Pub Date : 2024-03-09DOI: 10.1016/j.ejop.2024.126065
Patrick J. Keeling , Mahara Mtawali , Morelia Trznadel , Samuel J. Livingston , Kevin C. Wakeman
Extreme functional reduction of mitochondria has taken place in parallel in many distantly related lineages of eukaryotes, leading to a number of recurring metabolic states with variously lost electron transport chain (ETC) complexes, loss of the tricarboxylic acid (TCA) cycle, and/or loss of the mitochondrial genome. The resulting mitochondria-related organelles (MROs) are generally structurally reduced and in the most extreme cases barely recognizable features of the cell with no role in energy metabolism whatsoever (e.g., mitosomes, which generally only make iron-sulfur clusters). Recently, a wide diversity of MROs were discovered to be hiding in plain sight: in gregarine apicomplexans. This diverse group of invertebrate parasites has been known and observed for centuries, but until recent applications of culture-free genomics, their mitochondria were unremarkable. The genomics, however, showed that mitochondrial function has reduced in parallel in multiple gregarine lineages to several different endpoints, including the most reduced mitosomes. Here we review this remarkable case of parallel evolution of MROs, and some of the interesting questions this work raises.
{"title":"Parallel functional reduction in the mitochondria of apicomplexan parasites","authors":"Patrick J. Keeling , Mahara Mtawali , Morelia Trznadel , Samuel J. Livingston , Kevin C. Wakeman","doi":"10.1016/j.ejop.2024.126065","DOIUrl":"10.1016/j.ejop.2024.126065","url":null,"abstract":"<div><p>Extreme functional reduction of mitochondria has taken place in parallel in many distantly related lineages of eukaryotes, leading to a number of recurring metabolic states with variously lost electron transport chain (ETC) complexes, loss of the tricarboxylic acid (TCA) cycle, and/or loss of the mitochondrial genome. The resulting mitochondria-related organelles (MROs) are generally structurally reduced and in the most extreme cases barely recognizable features of the cell with no role in energy metabolism whatsoever (e.g., mitosomes, which generally only make iron-sulfur clusters). Recently, a wide diversity of MROs were discovered to be hiding in plain sight: in gregarine apicomplexans. This diverse group of invertebrate parasites has been known and observed for centuries, but until recent applications of culture-free genomics, their mitochondria were unremarkable. The genomics, however, showed that mitochondrial function has reduced in parallel in multiple gregarine lineages to several different endpoints, including the most reduced mitosomes. Here we review this remarkable case of parallel evolution of MROs, and some of the interesting questions this work raises.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"94 ","pages":"Article 126065"},"PeriodicalIF":2.9,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0932473924000154/pdfft?md5=2fa0d50d9ef35d502b12047cc59ed12b&pid=1-s2.0-S0932473924000154-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1016/j.ejop.2024.126066
Siobhon Egan , Amanda D. Barbosa , Yaoyu Feng , Lihua Xiao , Una Ryan
The zoonotic potential of the protist parasites Cryptosporidium spp. and Giardia duodenalis in amphibians and reptiles raises public health concerns due to their growing popularity as pets. This review examines the prevalence and diversity of these parasites in wild and captive amphibians and reptiles to better understand the zoonotic risk. Research on Giardia in both groups is limited, and zoonotic forms of Cryptosporidium or Giardia have not been reported in amphibians. Host-adapted Cryptosporidium species dominate in reptiles, albeit some reptiles have been found to carry zoonotic (C. hominis and C. parvum) and rodent-associated (C. tyzzeri, C. muris and C. andersoni) species, primarily through mechanical carriage. Similarly, the limited reports of Giardia duodenalis (assemblages A, B and E) in reptiles may also be due to mechanical carriage. Thus, the available evidence indicates minimal zoonotic risk associated with these organisms in wild and captive frogs and reptiles. The exact transmission routes for these infections within reptile populations remain poorly understood, particularly regarding the importance of mechanical carriage. Although the risk appears minimal, continued research and surveillance efforts are necessary to gain a more comprehensive understanding of the transmission dynamics and ultimately improve our ability to safeguard human and animal health.
两栖动物和爬行动物中的原生寄生虫隐孢子虫属和杜氏贾第鞭毛虫可能会造成人畜共患病,这引起了人们对公共卫生问题的关注,因为人们越来越喜欢把两栖动物和爬行动物作为宠物。本综述探讨了这些寄生虫在野生和人工饲养的两栖动物和爬行动物中的流行率和多样性,以更好地了解人畜共患病风险。对这两类动物中贾第虫的研究很有限,两栖动物中的人畜共患隐孢子虫或贾第虫尚未见报道。爬行动物中主要是与宿主相适应的隐孢子虫,但也发现一些爬行动物携带人畜共患病隐孢子虫(C. hominis 和 C. parvum)和啮齿动物相关隐孢子虫(C. tyzzeri、C. muris 和 C. andersoni),主要是通过机械携带。同样,关于爬行动物中十二指肠贾第虫(A、B 和 E 组合)的有限报告也可能是由于机械携带所致。因此,现有证据表明,这些生物在野生和人工饲养的青蛙和爬行动物中的人畜共患病风险极低。这些传染病在爬行动物种群中的确切传播途径仍然鲜为人知,尤其是机械携带的重要性。尽管风险似乎很小,但仍有必要继续开展研究和监测工作,以便更全面地了解传播动态,最终提高我们保护人类和动物健康的能力。
{"title":"Minimal zoonotic risk of cryptosporidiosis and giardiasis from frogs and reptiles","authors":"Siobhon Egan , Amanda D. Barbosa , Yaoyu Feng , Lihua Xiao , Una Ryan","doi":"10.1016/j.ejop.2024.126066","DOIUrl":"https://doi.org/10.1016/j.ejop.2024.126066","url":null,"abstract":"<div><p>The zoonotic potential of the protist parasites <em>Cryptosporidium</em> spp. and <em>Giardia duodenalis</em> in amphibians and reptiles raises public health concerns due to their growing popularity as pets. This review examines the prevalence and diversity of these parasites in wild and captive amphibians and reptiles to better understand the zoonotic risk. Research on <em>Giardia</em> in both groups is limited, and zoonotic forms of <em>Cryptosporidium</em> or <em>Giardia</em> have not been reported in amphibians. Host-adapted <em>Cryptosporidium</em> species dominate in reptiles, albeit some reptiles have been found to carry zoonotic (<em>C. hominis</em> and <em>C. parvum</em>) and rodent-associated (<em>C. tyzzeri</em>, <em>C. muris</em> and <em>C. andersoni</em>) species, primarily through mechanical carriage. Similarly, the limited reports of <em>Giardia duodenalis</em> (assemblages A, B and E) in reptiles may also be due to mechanical carriage. Thus, the available evidence indicates minimal zoonotic risk associated with these organisms in wild and captive frogs and reptiles. The exact transmission routes for these infections within reptile populations remain poorly understood, particularly regarding the importance of mechanical carriage. Although the risk appears minimal, continued research and surveillance efforts are necessary to gain a more comprehensive understanding of the transmission dynamics and ultimately improve our ability to safeguard human and animal health.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"93 ","pages":"Article 126066"},"PeriodicalIF":2.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0932473924000166/pdfft?md5=f2d522799f5a06cf61e0671be64349cf&pid=1-s2.0-S0932473924000166-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1016/j.ejop.2024.126067
Ji Hye Choi , Atef Omar , Jae-Ho Jung
During a survey of Korean marine ciliates, Trochilia sigmoides, the type species of the genus Trochilia, was collected and examined using in vivo observation and protargol impregnation. Moreover, scanning electron microscopy and 18S rRNA gene sequencing have been applied for the first time to study this species. Morphologically, T. sigmoides is characterized by the small body size, the oval body outline, and the spiral dorsal ridges. The Korean population of T. sigmoides shows only minute differences to other populations reported in the literature, mainly in body size and the number of dorsal ridges. Phylogenetic analyses based on 18S rRNA gene sequences show that T. sigmoides and T. petrani are placed together with two members of the family Kyaroikeidae, causing the family Dysteriidae to be non-monophyletic. The present new data increase the knowledge about the morphology and phylogeny of the genus Trochilia and would assist in understanding the phylogenetic relationship between the free-living Dysteriidae and the parasitic Kyaroikeidae.
{"title":"Redescription and molecular phylogeny of Trochilia sigmoides Dujardin, 1841 (Ciliophora, Cyrtophoria) collected from South Korea","authors":"Ji Hye Choi , Atef Omar , Jae-Ho Jung","doi":"10.1016/j.ejop.2024.126067","DOIUrl":"https://doi.org/10.1016/j.ejop.2024.126067","url":null,"abstract":"<div><p>During a survey of Korean marine ciliates, <em>Trochilia sigmoides</em>, the type species of the genus <em>Trochilia</em>, was collected and examined using in vivo observation and protargol impregnation. Moreover, scanning electron microscopy and 18S rRNA gene sequencing have been applied for the first time to study this species. Morphologically, <em>T. sigmoides</em> is characterized by the small body size, the oval body outline, and the spiral dorsal ridges. The Korean population of <em>T. sigmoides</em> shows only minute differences to other populations reported in the literature, mainly in body size and the number of dorsal ridges. Phylogenetic analyses based on 18S rRNA gene sequences show that <em>T. sigmoides</em> and <em>T. petrani</em> are placed together with two members of the family Kyaroikeidae, causing the family Dysteriidae to be non-monophyletic. The present new data increase the knowledge about the morphology and phylogeny of the genus <em>Trochilia</em> and would assist in understanding the phylogenetic relationship between the free-living Dysteriidae and the parasitic Kyaroikeidae.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"93 ","pages":"Article 126067"},"PeriodicalIF":2.9,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.1016/j.ejop.2024.126064
Dmitry G. Zagumyonnyi, Denis V. Tikhonenkov
A new species of centrohelid heliozoans, Pterocystis polycristalepis sp. nov. (Pterocystidae), was examined using light and electron microscopy. The novel centrohelid is characterized by the presence of leaf-like spine-scales with a broad pedicel-like structure on the proximal part and many subparallel ribs on the lateral wing surface. The plate-scales are ovoid with medial tubular thickening and many subparallel ribs on the very extensive marginal rim. The closely related species Pterocystis striata has also been studied in detail using light and electron microscopy. Phylogenetic analysis of 18S rRNA gene sequences placed both species into a separate clade within Pterista. The closest morphologically characterized species to the new clade is Triangulopteris lacunata. The 18S rRNA sequence of Pseudoraphidiophrys veliformis was grouped within Pterista and found to be closely related to Pterocystis polycristalepis, Pterocystis striata, and Triangulopteris lacunata. Cyst-scales of various shapes, cell and cyst aggregations, syncytia, and a cell with a stalk were revealed in a clonal culture of P. veliformis. Analysis of the morphology and phylogenetic position of the studied species and other centrohelids revealed a large number of taxonomic and phylogenetic problems in Pterista.
{"title":"A new centrohelid heliozoan, Pterocystis polycristalepis sp. nov., and taxonomic and phylogenetic concerns within Pterista (Haptista: Centroplasthelida)","authors":"Dmitry G. Zagumyonnyi, Denis V. Tikhonenkov","doi":"10.1016/j.ejop.2024.126064","DOIUrl":"10.1016/j.ejop.2024.126064","url":null,"abstract":"<div><p>A new species of centrohelid heliozoans, <em>Pterocystis polycristalepis</em> sp. nov. (Pterocystidae), was examined using light and electron microscopy. The novel centrohelid is characterized by the presence of leaf-like spine-scales with a broad pedicel-like structure on the proximal part and many subparallel ribs on the lateral wing surface. The plate-scales are ovoid with medial tubular thickening and many subparallel ribs on the very extensive marginal rim. The closely related species <em>Pterocystis striata</em> has also been studied in detail using light and electron microscopy. Phylogenetic analysis of 18S rRNA gene sequences placed both species into a separate clade within Pterista. The closest morphologically characterized species to the new clade is <em>Triangulopteris lacunata</em>. The 18S rRNA sequence of <em>Pseudoraphidiophrys veliformis</em> was grouped within Pterista and found to be closely related to <em>Pterocystis polycristalepis</em>, <em>Pterocystis striata</em>, and <em>Triangulopteris lacunata.</em> Cyst-scales of various shapes, cell and cyst aggregations, syncytia, and a cell with a stalk were revealed in a clonal culture of <em>P. veliformis</em>. Analysis of the morphology and phylogenetic position of the studied species and other centrohelids revealed a large number of taxonomic and phylogenetic problems in Pterista.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"94 ","pages":"Article 126064"},"PeriodicalIF":2.9,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-12DOI: 10.1016/j.ejop.2024.126063
Franciane Cedrola , Suyane Costa Bordim , Pedro Braga Arcuri , Jailton da Costa Carneiro , Roberto Júnio Pedroso Dias
Since their discovery, rumen ciliates of domestic cattle have been reported from various geographic locations. However, until now there is only one taxonomic inventory of ciliates associated with Brazilian cattle. The present study aimed to assess the community composition, relative abundance, richness, and density of rumen ciliates in Brazilian cattle, whose feeding diets were supplemented with crescent urea levels. Across all treatments analyzed, one subclass, two orders, three families, 11 genera, and 31 species of ciliates were identified. The ciliate community composition and species richness varied among the four treatments used. However, the total ciliate density was not affected by the experimental diets. We described a new entodiniid morphotype, Entodinium caudatum m. orbonuclearis, and recorded Oligoisotricha bubali for the second time in Brazil.
{"title":"Rumen ciliates (Ciliophora, Trichostomatia) in Brazilian domestic cattle feeding on diets with crescent urea levels","authors":"Franciane Cedrola , Suyane Costa Bordim , Pedro Braga Arcuri , Jailton da Costa Carneiro , Roberto Júnio Pedroso Dias","doi":"10.1016/j.ejop.2024.126063","DOIUrl":"10.1016/j.ejop.2024.126063","url":null,"abstract":"<div><p>Since their discovery, rumen ciliates of domestic cattle have been reported from various geographic locations. However, until now there is only one taxonomic inventory of ciliates associated with Brazilian cattle. The present study aimed to assess the community composition, relative abundance, richness, and density of rumen ciliates in Brazilian cattle, whose feeding diets were supplemented with crescent urea levels. Across all treatments analyzed, one subclass, two orders, three families, 11 genera, and 31 species of ciliates were identified. The ciliate community composition and species richness varied among the four treatments used. However, the total ciliate density was not affected by the experimental diets. We described a new entodiniid morphotype, <em>Entodinium caudatum</em> m. <em>orbonuclearis</em>, and recorded <em>Oligoisotricha bubali</em> for the second time in Brazil.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"93 ","pages":"Article 126063"},"PeriodicalIF":2.9,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139891548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1016/j.ejop.2024.126062
Zhaorui Zhou , Chao Li , Qingxiang Yuan , Yong Chi , Yuqing Li , Ying Yan , Saleh A. Al-Farraj , Naomi A. Stover , Zigui Chen , Xiao Chen
Many ciliated protists prey on other large microbial organisms, including other protists and microscopic metazoans. The ciliate class Litostomatea unites both predatory and endosymbiotic species. The evolution of predation ability in ciliates remains poorly understood, in part, due to a lack of genomic data. To fill this gap, we acquired the transcriptome profiles of six predatory litostomateans using single-cell sequencing technology and investigated their transcriptomic features. Our results show that: (1) in contrast to non-predatory ciliates, the predatory litostomateans have expanded gene families associated with transmembrane activity and reactive oxidative stress response pathways, potentially as a result of cellular behaviors such as fast contraction and extension; (2) the expansion of the calcium-activated BK potassium channel gene family, which hypothetically regulates cell contractility, is an ancient evolutionary event for the class Litostomatea, suggesting a rewired metabolism associated with the hunting behavior of predatory ciliates; and (3) three whole genome duplication (WGD) events have been detected in litostomateans, with genes associated with biosynthetic processes, transmembrane activity, and calcium-activated potassium channel activity being retained during the WGD events. In addition, we explored the evolutionary relationships among 17 ciliate species, including eight litostomateans, and provided a rich foundational dataset for future in-depth phylogenomic studies of Litostomatea. Our comprehensive analyses suggest that the rewired cellular metabolism via expanded gene families and WGD events might be the potential genetic basis for the predation ability of raptorial ciliates.
{"title":"Single-cell transcriptomic analysis reveals genome evolution in predatory litostomatean ciliates","authors":"Zhaorui Zhou , Chao Li , Qingxiang Yuan , Yong Chi , Yuqing Li , Ying Yan , Saleh A. Al-Farraj , Naomi A. Stover , Zigui Chen , Xiao Chen","doi":"10.1016/j.ejop.2024.126062","DOIUrl":"https://doi.org/10.1016/j.ejop.2024.126062","url":null,"abstract":"<div><p>Many ciliated protists prey on other large microbial organisms, including other protists and microscopic metazoans. The ciliate class Litostomatea unites both predatory and endosymbiotic species. The evolution of predation ability in ciliates remains poorly understood, in part, due to a lack of genomic data. To fill this gap, we acquired the transcriptome profiles of six predatory litostomateans using single-cell sequencing technology and investigated their transcriptomic features. Our results show that: (1) in contrast to non-predatory ciliates, the predatory litostomateans have expanded gene families associated with transmembrane activity and reactive oxidative stress response pathways, potentially as a result of cellular behaviors such as fast contraction and extension; (2) the expansion of the calcium-activated BK potassium channel gene family, which hypothetically regulates cell contractility, is an ancient evolutionary event for the class Litostomatea, suggesting a rewired metabolism associated with the hunting behavior of predatory ciliates; and (3) three whole genome duplication (WGD) events have been detected in litostomateans, with genes associated with biosynthetic processes, transmembrane activity, and calcium-activated potassium channel activity being retained during the WGD events. In addition, we explored the evolutionary relationships among 17 ciliate species, including eight litostomateans, and provided a rich foundational dataset for future in-depth phylogenomic studies of Litostomatea. Our comprehensive analyses suggest that the rewired cellular metabolism via expanded gene families and WGD events might be the potential genetic basis for the predation ability of raptorial ciliates.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"93 ","pages":"Article 126062"},"PeriodicalIF":2.9,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139748116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.1016/j.ejop.2024.126061
Hui Wang , Peiling Wu , Lu Xiong , Han-Sol Kim , Jin Ho Kim , Jang-Seu Ki
Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a range of 3–250 pg of genomic DNA per cell. In contrast to their relatively small cell size, their genomes are huge (about 1–80 times the human haploid genome). In the present study, we collected the genome and cell size data of dinoflagellates and compared their relationships. We found that dinoflagellate genome size exhibits a positive correlation with cell size. On the other hand, we recognized that the genome size is not correlated with phylogenetic relatedness. These may be caused by genome duplication, increased gene copy number, repetitive non-coding DNA, transposon expansion, horizontal gene transfer, organelle-to-nucleus gene transfer, and/or mRNA reintegration into the genome. Ultimate verification of these factors as potential causative mechanisms would require sequencing of more dinoflagellate genomes in the future.
高通量测序技术的最新进展大大提高了原核生物和真核生物基因组数据的可用性。甲藻具有独特的染色体和巨大的基因组,这使得其基因组分析变得复杂。在此,我们回顾了核心甲藻的核基因组,重点从基因组和细胞大小来分析它们的进化关系和事件。迄今为止,已有一些方法(如流式细胞仪)测量了几种甲藻(超过25种)的基因组大小,结果显示每个细胞的基因组DNA(gDNA)在3-250 pg之间。与它们相对较小的细胞体积形成鲜明对比的是,它们的基因组却非常庞大(约为人类单倍体基因组的 1-80 倍)。在本研究中,我们收集了甲藻的基因组和细胞大小数据,并广泛比较了它们之间的关系。我们发现甲藻的基因组大小与细胞大小呈正相关。此外,我们还推测基因组大小与系统发生系无关。这些可能是基因组复制、基因拷贝数增加、非编码 DNA 重复、转座子扩增、水平基因转移(HGT)、细胞器到细胞核的基因转移和/或 mRNA 重新整合到基因组中造成的。要最终验证这些因素的潜在致病机制,需要将来对一种或多种甲藻基因组进行测序。
{"title":"Nuclear genome of dinoflagellates: Size variation and insights into evolutionary mechanisms","authors":"Hui Wang , Peiling Wu , Lu Xiong , Han-Sol Kim , Jin Ho Kim , Jang-Seu Ki","doi":"10.1016/j.ejop.2024.126061","DOIUrl":"10.1016/j.ejop.2024.126061","url":null,"abstract":"<div><p>Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a range of 3–250 pg of genomic DNA per cell. In contrast to their relatively small cell size, their genomes are huge (about 1–80 times the human haploid genome). In the present study, we collected the genome and cell size data of dinoflagellates and compared their relationships. We found that dinoflagellate genome size exhibits a positive correlation with cell size. On the other hand, we recognized that the genome size is not correlated with phylogenetic relatedness. These may be caused by genome duplication, increased gene copy number, repetitive non-coding DNA, transposon expansion, horizontal gene transfer, organelle-to-nucleus gene transfer, and/or mRNA reintegration into the genome. Ultimate verification of these factors as potential causative mechanisms would require sequencing of more dinoflagellate genomes in the future.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"93 ","pages":"Article 126061"},"PeriodicalIF":2.9,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1016/j.ejop.2024.126053
Alan Denis Fernández-Valero , Sergey A. Karpov , Nagore Sampedro , Jordina Gordi , Natàlia Timoneda , Esther Garcés , Albert Reñé
We identified two new parasite species of Chytridiomycota isolated during blooms of the dinoflagellate Alexandrium minutum in the coastal Mediterranean Sea. Light and electron microscopy together with molecular characterization of the nuclear 18S, ITS, and 28S rDNA regions led to their identification as two new species, Dinomyces gilberthii and Paradinomyces evelyniae, both belonging to the family Dinomycetaceae, order Rhizophydiales. Dinomyces gilberthii differs from the previously described D. arenysensis by the presence of discharge papillae and the development of a drop-shaped sporangium. Paradinomyces evelyniae differs from the previously described P. triforaminorum by the prominent lipid globule present in early sporangia and by the pointed end producing a rhizoid. The two chytrids differed in their geographical distribution. Dinomyces gilberthii was detected in several Mediterranean habitats, including harbours and beaches, and was particularly prevalent during summer dinoflagellate blooms. Its widespread occurrence in coastal ecosystems suggested a high level of adaptability to this environment. Paradinomyces evelyniae had a more restricted distribution in the coastal-marine environment, occurring in harbour sediments and only occasionally in the water column during winter and early spring. Paradinomyces evelyniae has previously been detected in the Baltic Sea, suggesting that its distribution encompasses contrasting coastal environments, although its presence is rare.
{"title":"Newly identified diversity of Dinomycetaceae (Rhizophydiales, Chytridiomycota), a family of fungal parasites of marine dinoflagellates","authors":"Alan Denis Fernández-Valero , Sergey A. Karpov , Nagore Sampedro , Jordina Gordi , Natàlia Timoneda , Esther Garcés , Albert Reñé","doi":"10.1016/j.ejop.2024.126053","DOIUrl":"10.1016/j.ejop.2024.126053","url":null,"abstract":"<div><p>We identified two new parasite species of Chytridiomycota isolated during blooms of the dinoflagellate <em>Alexandrium minutum</em> in the coastal Mediterranean Sea. Light and electron microscopy together with molecular characterization of the nuclear 18S, ITS, and 28S rDNA regions led to their identification as two new species, <em>Dinomyces gilberthii</em> and <em>Paradinomyces evelyniae</em>, both belonging to the family Dinomycetaceae, order Rhizophydiales. <em>Dinomyces gilberthii</em> differs from the previously described <em>D. arenysensis</em> by the presence of discharge papillae and the development of a drop-shaped sporangium. <em>Paradinomyces evelyniae</em> differs from the previously described <em>P. triforaminorum</em> by the prominent lipid globule present in early sporangia and by the pointed end producing a rhizoid. The two chytrids differed in their geographical distribution. <em>Dinomyces gilberthii</em> was detected in several Mediterranean habitats, including harbours and beaches, and was particularly prevalent during summer dinoflagellate blooms. Its widespread occurrence in coastal ecosystems suggested a high level of adaptability to this environment. <em>Paradinomyces evelyniae</em> had a more restricted distribution in the coastal-marine environment, occurring in harbour sediments and only occasionally in the water column during winter and early spring. <em>Paradinomyces evelyniae</em> has previously been detected in the Baltic Sea, suggesting that its distribution encompasses contrasting coastal environments, although its presence is rare.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"93 ","pages":"Article 126053"},"PeriodicalIF":2.9,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0932473924000038/pdfft?md5=f398b8db6d22cba7e082c1c9eb490c2f&pid=1-s2.0-S0932473924000038-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139588786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.1016/j.ejop.2024.126052
Martina Foučková, Kristýna Uhrová, Aneta Kubánková, Tomáš Pánek, Ivan Čepička
Psalteriomonadidae are a small family of anaerobic free-living protists belonging to Heterolobosea, Discoba. We cultured 74 new strains of mostly amoeboid Psalteriomonadidae obtained from mainly freshwater habitats and sequenced their 18S rRNA gene. Based on the phylogenetic analysis and genetic distances, we report multiple novel species, four of which we formally describe based on the light-microscopic morphology (Psalteriomonas minuta, P. australis, P. fimbriata, and P. parva). We also examined the ultrastructure of two Psalteriomonas species using transmission electron microscopy. We transfer Sawyeria marylandensis into the genus Psalteriomonas and synonymize Sawyeria with Psalteriomonas. In addition, we studied the flagellate stage of P. marylandensis comb. nov. for the first time, using light and scanning electron microscopy.
{"title":"Lighting lantern above Psalteriomonadidae: Unveiling novel diversity within the genus Psalteriomonas (Discoba: Heterolobosea)","authors":"Martina Foučková, Kristýna Uhrová, Aneta Kubánková, Tomáš Pánek, Ivan Čepička","doi":"10.1016/j.ejop.2024.126052","DOIUrl":"10.1016/j.ejop.2024.126052","url":null,"abstract":"<div><p><span><span>Psalteriomonadidae are a small family of anaerobic free-living protists<span> belonging to Heterolobosea, Discoba. We cultured 74 new strains of mostly amoeboid Psalteriomonadidae obtained from mainly freshwater habitats and sequenced their 18S </span></span>rRNA gene<span>. Based on the phylogenetic analysis and genetic distances, we report multiple novel species, four of which we formally describe based on the light-microscopic morphology (</span></span><em>Psalteriomonas minuta</em>, <em>P. australis</em>, <em>P. fimbriata</em>, and <em>P. parva</em>). We also examined the ultrastructure of two <em>Psalteriomonas</em><span> species using transmission electron microscopy. We transfer </span><em>Sawyeria marylandensis</em> into the genus <em>Psalteriomonas</em> and synonymize <em>Sawyeria</em> with <em>Psalteriomonas.</em> In addition, we studied the flagellate stage of <em>P. marylandensis</em> comb. nov. for the first time, using light and scanning electron microscopy.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"93 ","pages":"Article 126052"},"PeriodicalIF":2.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139410472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1016/j.ejop.2024.126051
Kenneth Dumack , Enrique Lara , Clément Duckert , Elizaveta Ermolaeva , Ferry Siemensma , David Singer , Valentyna Krashevska , Mariusz Lamentowicz , Edward A.D. Mitchell
The shells of testate amoebae are morphologically diverse and persistent in the environment. Accordingly, the examination of the morphology and composition of shells became a standard tool in ecological, palaeoecological, and evolutionary studies. However, so far the function of the shell remains poorly understood and, although based on limited evidence, the shell was considered as a defense mechanism. Based on recent evidence, we propose that the shell of arcellinid testate amoebae is a crucial component facilitating the amoebae’s attack of large prey. Accordingly, the shell is not purely protective, but must be considered also as a weapon. This change in perspective opens up numerous new avenues in protistology and will lead to a substantial change in ecological, palaeoecological, and evolutionary research.
{"title":"It's time to consider the Arcellinida shell as a weapon","authors":"Kenneth Dumack , Enrique Lara , Clément Duckert , Elizaveta Ermolaeva , Ferry Siemensma , David Singer , Valentyna Krashevska , Mariusz Lamentowicz , Edward A.D. Mitchell","doi":"10.1016/j.ejop.2024.126051","DOIUrl":"10.1016/j.ejop.2024.126051","url":null,"abstract":"<div><p>The shells of testate amoebae are morphologically diverse and persistent in the environment. Accordingly, the examination of the morphology and composition of shells became a standard tool in ecological, palaeoecological, and evolutionary studies. However, so far the function of the shell remains poorly understood and, although based on limited evidence, the shell was considered as a defense mechanism. Based on recent evidence, we propose that the shell of arcellinid testate amoebae is a crucial component facilitating the amoebae’s attack of large prey. Accordingly, the shell is not purely protective, but must be considered also as a weapon. This change in perspective opens up numerous new avenues in protistology and will lead to a substantial change in ecological, palaeoecological, and evolutionary research.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"92 ","pages":"Article 126051"},"PeriodicalIF":2.9,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0932473924000014/pdfft?md5=53b8559b1fe719b469a1c20b3fb15cfb&pid=1-s2.0-S0932473924000014-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139082281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}