V. Petrenko, M. Netesa, O. Tiutkin, O. Gromova, V. Shynkarenko, V. Kozachyna
{"title":"EXPRESS MODEL FOR WATER TREATMENT PROCESS CALCULATION","authors":"V. Petrenko, M. Netesa, O. Tiutkin, O. Gromova, V. Shynkarenko, V. Kozachyna","doi":"10.15802/stp2020/203395","DOIUrl":"https://doi.org/10.15802/stp2020/203395","url":null,"abstract":"","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116661979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STRENGTH DETERMINATION OF LOAD-BEARING STRUCTURE OF ARTICULATED FLATCAR OF ROUND PIPES","authors":"O. Fomin, A. Lovska","doi":"10.15802/stp2020/203404","DOIUrl":"https://doi.org/10.15802/stp2020/203404","url":null,"abstract":"","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115134269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RESEARCH OF MOTION INTENSITY OF SPECIALIZED TRAIN TRAFFIC VOLUMES UNDER RISKS CONDITIONS","authors":"M. Muzykin","doi":"10.15802/stp2020/203424","DOIUrl":"https://doi.org/10.15802/stp2020/203424","url":null,"abstract":"","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114948026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Voronin, B. Asadov, V. Stefanov, D. Onopreichuk, O. Gubin
{"title":"DEVELOPMENT ANALYSIS OF MAIN DEFECTS AND THEORETICAL FORECAST OF RAIL SERVICE LIFE IN THE CONDITIONS OF LUBRICATION","authors":"S. Voronin, B. Asadov, V. Stefanov, D. Onopreichuk, O. Gubin","doi":"10.15802/stp2020/203112","DOIUrl":"https://doi.org/10.15802/stp2020/203112","url":null,"abstract":"","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"446 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124277578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STATISTICAL PROCESSING OF BRAKE PADS WEAR PARAMETERS OF FREIGHT CARS","authors":"V. Ravlyuk, M. Ravliuk, I. Kirichenko","doi":"10.15802/stp2020/203103","DOIUrl":"https://doi.org/10.15802/stp2020/203103","url":null,"abstract":"","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"137 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124307796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Biliaiev, O. Berlov, V. Kozachyna, I. Kalashnikov, O. V. Shevchenko
Purpose. This work involves the development of a numerical model for the calculation of areas of thermal damage to people in the event of solid propellant burning at the industrial site. Methodology. An equation expressing the law of energy conservation was used to solve the problem of determining the areas of thermal shock of people at the industrial site. A potential flow model was used to calculate the airflow velocity field in the presence of buildings at the industrial site where an emergency occurs. The numerical solution of the two-dimensional equation for the velocity potential is derived using the Liebmann method. This numerical model takes into account the uneven velocity field of the wind flow that is formed near industrial buildings. An implicit difference splitting scheme was used to numerically solve the energy equation. The physical splitting of a two-dimensional energy equation into a system of one-dimensional equations describing the temperature transfer in one coordinate direction has been car-ried out previously. At each splitting step, the unknown temperature value is determined by an explicit point-to-point computation scheme. Based on the numerical model built, the code using the FORTRAN algorithm language is created. Findings . Based on the developed numerical model, a computational experiment was conducted to evaluate the risk of thermal damage to people at the industrial site where solid propellants are produced. The dangerous areas for personnel are identified. Originality . An efficient numerical model has been developed to calculate the zones of thermal pollution in case of solid propellant burning. Practical value . Based on the developed mathematical model, a computer program was created, which allows performing serial calculations for determining the zones of thermal damage during emergencies at the chemically hazardous objects. The mathematical model developed can be used to design an emergency response plan for chemically hazardous objects.
{"title":"RISK ASSESSMENT OF THERMAL DAMAGE TO PEOPLE AT INDUSTRIAL SITES IN CASE OF EMERGENCY BURNING SOLID PROPELLANT","authors":"M. Biliaiev, O. Berlov, V. Kozachyna, I. Kalashnikov, O. V. Shevchenko","doi":"10.15802/stp2020/200752","DOIUrl":"https://doi.org/10.15802/stp2020/200752","url":null,"abstract":"Purpose. This work involves the development of a numerical model for the calculation of areas of thermal damage to people in the event of solid propellant burning at the industrial site. Methodology. An equation expressing the law of energy conservation was used to solve the problem of determining the areas of thermal shock of people at the industrial site. A potential flow model was used to calculate the airflow velocity field in the presence of buildings at the industrial site where an emergency occurs. The numerical solution of the two-dimensional equation for the velocity potential is derived using the Liebmann method. This numerical model takes into account the uneven velocity field of the wind flow that is formed near industrial buildings. An implicit difference splitting scheme was used to numerically solve the energy equation. The physical splitting of a two-dimensional energy equation into a system of one-dimensional equations describing the temperature transfer in one coordinate direction has been car-ried out previously. At each splitting step, the unknown temperature value is determined by an explicit point-to-point computation scheme. Based on the numerical model built, the code using the FORTRAN algorithm language is created. Findings . Based on the developed numerical model, a computational experiment was conducted to evaluate the risk of thermal damage to people at the industrial site where solid propellants are produced. The dangerous areas for personnel are identified. Originality . An efficient numerical model has been developed to calculate the zones of thermal pollution in case of solid propellant burning. Practical value . Based on the developed mathematical model, a computer program was created, which allows performing serial calculations for determining the zones of thermal damage during emergencies at the chemically hazardous objects. The mathematical model developed can be used to design an emergency response plan for chemically hazardous objects.","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115139530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose. We aim to investigate the development conditions of structural transformations during friction stir welding (FSW); establish the nature of individual influence of structural components in achieving superplastic flow conditions; determine the influence nature of grain size on the groundmass microhardness during FSW. Methodology. Friction stir welding was performed on specially designed equipment. The material was 2.9 mm thick AMg6 aluminum alloy plates with the chemical content of alloying elements within the grade composition. The temperature and pressure from the tool on the edges during welding were determined on a specially designed stand. The tool pressing force to the metal was measured with a dynamometer type DC-0.1. Microhardness measured on the PMT-3 device with the indentation load of 0.05 N was taken as a characteristic of alloy microvolumes strength. Findings. Different degrees of rotation of the working tool and normal pressure to the edges determined the degree of metal heating and the quality of the seam formation. The influence degree of the technological parameters of the FSW on the metal heating temperature in the area of the working tool shoulder is estimated. The development of recrystallization processes in the conditions of two-phase alloys is considered. It has been shown that collective recrystallization is less determined by the volume fraction of the second phase, its dispersity and ability to interact with the metal matrix. The effect of the temperature gradient on the microhardness for the structures of the heat-affected zone is estimated under conditions of a practically unchanged grain morphology. Originality. The conditions for the development of structural transformations during friction stir welding and the influence mechanism of grain size on the matrix microhardness are determined. Exceeding the optimum temperature in the joint area during welding contributes to the diffusion accelerating along the boundaries between phases and grains, resulting in the formation of a concentration gradient of alloying elements and, first of all Mg, increasing the hardening effect of the solid solution state. Practical value. According to the results, the additive character of the hardening from the influence of the solid solution and grain boundaries under the conditions of superplastic flow is determined. A state close to the superplastic flow is achieved by reducing the effect of hardening the solid solution and increasing the contribution from the small grains boundaries. Achieving a state of superplastic deformation is possible by minimizing the effect of strain hardening.
{"title":"RESEARCH OF DEVELOPMENT CONDITIONS OF STRUCTURAL TRANSFORMATIONS DURING FRICTION STIR WELDING OF MULTIPHASE ALUMINUM ALLOY","authors":"S. Plitchenko, М. М. Grischenko","doi":"10.15802/stp2020/200746","DOIUrl":"https://doi.org/10.15802/stp2020/200746","url":null,"abstract":"Purpose. We aim to investigate the development conditions of structural transformations during friction stir welding (FSW); establish the nature of individual influence of structural components in achieving superplastic flow conditions; determine the influence nature of grain size on the groundmass microhardness during FSW. Methodology. Friction stir welding was performed on specially designed equipment. The material was 2.9 mm thick AMg6 aluminum alloy plates with the chemical content of alloying elements within the grade composition. The temperature and pressure from the tool on the edges during welding were determined on a specially designed stand. The tool pressing force to the metal was measured with a dynamometer type DC-0.1. Microhardness measured on the PMT-3 device with the indentation load of 0.05 N was taken as a characteristic of alloy microvolumes strength. Findings. Different degrees of rotation of the working tool and normal pressure to the edges determined the degree of metal heating and the quality of the seam formation. The influence degree of the technological parameters of the FSW on the metal heating temperature in the area of the working tool shoulder is estimated. The development of recrystallization processes in the conditions of two-phase alloys is considered. It has been shown that collective recrystallization is less determined by the volume fraction of the second phase, its dispersity and ability to interact with the metal matrix. The effect of the temperature gradient on the microhardness for the structures of the heat-affected zone is estimated under conditions of a practically unchanged grain morphology. Originality. The conditions for the development of structural transformations during friction stir welding and the influence mechanism of grain size on the matrix microhardness are determined. Exceeding the optimum temperature in the joint area during welding contributes to the diffusion accelerating along the boundaries between phases and grains, resulting in the formation of a concentration gradient of alloying elements and, first of all Mg, increasing the hardening effect of the solid solution state. Practical value. According to the results, the additive character of the hardening from the influence of the solid solution and grain boundaries under the conditions of superplastic flow is determined. A state close to the superplastic flow is achieved by reducing the effect of hardening the solid solution and increasing the contribution from the small grains boundaries. Achieving a state of superplastic deformation is possible by minimizing the effect of strain hardening.","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133734696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ASSESSMENT METHODOLOGY OF COMFORT LEVEL OF PASSENGER COMPARTMENT SLEEPING CARS","authors":"S. Voytkiv","doi":"10.15802/stp2020/200751","DOIUrl":"https://doi.org/10.15802/stp2020/200751","url":null,"abstract":"","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121641777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose. The purpose of the article is to develop a universal unified parallel synchronous algorithm for the implementation of tasks for calculation of maximum one- and multicommodity flows, as well as the creation of a software complex that provides the formation of surface graph models of flows and performs optimal planning of non-uniform flows in transport and other networks. Methodology. The paper investigates the possibilities of previously created and comprehensively verified heuristic parallel synchronous algorithm for calculating maximum one- and multicommodity flows in the networks, establishes its potential limitations, and determines additional advanced procedures that transform the algorithm into a universal parallel algorithm. The proposed parallel synchronous algorithm uses a width-first search strategy while simultaneously identifying possible paths of flows through the network with an estimation of their throughput. Herewith the possibility of analyzing several incremental flows across the network in one iteration was studied. Findings. The article proposes a universal unified parallel synchronous algorithm for calculating maximum flows in networks and develops a unified procedure and software package for planning of non-uniform as well as competitive flows in transport and other networks. The developed software complex implements the problems of formation of surface graph models of networks, for which the problem of optimal planning of non-uniform and competitive multicriteria flows in transport networks is solved. Originality. The article develops a new universal unified parallel synchronous algorithm and procedure for the calculation of optimal uniform, multicommodity and competitive flows in transport networks. Practical value . The practical value of the obtained results is determined by the universal capabilities and efficiency of the procedure for planning non-uniform flows in the networks based on the application of a new parallel synchronous algorithm, as well as the developed software complex, which provides the ability to solve the problems of analysis and planning of uniform and multicommodity flows in transport networks, as well as the implementation of calculation tasks of competitive models of transport and information flows formation. The software complex has a built-in editor of interactive network modeling and a toolbar, which provides both creation of new and downloading existing graphs of networks from the modeling libraries, preservation of optimum flows in the network in the form of an image and a text file, output of errors when working with the program.
{"title":"UNIFIED PARALLEL ALGORITHM AND PROGRAMMING COMPLEX OF OPTIMAL PLANNING OF NON-UNIFORM FLOWS IN THE NETWORKS","authors":"V. Skalozub, L. A. Panik, A. Panarin","doi":"10.15802/stp2020/200748","DOIUrl":"https://doi.org/10.15802/stp2020/200748","url":null,"abstract":"Purpose. The purpose of the article is to develop a universal unified parallel synchronous algorithm for the implementation of tasks for calculation of maximum one- and multicommodity flows, as well as the creation of a software complex that provides the formation of surface graph models of flows and performs optimal planning of non-uniform flows in transport and other networks. Methodology. The paper investigates the possibilities of previously created and comprehensively verified heuristic parallel synchronous algorithm for calculating maximum one- and multicommodity flows in the networks, establishes its potential limitations, and determines additional advanced procedures that transform the algorithm into a universal parallel algorithm. The proposed parallel synchronous algorithm uses a width-first search strategy while simultaneously identifying possible paths of flows through the network with an estimation of their throughput. Herewith the possibility of analyzing several incremental flows across the network in one iteration was studied. Findings. The article proposes a universal unified parallel synchronous algorithm for calculating maximum flows in networks and develops a unified procedure and software package for planning of non-uniform as well as competitive flows in transport and other networks. The developed software complex implements the problems of formation of surface graph models of networks, for which the problem of optimal planning of non-uniform and competitive multicriteria flows in transport networks is solved. Originality. The article develops a new universal unified parallel synchronous algorithm and procedure for the calculation of optimal uniform, multicommodity and competitive flows in transport networks. Practical value . The practical value of the obtained results is determined by the universal capabilities and efficiency of the procedure for planning non-uniform flows in the networks based on the application of a new parallel synchronous algorithm, as well as the developed software complex, which provides the ability to solve the problems of analysis and planning of uniform and multicommodity flows in transport networks, as well as the implementation of calculation tasks of competitive models of transport and information flows formation. The software complex has a built-in editor of interactive network modeling and a toolbar, which provides both creation of new and downloading existing graphs of networks from the modeling libraries, preservation of optimum flows in the network in the form of an image and a text file, output of errors when working with the program.","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122736833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
О. A. Hodoskina, S. A. Kirpicheva, A. A. Samsonova, E. Shvetsova
{"title":"MODERN TRENDS IN THE DEVELOPMENT OF TRANSPORT AND LOGISTICS SYSTEMS","authors":"О. A. Hodoskina, S. A. Kirpicheva, A. A. Samsonova, E. Shvetsova","doi":"10.15802/stp2020/199736","DOIUrl":"https://doi.org/10.15802/stp2020/199736","url":null,"abstract":"","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132020683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}