrode delivers a NH<sub>3</sub> yield rate of 1.31 mmol h<sup>–1</sup> cm<sup>–2</sup> and NH<sub>3</sub> Faradaic efficiency of 91.5% at −0.6 V versus reversible hydrogen electrode, as well as good cycling stability. In view of the multielectron transfer in nitrate reduction and electrocatalytic activity, the Zn-NO<sub>3</sub><sup>–</sup> battery is assembled by this electrode and Zn anode, which delivers a high open-circuit voltage of 1.421 V and the maximum output power density of 4.99 mW cm<sup>–2</sup>, demonstrating potential application value.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"14 21","pages":"16205–16213 16205–16213"},"PeriodicalIF":11.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18Epub Date: 2024-09-20DOI: 10.1021/acschembio.4c00336
Gautam Kumar, Prema Kumari Agarwala, Aswin T Srivatsav, Ashok Ravula, G Ashmitha, Sreenath Balakrishnan, Shobhna Kapoor, Rishikesh Narayan
Deciphering the functional relevance of every protein is crucial to developing a better (patho)physiological understanding of human biology. The discovery and use of quality chemical probes propel exciting developments for developing drugs in therapeutic areas with unmet clinical needs. Myosin light-chain kinase (MLCK) serves as a possible therapeutic target in a plethora of diseases, including inflammatory diseases, cancer, etc. Recent years have seen a substantial increase in interest in exploring MLCK biology. However, there is only one widely used MLCK modulator, namely, ML-7, that too with a narrow working concentration window and high toxicity profile leading to limited insights. Herein, we report the identification of a potent and highly selective chemical probe, Myokinasib-II, from the synthesis and structure-activity relationship studies of a focused indotropane-based compound collection. Notably, it is structurally distinct from ML-7 and hence meets the need for an alternative inhibitor to study MLCK biology as per the recommended best practices. Moreover, our extensive benchmarking studies demonstrate that Myokinasib-II displays better potency, better selectivity profile, and no nonspecific interference in relevant assays as compared to other known MLCK inhibitors.
{"title":"Identification and Benchmarking of Myokinasib-II as a Selective and Potent Chemical Probe for Exploring MLCK1 Inhibition.","authors":"Gautam Kumar, Prema Kumari Agarwala, Aswin T Srivatsav, Ashok Ravula, G Ashmitha, Sreenath Balakrishnan, Shobhna Kapoor, Rishikesh Narayan","doi":"10.1021/acschembio.4c00336","DOIUrl":"10.1021/acschembio.4c00336","url":null,"abstract":"<p><p>Deciphering the functional relevance of every protein is crucial to developing a better (patho)physiological understanding of human biology. The discovery and use of quality chemical probes propel exciting developments for developing drugs in therapeutic areas with unmet clinical needs. Myosin light-chain kinase (MLCK) serves as a possible therapeutic target in a plethora of diseases, including inflammatory diseases, cancer, etc. Recent years have seen a substantial increase in interest in exploring MLCK biology. However, there is only one widely used MLCK modulator, namely, ML-7, that too with a narrow working concentration window and high toxicity profile leading to limited insights. Herein, we report the identification of a potent and highly selective chemical probe, Myokinasib-II, from the synthesis and structure-activity relationship studies of a focused indotropane-based compound collection. Notably, it is structurally distinct from ML-7 and hence meets the need for an alternative inhibitor to study MLCK biology as per the recommended best practices. Moreover, our extensive benchmarking studies demonstrate that Myokinasib-II displays better potency, better selectivity profile, and no nonspecific interference in relevant assays as compared to other known MLCK inhibitors.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2165-2175"},"PeriodicalIF":3.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18Epub Date: 2024-10-07DOI: 10.1021/acschembio.4c00584
Chengyu Yun, Na Li, Yishu Zhang, Tong Fang, Jing Ma, Zhenting Zheng, Subing Zhou, Xiaoqing Cai
Tumor-selective degradation of target proteins has the potential to offer superior therapeutic benefits with maximized therapeutic windows and minimized off-target effects. However, the development of effective lysosome-targeted degradation platforms for achieving selective protein degradation in tumors remains a substantial challenge. Cancer cells depend on certain solute carrier (SLC) transporters to acquire extracellular nutrients to sustain their metabolism and growth. This current study exploits facilitative glucose transporters (GLUTs), a group of SLC transporters widely overexpressed in numerous types of cancer, to drive the endocytosis and lysosomal degradation of target proteins in tumor cells. GLUT-targeting chimeras (GTACs) were generated by conjugating multiple glucose ligands to an antibody specific for the target protein. We demonstrate that the constructed GTACs can induce the internalization and lysosomal degradation of the extracellular and membrane proteins streptavidin, tumor necrosis factor-alpha (TNF-α), and human epidermal growth factor receptor 2 (HER2). Compared with the parent antibody, the GTAC exhibited higher potency in inhibiting the growth of tumor cells in vitro and enhanced tumor-targeting capacity in a tumor-bearing mouse model. Thus, the GTAC platform represents a novel degradation strategy that harnesses an SLC transporter for tumor-selective depletion of secreted and membrane proteins of interest.
{"title":"Glucose Transporter-Targeting Chimeras Enabling Tumor-Selective Degradation of Secreted and Membrane Proteins.","authors":"Chengyu Yun, Na Li, Yishu Zhang, Tong Fang, Jing Ma, Zhenting Zheng, Subing Zhou, Xiaoqing Cai","doi":"10.1021/acschembio.4c00584","DOIUrl":"10.1021/acschembio.4c00584","url":null,"abstract":"<p><p>Tumor-selective degradation of target proteins has the potential to offer superior therapeutic benefits with maximized therapeutic windows and minimized off-target effects. However, the development of effective lysosome-targeted degradation platforms for achieving selective protein degradation in tumors remains a substantial challenge. Cancer cells depend on certain solute carrier (SLC) transporters to acquire extracellular nutrients to sustain their metabolism and growth. This current study exploits facilitative glucose transporters (GLUTs), a group of SLC transporters widely overexpressed in numerous types of cancer, to drive the endocytosis and lysosomal degradation of target proteins in tumor cells. GLUT-targeting chimeras (GTACs) were generated by conjugating multiple glucose ligands to an antibody specific for the target protein. We demonstrate that the constructed GTACs can induce the internalization and lysosomal degradation of the extracellular and membrane proteins streptavidin, tumor necrosis factor-alpha (TNF-α), and human epidermal growth factor receptor 2 (HER2). Compared with the parent antibody, the GTAC exhibited higher potency in inhibiting the growth of tumor cells in vitro and enhanced tumor-targeting capacity in a tumor-bearing mouse model. Thus, the GTAC platform represents a novel degradation strategy that harnesses an SLC transporter for tumor-selective depletion of secreted and membrane proteins of interest.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2254-2263"},"PeriodicalIF":3.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18Epub Date: 2024-09-24DOI: 10.1021/acschembio.4c00397
Laura J Byrnes, Won Young Choi, Paul Balbo, Mary Ellen Banker, Jeanne Chang, Shi Chen, Xuemin Cheng, Yang Cong, Jeff Culp, Hongxia Di, Matt Griffor, Justin Hall, Xiaoyun Meng, Barry Morgan, James J Mousseau, Jennifer Nicki, Thomas O'Connell, Simeon Ramsey, Alex Shaginian, Suman Shanker, John Trujillo, Jinqiao Wan, Fabien Vincent, Stephen W Wright, Felix Vajdos
Peptidyl arginine deiminases (PADs) are important enzymes in many diseases, especially those involving inflammation and autoimmunity. Despite many years of effort, developing isoform-specific inhibitors has been a challenge. We describe herein the discovery of a potent, noncovalent PAD2 inhibitor, with selectivity over PAD3 and PAD4, from a DNA-encoded library. The biochemical and biophysical characterization of this inhibitor and two noninhibitory binders indicated a novel, Ca2+ competitive mechanism of inhibition. This was confirmed via X-ray crystallographic analysis. Finally, we demonstrate that this inhibitor selectively inhibits PAD2 in a cellular context.
肽基精氨酸脱氨酶(PADs)是许多疾病中的重要酶类,尤其是涉及炎症和自身免疫的疾病。尽管经过多年的努力,开发同工酶特异性抑制剂仍是一项挑战。我们在本文中介绍了从 DNA 编码文库中发现的一种强效、非共价的 PAD2 抑制剂,它对 PAD3 和 PAD4 具有选择性。这种抑制剂和两种非抑制性结合剂的生物化学和生物物理特性分析表明了一种新型的 Ca2+ 竞争性抑制机制。这一点通过 X 射线晶体学分析得到了证实。最后,我们证明了这种抑制剂能在细胞环境中选择性地抑制 PAD2。
{"title":"Discovery, Characterization, and Structure of a Cell Active PAD2 Inhibitor Acting through a Novel Allosteric Mechanism.","authors":"Laura J Byrnes, Won Young Choi, Paul Balbo, Mary Ellen Banker, Jeanne Chang, Shi Chen, Xuemin Cheng, Yang Cong, Jeff Culp, Hongxia Di, Matt Griffor, Justin Hall, Xiaoyun Meng, Barry Morgan, James J Mousseau, Jennifer Nicki, Thomas O'Connell, Simeon Ramsey, Alex Shaginian, Suman Shanker, John Trujillo, Jinqiao Wan, Fabien Vincent, Stephen W Wright, Felix Vajdos","doi":"10.1021/acschembio.4c00397","DOIUrl":"10.1021/acschembio.4c00397","url":null,"abstract":"<p><p>Peptidyl arginine deiminases (PADs) are important enzymes in many diseases, especially those involving inflammation and autoimmunity. Despite many years of effort, developing isoform-specific inhibitors has been a challenge. We describe herein the discovery of a potent, noncovalent PAD2 inhibitor, with selectivity over PAD3 and PAD4, from a DNA-encoded library. The biochemical and biophysical characterization of this inhibitor and two noninhibitory binders indicated a novel, Ca<sup>2+</sup> competitive mechanism of inhibition. This was confirmed via X-ray crystallographic analysis. Finally, we demonstrate that this inhibitor selectively inhibits PAD2 in a cellular context.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2186-2197"},"PeriodicalIF":3.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142337250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}