首页 > 最新文献

AIChE Journal最新文献

英文 中文
Optimizing supramolecular interactions within metal–organic frameworks for ultra‐high purity propylene purification 优化金属有机框架内的超分子相互作用,实现超高纯度丙烯纯化
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-15 DOI: 10.1002/aic.18646
Tong Li, Lu Zhang, Yong Wang, Xiaoxia Jia, Hui Chen, Yongjian Li, Qi Shi, Lin‐Bing Sun, Jinping Li, Banglin Chen, Libo Li
Purifying ultra‐high purity propylene (>99.995%) with an energy‐efficient adsorptive separation method is a promising yet challenging technology that remains unfulfilled. Instead of solely considering the effect of adsorbents on guest molecules, we propose a synergistic adsorption mechanism for the deep removal of propane and propyne, utilizing supramolecular interactions in both “host‐guest” and “guest‐guest” systems. Through modulation of the pore environment, Ni‐DMOF‐DM exhibits exceptionally high adsorption capacities for propane and propyne (171 and 197 cm3/g at ambient temperature and pressure, respectively), and unprecedented propane/propylene separation selectivity (2.74). Theoretical calculations confirm the geometric interactions of C‐H···π bonds and C‐H···O hydrogen bonds resulting from host‐guest interactions, alongside C‐H···H guest‐guest interactions within the confined pore space. Breakthrough experiments demonstrated that ultra‐high purity propylene (propane < 0.005% and propyne < 1.0 ppm) can be directly collected from ternary mixtures on Ni‐DMOF‐DM, achieving a productivity of up to 152.14 L/kg.
利用高能效吸附分离方法提纯超高纯度丙烯(99.995%)是一项前景广阔但极具挑战性的技术,目前仍未实现。我们没有单纯考虑吸附剂对客体分子的影响,而是提出了一种协同吸附机制,利用 "主-客体 "和 "客-客体 "系统中的超分子相互作用,深度去除丙烷和丙炔。通过调节孔隙环境,Ni-DMOF-DM 对丙烷和丙炔的吸附容量极高(常温常压下分别为 171 和 197 cm3/g),丙烷/丙烯分离选择性也达到了前所未有的水平(2.74)。理论计算证实,C-H--π键和C-H--O氢键的几何相互作用是由主客体相互作用以及密闭孔隙内的C-H--H主客体相互作用产生的。突破性实验证明,在 Ni-DMOF-DM 上可直接从三元混合物中收集超高纯度丙烯(丙烷含量为 0.005%,丙炔含量为 1.0 ppm),生产率高达 152.14 升/千克。
{"title":"Optimizing supramolecular interactions within metal–organic frameworks for ultra‐high purity propylene purification","authors":"Tong Li, Lu Zhang, Yong Wang, Xiaoxia Jia, Hui Chen, Yongjian Li, Qi Shi, Lin‐Bing Sun, Jinping Li, Banglin Chen, Libo Li","doi":"10.1002/aic.18646","DOIUrl":"https://doi.org/10.1002/aic.18646","url":null,"abstract":"Purifying ultra‐high purity propylene (&gt;99.995%) with an energy‐efficient adsorptive separation method is a promising yet challenging technology that remains unfulfilled. Instead of solely considering the effect of adsorbents on guest molecules, we propose a synergistic adsorption mechanism for the deep removal of propane and propyne, utilizing supramolecular interactions in both “host‐guest” and “guest‐guest” systems. Through modulation of the pore environment, Ni‐DMOF‐DM exhibits exceptionally high adsorption capacities for propane and propyne (171 and 197 cm<jats:sup>3</jats:sup>/g at ambient temperature and pressure, respectively), and unprecedented propane/propylene separation selectivity (2.74). Theoretical calculations confirm the geometric interactions of C‐H···π bonds and C‐H···O hydrogen bonds resulting from host‐guest interactions, alongside C‐H···H guest‐guest interactions within the confined pore space. Breakthrough experiments demonstrated that ultra‐high purity propylene (propane &lt; 0.005% and propyne &lt; 1.0 ppm) can be directly collected from ternary mixtures on Ni‐DMOF‐DM, achieving a productivity of up to 152.14 L/kg.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"197 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid holdup of gas–liquid two-phase flow in micro-packed beds reactors 微型堆积床反应器中气液两相流的液体截留量
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-13 DOI: 10.1002/aic.18636
Keyi Chen, Yangcheng Lu
Liquid holdup is a crucial factor in the study of hydrodynamic behaviors in the micro-packed bed reactor (μPBR). In this work, the values of liquid holdup are studied with the weighing method with good accuracy. The packed bed is a tube made of stainless steel with a length of 20 cm and an inner diameter of 4 mm, packed with 177–250 μm or 350–500 μm microbeads. The gas and liquid flow rates vary from 5 to 20 mL/min and 0.25 to 2 mL/min, respectively. A new hypothesis of the flow regions is proposed based on the experimental results. Furthermore, a new set of empirical correlation is built with great agreement, particularly for viscous liquids, whose viscosity ranges from 0.99 to 5.98 mPa·s, showing an atypical tendency.
液体滞留是研究微填料床反应器(μPBR)流体力学行为的一个关键因素。本研究采用称重法对液体滞留值进行了精确研究。填料床是一个长 20 厘米、内径 4 毫米的不锈钢管,内填 177-250 微米或 350-500 微米的微珠。气体和液体流速分别为 5 至 20 mL/min 和 0.25 至 2 mL/min。根据实验结果,对流动区域提出了新的假设。此外,还建立了一套新的经验相关性,尤其是对于粘度介于 0.99 至 5.98 mPa-s 之间的粘性液体,其相关性非常一致,显示出一种非典型趋势。
{"title":"Liquid holdup of gas–liquid two-phase flow in micro-packed beds reactors","authors":"Keyi Chen, Yangcheng Lu","doi":"10.1002/aic.18636","DOIUrl":"https://doi.org/10.1002/aic.18636","url":null,"abstract":"Liquid holdup is a crucial factor in the study of hydrodynamic behaviors in the micro-packed bed reactor (μPBR). In this work, the values of liquid holdup are studied with the weighing method with good accuracy. The packed bed is a tube made of stainless steel with a length of 20 cm and an inner diameter of 4 mm, packed with 177–250 μm or 350–500 μm microbeads. The gas and liquid flow rates vary from 5 to 20 mL/min and 0.25 to 2 mL/min, respectively. A new hypothesis of the flow regions is proposed based on the experimental results. Furthermore, a new set of empirical correlation is built with great agreement, particularly for viscous liquids, whose viscosity ranges from 0.99 to 5.98 mPa·s, showing an atypical tendency.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"13 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reverse design of molecule-process-process networks: A case study from HEN-ORC system 分子-过程-过程网络的逆向设计:HEN-ORC 系统案例研究
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-12 DOI: 10.1002/aic.18643
Xiaodong Hong, Xuan Dong, Zuwei Liao, Jingyuan Sun, Jingdai Wang, Yongrong Yang
The integrated design of the heat exchanger network (HEN) and organic Rankine cycle (ORC) system with new working fluids is a complex optimization problem. It involves navigating a vast design space across working fluid molecules, ORC processes, and networks. In this article, a new two-stage reverse strategy is developed. The optimal HEN-ORC configurations and operating conditions, and the thermodynamic properties of the hypothetical working fluid are identified by an equation of state (EOS) free HEN-ORC model in the first stage. With two developed group contribution-artificial neural network thermodynamic property prediction models, working fluid molecules are screened out in the second stage from a database containing more than 430,000 hydrofluoroolefins (HFOs). The presented method is employed in two cases, where new working fluids are found. The total annual cost of Case 1 is 12%–22% lower than the literature, and the power output of Case 2 is 5%–8% higher than the literature.
热交换器网络(HEN)和采用新型工作流体的有机郎肯循环(ORC)系统的集成设计是一个复杂的优化问题。它涉及到在工作流体分子、有机郎肯循环过程和网络的巨大设计空间中进行导航。本文开发了一种新的两阶段逆向策略。在第一阶段,通过无状态方程(EOS)HEN-ORC 模型确定最佳 HEN-ORC 配置和工作条件,以及假设工作流体的热力学特性。在第二阶段,利用所开发的两个小组贡献人工神经网络热力学性质预测模型,从包含 43 万多种氢氟烯烃(HFOs)的数据库中筛选出工作流体分子。所介绍的方法在两个案例中得到了应用,在这两个案例中都发现了新的工作流体。案例 1 的年总成本比文献低 12%-22%,案例 2 的功率输出比文献高 5%-8%。
{"title":"Reverse design of molecule-process-process networks: A case study from HEN-ORC system","authors":"Xiaodong Hong, Xuan Dong, Zuwei Liao, Jingyuan Sun, Jingdai Wang, Yongrong Yang","doi":"10.1002/aic.18643","DOIUrl":"https://doi.org/10.1002/aic.18643","url":null,"abstract":"The integrated design of the heat exchanger network (HEN) and organic Rankine cycle (ORC) system with new working fluids is a complex optimization problem. It involves navigating a vast design space across working fluid molecules, ORC processes, and networks. In this article, a new two-stage reverse strategy is developed. The optimal HEN-ORC configurations and operating conditions, and the thermodynamic properties of the hypothetical working fluid are identified by an equation of state (EOS) free HEN-ORC model in the first stage. With two developed group contribution-artificial neural network thermodynamic property prediction models, working fluid molecules are screened out in the second stage from a database containing more than 430,000 hydrofluoroolefins (HFOs). The presented method is employed in two cases, where new working fluids are found. The total annual cost of Case 1 is 12%–22% lower than the literature, and the power output of Case 2 is 5%–8% higher than the literature.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"43 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vapor–liquid phase equilibrium prediction for mixtures of binary systems using graph neural networks 利用图神经网络预测二元系统混合物的气液相平衡
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-05 DOI: 10.1002/aic.18637
Jinke Sun, Jianfei Xue, Guangyu Yang, Jingde Li, Wei Zhang
Vapor–liquid phase equilibrium (VLE) plays a crucial role in chemical process design, process equipment control, and experimental process simulation. However, experimental acquisition of VLE data is a challenging and complex task. As an alternative to experimentation, VLE data prediction offers great convenience and utility. In this article, an artificial intelligence network is proposed to predict the temperature and the vapor phase composition of binary mixtures. We constructed a graph neural network (GNN) and designed an uncertainty-aware learning and inference mechanism (UALF) in the prediction process. The model was tested on both a self-constructed dataset and a publicly available dataset. The results demonstrate that the proposed method effectively reveals the phase equilibrium properties of the target data. This work presents a novel approach for predicting vapor–liquid phase equilibrium in binary systems and proposes innovative ideas for investigating phase equilibrium mechanisms and principles.
气液相平衡(VLE)在化学工艺设计、工艺设备控制和实验工艺模拟中起着至关重要的作用。然而,通过实验获取 VLE 数据是一项具有挑战性的复杂任务。作为实验的替代方法,VLE 数据预测提供了极大的便利和实用性。本文提出了一种人工智能网络来预测二元混合物的温度和气相成分。我们构建了一个图神经网络(GNN),并在预测过程中设计了不确定性感知学习和推理机制(UALF)。该模型在自建数据集和公开数据集上进行了测试。结果表明,所提出的方法能有效揭示目标数据的相平衡特性。这项研究提出了一种预测二元体系汽液相平衡的新方法,并为研究相平衡机制和原理提出了创新思路。
{"title":"Vapor–liquid phase equilibrium prediction for mixtures of binary systems using graph neural networks","authors":"Jinke Sun, Jianfei Xue, Guangyu Yang, Jingde Li, Wei Zhang","doi":"10.1002/aic.18637","DOIUrl":"https://doi.org/10.1002/aic.18637","url":null,"abstract":"Vapor–liquid phase equilibrium (VLE) plays a crucial role in chemical process design, process equipment control, and experimental process simulation. However, experimental acquisition of VLE data is a challenging and complex task. As an alternative to experimentation, VLE data prediction offers great convenience and utility. In this article, an artificial intelligence network is proposed to predict the temperature and the vapor phase composition of binary mixtures. We constructed a graph neural network (GNN) and designed an uncertainty-aware learning and inference mechanism (UALF) in the prediction process. The model was tested on both a self-constructed dataset and a publicly available dataset. The results demonstrate that the proposed method effectively reveals the phase equilibrium properties of the target data. This work presents a novel approach for predicting vapor–liquid phase equilibrium in binary systems and proposes innovative ideas for investigating phase equilibrium mechanisms and principles.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"61 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of a controlled heating apparatus for long-term MRI of 3D microfluidic tumor models 开发并验证用于三维微流控肿瘤模型长期磁共振成像的受控加热装置
IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-05 DOI: 10.1002/aic.18638
Hassan Alkhadrawi, Kokeb Dese, Dhruvi M. Panchal, Alexander R. Pueschel, Kasey A. Freshwater, Amanda Stewart, Haleigh Henderson, Michael Elkins, Raj T. Dave, Hunter Wilson, John W. Bennewitz, Margaret F. Bennewitz

Conventional testing of novel contrast agents for magnetic resonance imaging (MRI) involves cell and animal studies. However, 2D cultures lack dynamic flow and in vivo MRI is limited by regulatory approval of long-term anesthesia use. Microfluidic tumor models (MTMs) offer a cost-effective, reproducible, and high throughput platform for bridging cell and animal models. Yet, MRI of microfluidic devices is challenging, due to small fluid volumes generating low sensitivity. For the first time, an MRI of MTMs was performed at low field strength (1 T) using conventional imaging equipment without microcoils. To enable longitudinal MRI, we developed (1) CHAMP-3 (controlled heating apparatus for microfluidics and portability) which heats MTMs during MRI scans and (2) an MRI-compatible temperature monitoring system. CHAMP-3 maintained chip surface temperature at ~37°C and the media inside at ~35.5°C. Enhanced T1-weighted MRI contrast was achieved in 3D MTMs with free manganese (Mn2+) solutions and Mn2+ labeled tumor cells.

用于磁共振成像(MRI)的新型造影剂的传统测试包括细胞和动物研究。然而,二维培养缺乏动态流动性,而且体内磁共振成像受限于长期麻醉的监管审批。微流控肿瘤模型(MTMs)为细胞和动物模型提供了一个具有成本效益、可重复性和高通量的平台。然而,由于流体体积小、灵敏度低,微流控设备的磁共振成像具有挑战性。这是首次使用传统成像设备,在低场强(1 T)下对 MTMs 进行磁共振成像,而不使用微线圈。为实现纵向磁共振成像,我们开发了(1)CHAMP-3(用于微流体和便携性的受控加热设备),它能在磁共振成像扫描期间加热 MTM;(2)与磁共振成像兼容的温度监控系统。CHAMP-3 将芯片表面温度保持在约 37°C,内部介质温度保持在约 35.5°C。用游离锰(Mn2+)溶液和 Mn2+ 标记的肿瘤细胞在三维 MTM 中实现了增强的 T1 加权 MRI 对比度。
{"title":"Development and validation of a controlled heating apparatus for long-term MRI of 3D microfluidic tumor models","authors":"Hassan Alkhadrawi,&nbsp;Kokeb Dese,&nbsp;Dhruvi M. Panchal,&nbsp;Alexander R. Pueschel,&nbsp;Kasey A. Freshwater,&nbsp;Amanda Stewart,&nbsp;Haleigh Henderson,&nbsp;Michael Elkins,&nbsp;Raj T. Dave,&nbsp;Hunter Wilson,&nbsp;John W. Bennewitz,&nbsp;Margaret F. Bennewitz","doi":"10.1002/aic.18638","DOIUrl":"10.1002/aic.18638","url":null,"abstract":"<p>Conventional testing of novel contrast agents for magnetic resonance imaging (MRI) involves cell and animal studies. However, 2D cultures lack dynamic flow and <i>in vivo</i> MRI is limited by regulatory approval of long-term anesthesia use. Microfluidic tumor models (MTMs) offer a cost-effective, reproducible, and high throughput platform for bridging cell and animal models. Yet, MRI of microfluidic devices is challenging, due to small fluid volumes generating low sensitivity. For the first time, an MRI of MTMs was performed at low field strength (1 T) using conventional imaging equipment without microcoils. To enable longitudinal MRI, we developed (1) CHAMP-3 (controlled heating apparatus for microfluidics and portability) which heats MTMs during MRI scans and (2) an MRI-compatible temperature monitoring system. CHAMP-3 maintained chip surface temperature at ~37°C and the media inside at ~35.5°C. Enhanced T<sub>1</sub>-weighted MRI contrast was achieved in 3D MTMs with free manganese (Mn<sup>2+</sup>) solutions and Mn<sup>2+</sup> labeled tumor cells.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale wettability characterization—Interpreting droplet morphological evolution in nanopores 纳米级润湿性表征--解读纳米孔中液滴的形态演变
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-04 DOI: 10.1002/aic.18623
Wenzhen Chu, Kaiqiang Zhang
Nanoscale wettability, crucial for various disciplines in science and engineering, challenges traditional theory, particularly the Young's equation. This study proposes and validates a modified format of the Young's equation under nano-confinement and, for the first time, the nano-confined droplet morphological evolution and transition are investigated from thermodynamic theories and molecular dynamics simulation. The morphologies of droplets in nano-silts, identified as double-cap, single-cap, and bridge-shaped, underscore the critical roles of line tension and nano-confinement in characterizing wetting behavior. In hydrophobic nano-slits, droplets transition from the double-cap to the single-cap shape at the critical point of <span data-altimg="/cms/asset/8aadb0a1-cdb7-4e0f-a20c-71a72b38c4be/aic18623-math-0001.png"></span><mjx-container ctxtmenu_counter="157" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/aic18623-math-0001.png"><mjx-semantics><mjx-mrow data-semantic-children="2,4" data-semantic-content="3" data-semantic- data-semantic-role="division" data-semantic-speech="r 0 divided by upper H" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator="infixop,/" data-semantic-parent="5" data-semantic-role="division" data-semantic-type="operator" rspace="1" space="1"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:00011541:media:aic18623:aic18623-math-0001" display="inline" location="graphic/aic18623-math-0001.png" overflow="scroll" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow data-semantic-="" data-semantic-children="2,4" data-semantic-content="3" data-semantic-role="division" data-semantic-speech="r 0 divided by upper H" data-semantic-type="infixop"><msub data-semantic-="" data-semantic-children="0,1" data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="subscript"><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-seman
纳米级润湿性对科学和工程领域的各个学科都至关重要,它对传统理论,尤其是杨氏方程提出了挑战。本研究提出并验证了纳米约束下杨氏方程的修正格式,首次从热力学理论和分子动力学模拟的角度研究了纳米约束液滴形态的演变和转变。纳米硅片中的液滴形态分为双帽型、单帽型和桥型,凸显了线张力和纳米约束在表征润湿行为中的关键作用。在疏水性纳米缝隙中,液滴在 r0/H$$ {r}_0/H$ $ = 0.31 临界点时从双帽型过渡到单帽型,在 r0/H$$ {r}_0/H$ $ = 0.40 临界点时过渡到桥型。此外,还发现桥形液滴颈部区域的相对宽度在 w/r$$ w/r$$ 比率为 1.8 时趋于稳定。特别是,液滴接触角与参数 H/r0$$ H/{r}_0 $$ 之间建立了线性关系,从而确定了液滴在疏水纳米缝隙中的凝结和破裂。该模型有效地描述了纳米尺度的润湿性,并对液滴行为进行了精确预测,这将有助于加深对纳米流体动力学的理解及其在科学和工程领域的应用。
{"title":"Nanoscale wettability characterization—Interpreting droplet morphological evolution in nanopores","authors":"Wenzhen Chu, Kaiqiang Zhang","doi":"10.1002/aic.18623","DOIUrl":"https://doi.org/10.1002/aic.18623","url":null,"abstract":"Nanoscale wettability, crucial for various disciplines in science and engineering, challenges traditional theory, particularly the Young's equation. This study proposes and validates a modified format of the Young's equation under nano-confinement and, for the first time, the nano-confined droplet morphological evolution and transition are investigated from thermodynamic theories and molecular dynamics simulation. The morphologies of droplets in nano-silts, identified as double-cap, single-cap, and bridge-shaped, underscore the critical roles of line tension and nano-confinement in characterizing wetting behavior. In hydrophobic nano-slits, droplets transition from the double-cap to the single-cap shape at the critical point of &lt;span data-altimg=\"/cms/asset/8aadb0a1-cdb7-4e0f-a20c-71a72b38c4be/aic18623-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"157\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/aic18623-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"division\" data-semantic-speech=\"r 0 divided by upper H\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:00011541:media:aic18623:aic18623-math-0001\" display=\"inline\" location=\"graphic/aic18623-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow data-semantic-=\"\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic-role=\"division\" data-semantic-speech=\"r 0 divided by upper H\" data-semantic-type=\"infixop\"&gt;&lt;msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-seman","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"87 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface to the 2024 futures issue of AIChE Journal AIChE 期刊》2024 期前言
IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-11-04 DOI: 10.1002/aic.18639
David S. Sholl
{"title":"Preface to the 2024 futures issue of AIChE Journal","authors":"David S. Sholl","doi":"10.1002/aic.18639","DOIUrl":"10.1002/aic.18639","url":null,"abstract":"","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ monitoring of CO2$$ {}_2 $$ sorption on polyethylenimine dynamics through broadband dielectric spectroscopy 通过宽带介电光谱原位监测二氧化碳在聚乙烯亚胺上的吸附动态
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-10-28 DOI: 10.1002/aic.18627
Martin Tress, Soma Ahmadi, Shiwang Cheng
Chemical reactions between carbon dioxide (CO) and amine have been extensively characterized, however, their influence on the dynamics of polyamines remains largely unexplored. In this work, we compare the dynamics of polyethylenimine (PEI) before and after CO absorption through broadband dielectric spectroscopy (BDS). The molecular processes of bulk PEI are very different from those of thin film PEI, highlighting an interesting interface and nano‐confinement effect. Detailed analyses show CO absorption slows down the PEI dynamics, which is consistent with an elevated glass transition temperature of PEI upon CO absorption from differential scanning calorimetry measurements. Further in situ kinetic measurements demonstrate nonmonotonic changes in relaxation times or dielectric amplitudes of some relaxation processes during CO sorption or desorption, suggesting an intriguing interplay between CO chemisorption and the dynamics of PEI. These results demonstrate that BDS is a powerful platform to resolve the temporal dynamics changes of polyamines for CO capture.
二氧化碳(CO)和胺之间的化学反应已被广泛描述,但它们对聚胺动态的影响在很大程度上仍未被探索。在这项工作中,我们通过宽带介电光谱(BDS)比较了聚乙烯亚胺(PEI)吸收 CO 前后的动态。块状聚乙烯亚胺的分子过程与薄膜聚乙烯亚胺的分子过程截然不同,凸显了有趣的界面和纳米融合效应。详细的分析表明,二氧化碳的吸收减缓了 PEI 的动力学过程,这与差示扫描量热法测量得出的吸收二氧化碳后 PEI 玻璃化转变温度升高的结果一致。进一步的原位动力学测量表明,在 CO 吸收或解吸过程中,某些弛豫过程的弛豫时间或介电振幅会发生非单调变化,这表明 CO 化学吸附与 PEI 动力学之间存在着有趣的相互作用。这些结果表明,BDS 是解析多胺在捕获 CO 时的时间动力学变化的强大平台。
{"title":"In situ monitoring of CO2$$ {}_2 $$ sorption on polyethylenimine dynamics through broadband dielectric spectroscopy","authors":"Martin Tress, Soma Ahmadi, Shiwang Cheng","doi":"10.1002/aic.18627","DOIUrl":"https://doi.org/10.1002/aic.18627","url":null,"abstract":"Chemical reactions between carbon dioxide (CO) and amine have been extensively characterized, however, their influence on the dynamics of polyamines remains largely unexplored. In this work, we compare the dynamics of polyethylenimine (PEI) before and after CO absorption through broadband dielectric spectroscopy (BDS). The molecular processes of bulk PEI are very different from those of thin film PEI, highlighting an interesting interface and nano‐confinement effect. Detailed analyses show CO absorption slows down the PEI dynamics, which is consistent with an elevated glass transition temperature of PEI upon CO absorption from differential scanning calorimetry measurements. Further <jats:italic>in situ</jats:italic> kinetic measurements demonstrate nonmonotonic changes in relaxation times or dielectric amplitudes of some relaxation processes during CO sorption or desorption, suggesting an intriguing interplay between CO chemisorption and the dynamics of PEI. These results demonstrate that BDS is a powerful platform to resolve the temporal dynamics changes of polyamines for CO capture.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"33 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital image analysis of gas bypassing and mixing in gas-fluidized bed: Effect of particle shape 气体流化床中气体旁路和混合的数字图像分析:颗粒形状的影响
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-10-25 DOI: 10.1002/aic.18633
Shreya Chouhan, Ajita Neogi, Hare K. Mohanta, Arvind Kumar Sharma, Navneet Goyal, Priya C. Sande
The study investigates effect of particle shape on gas bypassing and mixing of gas-fluidized Geldart A particles. A shallow fluidized bed (FB), configured at benchscale, was used with digital image analysis (DIA) for the investigation. The extent of scatter of tracer particles throughout the bed was assessed from DIA images of defluidized powder. A novel method employing Jupyter notebook software, was used to directly determine Mixing Index from digital images. Remarkably, platelet-shaped China clay powder displayed the best mixing characteristics (Mixing Index: 0.79) with no significant bypassing. Angular shaped Quartz displayed moderate mixing (Mixing Index: 0.67), but high bypassing (Bypassing Index: 0.75). Contrary to conventional assumptions, spherical-shaped diatomite exhibited poor mixing (Mixing Index: 0.61) with the highest bypassing (Bypassing Index: 0.82). Platelet particles performed well even with fines removal. Most likely, particle shape significantly influenced the number of available particle contact points, tracer migration, and traceronparticle binding.
该研究探讨了颗粒形状对气体旁路和气体流化 Geldart A 颗粒混合的影响。研究使用了台式配置的浅层流化床(FB)和数字图像分析仪(DIA)。示踪粒子在整个流化床中的散射程度是通过流化粉末的 DIA 图像进行评估的。使用 Jupyter 笔记本软件的新方法可直接从数字图像中确定混合指数。值得注意的是,血小板状的中国粘土粉末显示出最佳的混合特性(混合指数:0.79),没有明显的旁路现象。角形石英显示出中等程度的混合(混合指数:0.67),但旁通指数较高(旁通指数:0.75)。与传统假设相反,球形硅藻土的混合性较差(混合指数:0.61),旁通指数最高(旁通指数:0.82)。即使去除细粒,板状颗粒也表现良好。颗粒形状很可能会对可用颗粒接触点的数量、示踪剂迁移和示踪剂与颗粒的结合产生重大影响。
{"title":"Digital image analysis of gas bypassing and mixing in gas-fluidized bed: Effect of particle shape","authors":"Shreya Chouhan, Ajita Neogi, Hare K. Mohanta, Arvind Kumar Sharma, Navneet Goyal, Priya C. Sande","doi":"10.1002/aic.18633","DOIUrl":"https://doi.org/10.1002/aic.18633","url":null,"abstract":"The study investigates effect of particle shape on gas bypassing and mixing of gas-fluidized Geldart A particles. A shallow fluidized bed (FB), configured at benchscale, was used with digital image analysis (DIA) for the investigation. The extent of scatter of tracer particles throughout the bed was assessed from DIA images of defluidized powder. A novel method employing Jupyter notebook software, was used to directly determine Mixing Index from digital images. Remarkably, platelet-shaped China clay powder displayed the best mixing characteristics (Mixing Index: 0.79) with no significant bypassing. Angular shaped Quartz displayed moderate mixing (Mixing Index: 0.67), but high bypassing (Bypassing Index: 0.75). Contrary to conventional assumptions, spherical-shaped diatomite exhibited poor mixing (Mixing Index: 0.61) with the highest bypassing (Bypassing Index: 0.82). Platelet particles performed well even with fines removal. Most likely, particle shape significantly influenced the number of available particle contact points, tracer migration, and traceronparticle binding.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"110 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noise aware parameter estimation in bioprocesses: Using neural network surrogate models with nonuniform data sampling 生物过程中的噪声感知参数估计:使用非均匀数据采样的神经网络代用模型
IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-10-22 DOI: 10.1002/aic.18634
Lauren Weir, Nigel Mathias, Brandon Corbett, Prashant Mhaskar
This article demonstrates a parameter estimation technique for bioprocesses that utilizes measurement noise in experimental data to determine credible intervals on parameter estimates, with this information of potential use in prediction, robust control, and optimization. To determine these estimates, the work implements Bayesian inference using nested sampling, presenting an approach to develop neural network- (NN) based surrogate models. To address challenges associated with nonuniform sampling of experimental measurements, an NN structure is proposed. The resultant surrogate model is utilized within a Nested Sampling Algorithm that samples possible parameter values from the parameter space and uses the NN to calculate model output for use in the likelihood function based on the joint probability distribution of the noise of output variables. This method is illustrated against simulated data, then with experimental data from a Sartorius fed-batch bioprocess. Results demonstrate the feasibility of the proposed technique to enable rapid parameter estimation for bioprocesses.
本文展示了一种生物过程参数估计技术,该技术利用实验数据中的测量噪声来确定参数估计的可信区间,这些信息在预测、稳健控制和优化方面具有潜在用途。为了确定这些估计值,该研究利用嵌套采样实现了贝叶斯推理,提出了一种开发基于神经网络(NN)的代理模型的方法。为了应对与实验测量非均匀采样相关的挑战,提出了一种 NN 结构。由此产生的代用模型在嵌套采样算法中使用,该算法从参数空间采样可能的参数值,并根据输出变量噪声的联合概率分布,使用神经网络计算模型输出以用于似然函数。先用模拟数据说明了这种方法,然后用 Sartorius 喂料批次生物工艺的实验数据进行了说明。结果表明,所提出的技术是可行的,可以实现生物过程的快速参数估计。
{"title":"Noise aware parameter estimation in bioprocesses: Using neural network surrogate models with nonuniform data sampling","authors":"Lauren Weir, Nigel Mathias, Brandon Corbett, Prashant Mhaskar","doi":"10.1002/aic.18634","DOIUrl":"https://doi.org/10.1002/aic.18634","url":null,"abstract":"This article demonstrates a parameter estimation technique for bioprocesses that utilizes measurement noise in experimental data to determine credible intervals on parameter estimates, with this information of potential use in prediction, robust control, and optimization. To determine these estimates, the work implements Bayesian inference using nested sampling, presenting an approach to develop neural network- (NN) based surrogate models. To address challenges associated with nonuniform sampling of experimental measurements, an NN structure is proposed. The resultant surrogate model is utilized within a Nested Sampling Algorithm that samples possible parameter values from the parameter space and uses the NN to calculate model output for use in the likelihood function based on the joint probability distribution of the noise of output variables. This method is illustrated against simulated data, then with experimental data from a Sartorius fed-batch bioprocess. Results demonstrate the feasibility of the proposed technique to enable rapid parameter estimation for bioprocesses.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"21 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
AIChE Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1