Here, commercial carbon black (CB) grades are characterized in detail to determine the link between their physicochemical properties and solar steam generation performance. The CB nanoparticles used here have surface mean primary particle diameters of 11–406 nm resulting in specific surface areas of 8–300 m2/g. Thermogravimetric analysis, dynamic light scattering, Raman spectroscopy, and x-ray diffraction reveal that fine CB nanoparticles form large agglomerates, have a more disordered nanostructure and larger organic carbon content than coarse CB grades. Most importantly, UV–vis spectroscopy and Mie theory show that increasing the particle size from 14 to 406 nm reduces the light absorption of CB dispersed in water up to 86%. So, the water evaporation flux of suspensions containing 11–14 nm CB nanoparticles is up to 25% larger than that obtained for suspensions of 406 nm particles. Thus, good control of particle size is essential to optimize the solar steam generation enabled by CB.
The significance of easily detecting rare earth elements (REEs) has increased due to the growing demand for REEs. Addressing this need, we present an innovative electrochemical biosensor, focusing on cerium as a model REE. This biosensor utilizes a modified EF-hand loop peptide sequence, incorporating cysteine for covalent attachment to a gold working electrode and tyrosine as an electrochemically active amino acid. The sensor was designed such that binding to cerium induces a conformational change in the peptide, affecting tyrosine's proximity to the electrode surface, modulating the current. A calibration curve was generated from cyclic voltammetry current peaks at ~0.55–0.65 V versus a silver pseudo-reference electrode, with cerium concentrations ranging from 0 to 67 μM in artificial urine. The sensor exhibited a biologically relevant limit of detection of 35 μM and a sensitivity of −0.0024 ± 0.002 (μA μM)−1. These findings offer insights into designing peptide sequences for electrochemical biosensing.