The synthesis of hydrogen peroxide (H₂O₂) via photocatalysis represents a sustainable and environmentally friendly approach with significant potential for diverse applications. This study reveals the involvement of a novel triple interplay catalytic cycle in the photocatalytic production of H₂O₂, providing crucial insights into the underlying reaction mechanisms. Utilizing modified carbon nitride (m-CN) as the catalyst, we achieved H₂O₂ concentrations of 3368 mmol L−1 (11.5 wt.%) and a production rate of 4900 mM g cat−1 h−1, demonstrating significant improvements over existing methods. Stability tests and spectroscopic analyses confirmed the robustness of the system over 100 h. Mechanistic studies, including EPR spectroscopy and kinetic analysis, further elucidated the reaction pathways, enhancing our understanding of H₂O₂ synthesis. This research offers a foundation for designing next-generation photocatalytic systems with improved efficiency and selectivity, contributing to the advancement of sustainable H₂O₂ production for cooperative organic synthesis.
通过光催化合成过氧化氢(H₂O₂)代表了一种可持续和环保的方法,具有广泛的应用潜力。这项研究揭示了一种新的三重相互作用催化循环参与光催化生产h2o2₂,为潜在的反应机制提供了重要的见解。利用改性氮化碳(m-CN)作为催化剂,我们获得了3368 mmol L−1 (11.5 wt.%)的H₂O₂浓度和4900 mM g cat−1 H−1的产率,与现有方法相比有了显著的改进。稳定性测试和光谱分析证实了该系统在100小时内的稳健性。机理研究,包括EPR光谱和动力学分析,进一步阐明了反应途径,增强了我们对H₂O₂合成的理解。该研究为设计具有更高效率和选择性的下一代光催化体系奠定了基础,为协同有机合成的可持续H₂O₂生产做出了贡献。
{"title":"Synergistic photocatalytic synthesis of H2O2: Mechanistic insights and sustainable applications","authors":"Zaixiang Xu, Wenjuan Fang, Fengcang Zhou, Chenghang Jiang, Jingnan Zheng, Yanfeng Li, Shijie Zhang, Zhikang Bao, Qun Cao, Jianguo Wang","doi":"10.1002/aic.18692","DOIUrl":"https://doi.org/10.1002/aic.18692","url":null,"abstract":"The synthesis of hydrogen peroxide (H₂O₂) via photocatalysis represents a sustainable and environmentally friendly approach with significant potential for diverse applications. This study reveals the involvement of a novel triple interplay catalytic cycle in the photocatalytic production of H₂O₂, providing crucial insights into the underlying reaction mechanisms. Utilizing modified carbon nitride (m-CN) as the catalyst, we achieved H₂O₂ concentrations of 3368 mmol L<sup>−1</sup> (11.5 wt.%) and a production rate of 4900 mM g cat<sup>−1</sup> h<sup>−1</sup>, demonstrating significant improvements over existing methods. Stability tests and spectroscopic analyses confirmed the robustness of the system over 100 h. Mechanistic studies, including EPR spectroscopy and kinetic analysis, further elucidated the reaction pathways, enhancing our understanding of H₂O₂ synthesis. This research offers a foundation for designing next-generation photocatalytic systems with improved efficiency and selectivity, contributing to the advancement of sustainable H₂O₂ production for cooperative organic synthesis.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"21 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The advancement of ethane (C2H6)-selective materials offers the potential for developing energy-efficient adsorptive separation processes to obtain high-purity ethylene (C2H4) directly. However, these materials still suffer challenges of low selectivity, high cost, and poor stability. Herein, we presented a commercially scalable and stable MFI topology zeolite material (TS-1) with excellent ideal adsorption solution theory (IAST) selectivity (2.07) and separation potential (0.64 mmol g−1). Polymer-grade ethylene (99.9%) could be afforded with the productivity of 11.5 L kg−1 through the adsorption column packed with TS-1 material. Additionally, pure silica zeolite with DOH topology with excellent IAST selectivity (2.93) and separation potential (1.64 mmol g−1) was discovered by high-throughput screening via the combination of experiments and simulations. These findings highlight that pure silica zeolites hold promise as C2H6-selective adsorbents for large-scale implementation for one-step C2H4 purification.
乙烷(C2H6)选择性材料的进展为开发节能吸附分离工艺直接获得高纯度乙烯(C2H4)提供了可能。然而,这些材料仍然面临着选择性低、成本高、稳定性差的挑战。在此,我们提出了一种商业可扩展和稳定的MFI拓扑分子筛材料(TS-1),具有优异的理想吸附溶液理论(IAST)选择性(2.07)和分离电位(0.64 mmol g−1)。采用TS-1填料的吸附柱,可获得99.9%的聚合物级乙烯,产率为11.5 L kg−1。此外,通过实验和模拟相结合的高通量筛选,发现了具有DOH拓扑结构的纯二氧化硅分子筛,具有良好的IAST选择性(2.93)和分离电位(1.64 mmol g−1)。这些发现表明,纯硅沸石有望作为c2h6选择性吸附剂大规模实施一步提纯C2H4。
{"title":"Screening of pure silica zeolites with high ethane/ethylene separation selectivity by simulations and experiments","authors":"Peixin Zhang, Jianbo Hu, Dengzhuo Zhou, Xiaofei Lu, Lifeng Yang, Liyuan Chen, Xian Suo, Xili Cui, Huabin Xing","doi":"10.1002/aic.18676","DOIUrl":"https://doi.org/10.1002/aic.18676","url":null,"abstract":"The advancement of ethane (C<sub>2</sub>H<sub>6</sub>)-selective materials offers the potential for developing energy-efficient adsorptive separation processes to obtain high-purity ethylene (C<sub>2</sub>H<sub>4</sub>) directly. However, these materials still suffer challenges of low selectivity, high cost, and poor stability. Herein, we presented a commercially scalable and stable MFI topology zeolite material (TS-1) with excellent ideal adsorption solution theory (IAST) selectivity (2.07) and separation potential (0.64 mmol g<sup>−1</sup>). Polymer-grade ethylene (99.9%) could be afforded with the productivity of 11.5 L kg<sup>−1</sup> through the adsorption column packed with TS-1 material. Additionally, pure silica zeolite with DOH topology with excellent IAST selectivity (2.93) and separation potential (1.64 mmol g<sup>−1</sup>) was discovered by high-throughput screening via the combination of experiments and simulations. These findings highlight that pure silica zeolites hold promise as C<sub>2</sub>H<sub>6</sub>-selective adsorbents for large-scale implementation for one-step C<sub>2</sub>H<sub>4</sub> purification.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"233 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Achieving large-scale coupling of organic electrooxidation and the hydrogen evolution reaction, while understanding the competition between organic electrooxidation and oxygen evolution reaction (OER), is a significant challenge. In this study, using Ni3N-MoN/NF, an efficient heterojunction electrocatalyst as both anode and cathode in a 50 cm2 continuous flow reactor, we achieved a total current of ~20 A at 2.6 V. This resulted in the highest single-pass 5-hydroxymethylfurfural conversion efficiency (0.049 mmol cm−2 min−1) and gram-level production of 2,5-furandicarboxylic acid. Theoretical studies revealed that MoN accelerated *OH formation and increased its deprotonation energy barrier, leading to *OH accumulation, effectively promoting organic electrooxidation and inhibiting OER. We anticipate that our foundation in understanding the reaction mechanism and catalyst design strategy can be extended to a wider range of anodic oxidation reactions.
{"title":"Stabilizing *OH intermediate by fabricating Ni3N-MoN for scalable 5-hydroxymethylfurfural electrooxidation","authors":"Shaowei Yang, Ying Guo, Jie Yang, Runze Gao, Zhibei Liao, Haidong Shen, Haoxi Wang, Lifeng Jiang, Buxing Han, Qiuyu Zhang, Hepeng Zhang","doi":"10.1002/aic.18690","DOIUrl":"https://doi.org/10.1002/aic.18690","url":null,"abstract":"Achieving large-scale coupling of organic electrooxidation and the hydrogen evolution reaction, while understanding the competition between organic electrooxidation and oxygen evolution reaction (OER), is a significant challenge. In this study, using Ni<sub>3</sub>N-MoN/NF, an efficient heterojunction electrocatalyst as both anode and cathode in a 50 cm<sup>2</sup> continuous flow reactor, we achieved a total current of ~20 A at 2.6 V. This resulted in the highest single-pass 5-hydroxymethylfurfural conversion efficiency (0.049 mmol cm<sup>−2</sup> min<sup>−1</sup>) and gram-level production of 2,5-furandicarboxylic acid. Theoretical studies revealed that MoN accelerated *OH formation and increased its deprotonation energy barrier, leading to *OH accumulation, effectively promoting organic electrooxidation and inhibiting OER. We anticipate that our foundation in understanding the reaction mechanism and catalyst design strategy can be extended to a wider range of anodic oxidation reactions.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"41 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tamara Janković, Adrie J. J. Straathof, Anton A. Kiss
Ethyl acetate is a platform chemical conventionally obtained through fossil fuel routes, but more recently its production by fermentation from carbohydrates has been scaled up to a pilot scale. Yet, the complexity of downstream processing (low product concentrations in liquid broth and in off-gas, azeotrope formation, and the presence of microorganisms) may complicate industrial application. This original theoretical study is the first to develop advanced downstream processing, based on process intensification principles, for large-scale recovery (~10 kton/year) of ethyl acetate after fermentation. To minimize product losses, ethyl acetate is separated from both the liquid broth and off-gas. The final purification is performed in a highly integrated azeotropic dividing-wall column. The economic and sustainability analysis shows that using refrigeration for initial product separation from the gas phase is more cost-effective (~0.61 $/kg) and less energy-intensive (2.20–2.40 kWthh/kg) than compression combined with high-pressure condensation using chilled water (1.09 $/kg and 9.98 kWthh/kg).
{"title":"Advanced downstream processing for sustainable ethyl acetate production by fermentation","authors":"Tamara Janković, Adrie J. J. Straathof, Anton A. Kiss","doi":"10.1002/aic.18684","DOIUrl":"https://doi.org/10.1002/aic.18684","url":null,"abstract":"Ethyl acetate is a platform chemical conventionally obtained through fossil fuel routes, but more recently its production by fermentation from carbohydrates has been scaled up to a pilot scale. Yet, the complexity of downstream processing (low product concentrations in liquid broth and in off-gas, azeotrope formation, and the presence of microorganisms) may complicate industrial application. This original theoretical study is the first to develop advanced downstream processing, based on process intensification principles, for large-scale recovery (~10 kton/year) of ethyl acetate after fermentation. To minimize product losses, ethyl acetate is separated from both the liquid broth and off-gas. The final purification is performed in a highly integrated azeotropic dividing-wall column. The economic and sustainability analysis shows that using refrigeration for initial product separation from the gas phase is more cost-effective (~0.61 $/kg) and less energy-intensive (2.20–2.40 kW<sub>th</sub>h/kg) than compression combined with high-pressure condensation using chilled water (1.09 $/kg and 9.98 kW<sub>th</sub>h/kg).","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"35 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Data-enabled predictive control (DeePC) is a data-driven control algorithm that utilizes data matrices to form a non-parametric representation of the underlying system, predicting future behaviors and generating optimal control actions. DeePC typically requires solving an online optimization problem, the complexity of which is heavily influenced by the amount of data used, potentially leading to expensive online computation. In this article, we leverage deep learning to propose a highly computationally efficient DeePC approach for general nonlinear processes, referred to as Deep DeePC. Specifically, a deep neural network is employed to learn the DeePC vector operator, which is an essential component of the non-parametric representation of DeePC. This neural network is trained offline using historical open-loop input and output data of the nonlinear process. With the trained neural network, the Deep DeePC framework is formed for online control implementation. At each sampling instant, this neural network directly outputs the DeePC operator, eliminating the need for online optimization as conventional DeePC. The optimal control action is obtained based on the DeePC operator updated by the trained neural network. To address constrained scenarios, a constraint handling scheme is further proposed and integrated with the Deep DeePC to handle hard constraints during online implementation. The efficacy and superiority of the proposed Deep DeePC approach are demonstrated using two benchmark process examples.
{"title":"Deep DeePC: Data-enabled predictive control with low or no online optimization using deep learning","authors":"Xuewen Zhang, Kaixiang Zhang, Zhaojian Li, Xunyuan Yin","doi":"10.1002/aic.18644","DOIUrl":"https://doi.org/10.1002/aic.18644","url":null,"abstract":"Data-enabled predictive control (DeePC) is a data-driven control algorithm that utilizes data matrices to form a non-parametric representation of the underlying system, predicting future behaviors and generating optimal control actions. DeePC typically requires solving an online optimization problem, the complexity of which is heavily influenced by the amount of data used, potentially leading to expensive online computation. In this article, we leverage deep learning to propose a highly computationally efficient DeePC approach for general nonlinear processes, referred to as Deep DeePC. Specifically, a deep neural network is employed to learn the DeePC vector operator, which is an essential component of the non-parametric representation of DeePC. This neural network is trained offline using historical open-loop input and output data of the nonlinear process. With the trained neural network, the Deep DeePC framework is formed for online control implementation. At each sampling instant, this neural network directly outputs the DeePC operator, eliminating the need for online optimization as conventional DeePC. The optimal control action is obtained based on the DeePC operator updated by the trained neural network. To address constrained scenarios, a constraint handling scheme is further proposed and integrated with the Deep DeePC to handle hard constraints during online implementation. The efficacy and superiority of the proposed Deep DeePC approach are demonstrated using two benchmark process examples.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"25 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon dioxide (CO2) utilization technology is of great significance for achieving carbon neutrality, in which the catalytic materials play crucial roles, and among them, single-atom alloys (SAAs) are of particular interests. In this study, density functional theory (DFT) calculations and machine learning are employed to assess the effectiveness of Cu-, Ag-, and Ni-host SAAs as catalysts for electrochemical CO2 reduction to CH3OH. The Gibbs free energies of 477 elementary reactions across 35 SAAs involved in CO2 reduction are calculated, and by utilizing this dataset, a trained gradient boosting regression model is established with an excellent accuracy. Subsequently, the properties of 46 unknown SAAs are predicted, including their pathways, products, potential-determining steps (PDS), and corresponding Gibbs free energies of the PDS (GPDS). Three promising candidates, ZnCu, AuAg and MoNi, stand out due to their lowest GPDS among Cu-, Ag- and Ni- hosted SAAs, respectively.
{"title":"Designing and screening single-atom alloy catalysts for CO2 reduction to CH3OH via DFT and machine learning","authors":"Wenyu Zhou, Haisong Feng, Shihong Zhou, Mengxin Wang, Yuping Chen, Chenyang Lu, Hao Yuan, Jing Yang, Qun Li, Luxi Tan, Lichun Dong, Yong-Wei Zhang","doi":"10.1002/aic.18678","DOIUrl":"https://doi.org/10.1002/aic.18678","url":null,"abstract":"Carbon dioxide (CO<sub>2</sub>) utilization technology is of great significance for achieving carbon neutrality, in which the catalytic materials play crucial roles, and among them, single-atom alloys (SAAs) are of particular interests. In this study, density functional theory (DFT) calculations and machine learning are employed to assess the effectiveness of Cu-, Ag-, and Ni-host SAAs as catalysts for electrochemical CO<sub>2</sub> reduction to CH<sub>3</sub>OH. The Gibbs free energies of 477 elementary reactions across 35 SAAs involved in CO<sub>2</sub> reduction are calculated, and by utilizing this dataset, a trained gradient boosting regression model is established with an excellent accuracy. Subsequently, the properties of 46 unknown SAAs are predicted, including their pathways, products, potential-determining steps (PDS), and corresponding Gibbs free energies of the PDS (<i>G</i><sub>PDS</sub>). Three promising candidates, ZnCu, AuAg and MoNi, stand out due to their lowest <i>G</i><sub>PDS</sub> among Cu-, Ag- and Ni- hosted SAAs, respectively.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
You Ma, Guozhi Qian, Mohsin Pasha, Yuhan Wang, Jiayi Li, Yuzhe Liu, Saier Liu, Xiao Xue, Min Qiu, Zihao Zhong, Minjing Shang, Jie Zheng, Zhigang Lin, Yuanhai Su
Photobromination reaction of oxime ether (OE) to brominated oxime ether (BOE) is an important process for the synthesis of trifloxystrobin in the fungicide industry. Herein, continuous synthesis of BOE in photomicroreactors was performed. Initially, an investigation was carried out to study the effects of various parameters, including mixing performance, molar ratios, solvents, incident photon flux, and temperature, on the photobromination process. Moreover, a kinetic model was established, and the activation energies for the main and side reactions were determined. The relationship between the reaction rate constant and light flux was illuminated. Transition states and energy changes in the bromination process were analyzed using density functional theory calculation. Remarkably, an 83.1% yield of BOE was achieved in the photomicroreactor and the required reaction time was reduced to approximately 1/10 of the batch reactor. This work was of crucial theoretical significance and practical value for better understanding of photobromination processes and parameter optimization.
{"title":"Oxime ether photobromination in a photomicroreactor: Process parameters and kinetic modeling","authors":"You Ma, Guozhi Qian, Mohsin Pasha, Yuhan Wang, Jiayi Li, Yuzhe Liu, Saier Liu, Xiao Xue, Min Qiu, Zihao Zhong, Minjing Shang, Jie Zheng, Zhigang Lin, Yuanhai Su","doi":"10.1002/aic.18693","DOIUrl":"https://doi.org/10.1002/aic.18693","url":null,"abstract":"Photobromination reaction of oxime ether (OE) to brominated oxime ether (BOE) is an important process for the synthesis of trifloxystrobin in the fungicide industry. Herein, continuous synthesis of BOE in photomicroreactors was performed. Initially, an investigation was carried out to study the effects of various parameters, including mixing performance, molar ratios, solvents, incident photon flux, and temperature, on the photobromination process. Moreover, a kinetic model was established, and the activation energies for the main and side reactions were determined. The relationship between the reaction rate constant and light flux was illuminated. Transition states and energy changes in the bromination process were analyzed using density functional theory calculation. Remarkably, an 83.1% yield of BOE was achieved in the photomicroreactor and the required reaction time was reduced to approximately 1/10 of the batch reactor. This work was of crucial theoretical significance and practical value for better understanding of photobromination processes and parameter optimization.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"20 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongzhe Wei, Guanglu Dong, Long Zhao, Songtao Huang, Molin Xia, Wei Huang, Ming Jiang, Zhixiang Yang, Zihao Yao, Jianfeng Li, Jianguo Wang
Given that the retention of nitrogen readily renders active site poisoning, designing versatile catalysts characterized by notable selectivity and even resistance to poisoning for alkyne semi-hydrogenation under nitrogen-containing conditions is considerably challenging. In this article, oxanilide-decorated Pd/C (Pd/C-oxa) catalyst is facilely synthesized by leveraging impregnation-coordination, which exhibit remarkable performance in the semi-hydrogenation of nitrogen-containing alkynes, with ultrahigh turnover frequency (TOF) of 15,831 h−1 and selectivity of 97.2%. Strikingly, it still sustains TOF of 12,137 h−1 in a sulfur-containing system, demonstrating distinguished tolerance to sulfur. Comprehensive studies corroborate that oxanilide tunes the electron density of Pd by constructing metal–ligand electronic interactions, facilitating hydrogen activation. Simultaneously, the reaction microenvironment is optimized, which effectively promotes the desorption of nitrogen-containing olefins and attenuates the aggregation of nitrogen on the Pd surface. This strategy is universal and holds promising industrial applications, making it appropriate for use in commercial Pd/C catalysts as well.
{"title":"Enhanced resistance to poisoning of Pd in alkynes semi-hydrogenation by metal–ligand electronic interactions","authors":"Zhongzhe Wei, Guanglu Dong, Long Zhao, Songtao Huang, Molin Xia, Wei Huang, Ming Jiang, Zhixiang Yang, Zihao Yao, Jianfeng Li, Jianguo Wang","doi":"10.1002/aic.18687","DOIUrl":"https://doi.org/10.1002/aic.18687","url":null,"abstract":"Given that the retention of nitrogen readily renders active site poisoning, designing versatile catalysts characterized by notable selectivity and even resistance to poisoning for alkyne semi-hydrogenation under nitrogen-containing conditions is considerably challenging. In this article, oxanilide-decorated Pd/C (Pd/C-oxa) catalyst is facilely synthesized by leveraging impregnation-coordination, which exhibit remarkable performance in the semi-hydrogenation of nitrogen-containing alkynes, with ultrahigh turnover frequency (TOF) of 15,831 h<sup>−1</sup> and selectivity of 97.2%. Strikingly, it still sustains TOF of 12,137 h<sup>−1</sup> in a sulfur-containing system, demonstrating distinguished tolerance to sulfur. Comprehensive studies corroborate that oxanilide tunes the electron density of Pd by constructing metal–ligand electronic interactions, facilitating hydrogen activation. Simultaneously, the reaction microenvironment is optimized, which effectively promotes the desorption of nitrogen-containing olefins and attenuates the aggregation of nitrogen on the Pd surface. This strategy is universal and holds promising industrial applications, making it appropriate for use in commercial Pd/C catalysts as well.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"82 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rutile RuO2 is recognized for its outstanding acidic oxygen evolution reaction (OER) activity and notable cost advantage compared to iridium oxide for proton exchange membrane water electrolyzers (PEMWEs). However, the unsatisfactory stability of RuO2 hinders its practical application. Here, we report a lattice modulation strategy to enhance both the OER activity and stability of RuO2. Interestingly, the newly synthesized Mo0.15Nb0.05-RuO2, with Mo doped first and then Nb, presents the greatest lattice spacing and possesses an overpotential of merely 205 mV at 10 mA cm−2, which significantly outperforms Nb0.05Mo0.15-RuO2 (239 mV), where Nb was doped first followed by Mo, as well as the initial RuO2 (323 mV). Remarkably, Mo0.15Nb0.05-RuO2 requires only 1.76 V to achieve 1 A cm−2 and exhibits exceptional stability in PEMWE testing, with a voltage rise of only 58 mV at 200 mA cm−2 for more than 80 h.
与氧化铱相比,金红石RuO2因其出色的酸性析氧反应(OER)活性和显著的成本优势而被认可用于质子交换膜水电解槽(PEMWEs)。然而,若o2的稳定性不理想,阻碍了它的实际应用。在这里,我们报告了一种晶格调制策略来提高RuO2的OER活性和稳定性。有趣的是,新合成的先掺杂Mo后掺杂Nb的Mo0.15Nb0.05-RuO2具有最大的晶格间距,并且在10 mA cm−2下具有仅为205 mV的过电位,显著优于先掺杂Nb后掺杂Mo的Nb0.05Mo0.15-RuO2 (239 mV)和初始的RuO2 (323 mV)。值得注意的是,Mo0.15Nb0.05-RuO2只需要1.76 V就可以达到1 A cm - 2,并且在PEMWE测试中表现出优异的稳定性,在200 mA cm - 2下电压上升仅为58 mV,持续时间超过80小时。
{"title":"Lattice modulation strategy toward efficient and durable RuO2-based catalysts for acidic water oxidation","authors":"Linkai Han, Zhonghua Xiang","doi":"10.1002/aic.18665","DOIUrl":"https://doi.org/10.1002/aic.18665","url":null,"abstract":"Rutile RuO<sub>2</sub> is recognized for its outstanding acidic oxygen evolution reaction (OER) activity and notable cost advantage compared to iridium oxide for proton exchange membrane water electrolyzers (PEMWEs). However, the unsatisfactory stability of RuO<sub>2</sub> hinders its practical application. Here, we report a lattice modulation strategy to enhance both the OER activity and stability of RuO<sub>2</sub>. Interestingly, the newly synthesized Mo<sub>0.15</sub>Nb<sub>0.05</sub>-RuO<sub>2</sub>, with Mo doped first and then Nb, presents the greatest lattice spacing and possesses an overpotential of merely 205 mV at 10 mA cm<sup>−2</sup>, which significantly outperforms Nb<sub>0.05</sub>Mo<sub>0.15</sub>-RuO<sub>2</sub> (239 mV), where Nb was doped first followed by Mo, as well as the initial RuO<sub>2</sub> (323 mV). Remarkably, Mo<sub>0.15</sub>Nb<sub>0.05</sub>-RuO<sub>2</sub> requires only 1.76 V to achieve 1 A cm<sup>−2</sup> and exhibits exceptional stability in PEMWE testing, with a voltage rise of only 58 mV at 200 mA cm<sup>−2</sup> for more than 80 h.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"11 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiong-Yu Wang, Yucheng Zhu, Run Jiang, Gan He, Jun Zhao, Jun Hu, Tao Liu, Honghai Liu, Siew-Leng Loo, Zhong Chen, Jie-Xin Wang, Zhiyan Pan, Xiaonian Li, Dapeng Cao, Zhong-Ting Hu
The selective oxidation of 5-hydroxymethylfurfural (HMF) toward 2,5-furandicarboxylic acid (FDCA) offers a promising green pathway to obtain monomers for the synthesis of biodegradable plastics. However, developing a high-selectivity catalyst and understanding the catalytic mechanism are still great challenge. Here, we synthesize a nRu/FeCo2O4 catalyst with Ru nanoparticles loaded on FeCo2O4. The nRu/FeCo2O4 presents excellent HMF oxidation activity with 100% HMF conversion efficiency and 99% FDCA yield under optimized conditions. Density-functional theory calculations further reveal the structure matching mechanism of nRu/FeCo2O4 for high-selective oxidation of HMF toward FDCA, that is, Ru loading in FeCo2O4 provides a more suitable structure matching configuration for adsorption of two-side chains in HMF, which could optimize the adsorption energy and thus increase reactivity. In short, this work provides a promising structure matching strategy for designing dual-active-site relay catalyst to oxidize -CHO and C-OH groups in HMF and thus achieve highly-selective oxidation of HMF toward FDCA.
{"title":"Structure matching mechanism of nRu/FeCo2O4 for highly-selective oxidation of HMF toward FDCA","authors":"Qiong-Yu Wang, Yucheng Zhu, Run Jiang, Gan He, Jun Zhao, Jun Hu, Tao Liu, Honghai Liu, Siew-Leng Loo, Zhong Chen, Jie-Xin Wang, Zhiyan Pan, Xiaonian Li, Dapeng Cao, Zhong-Ting Hu","doi":"10.1002/aic.18671","DOIUrl":"https://doi.org/10.1002/aic.18671","url":null,"abstract":"The selective oxidation of 5-hydroxymethylfurfural (HMF) toward 2,5-furandicarboxylic acid (FDCA) offers a promising green pathway to obtain monomers for the synthesis of biodegradable plastics. However, developing a high-selectivity catalyst and understanding the catalytic mechanism are still great challenge. Here, we synthesize a nRu/FeCo<sub>2</sub>O<sub>4</sub> catalyst with Ru nanoparticles loaded on FeCo<sub>2</sub>O<sub>4</sub>. The nRu/FeCo<sub>2</sub>O<sub>4</sub> presents excellent HMF oxidation activity with 100% HMF conversion efficiency and 99% FDCA yield under optimized conditions. Density-functional theory calculations further reveal the structure matching mechanism of nRu/FeCo<sub>2</sub>O<sub>4</sub> for high-selective oxidation of HMF toward FDCA, that is, Ru loading in FeCo<sub>2</sub>O<sub>4</sub> provides a more suitable structure matching configuration for adsorption of two-side chains in HMF, which could optimize the adsorption energy and thus increase reactivity. In short, this work provides a promising structure matching strategy for designing dual-active-site relay catalyst to oxidize -CHO and C-OH groups in HMF and thus achieve highly-selective oxidation of HMF toward FDCA.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}