R Christian Crumrine, Victor J Marder, G McLeod Taylor, Joseph C Lamanna, Constantinos P Tsipis, Philip Scuderi, Stephen R Petteway, Vikram Arora
Background: Intra-arterial (IA) administration of rt-PA for ischemic stroke has the potential for greater thrombolytic efficacy, especially for a large thrombus in the M1 or M2 segment of the middle cerebral artery (MCA). Intracranial hemorrhage (ICH) is a concern with IA or intravenous (IV) administration especially as the therapeutic window is extended. However, because IA administration delivers a higher local concentration of agent, the incidence and severity of ICH may be greater than with similar doses IV. We investigated the safety of rt-PA administration by IA compared to IV infusion following 6 hours of MCA occlusion (MCAo) with reflow in the spontaneously hypertensive rat (SHR).
Methods: Male SHRs were subjected to 6 hours MCAo with 18 hours reflow using a snare ligature model. They were treated with IA saline, IA rt-PA (1, 5, 10, 30 mg/kg), or IV rt-PA (10 and 30 mg/kg) by a 10 to 60 minute infusion beginning approximately 1 minute before reflow. The rats were recovered for 24 hours after MCAo onset at which time Bleeding Score, infarct volume, and Modified Bederson Score were measured.
Results: Greater hemorrhagic transformation occurred with 10 and 30 mg/kg rt-PA administered IA than IV. The IV 10 mg/kg rt-PA dosage induced significantly less bleeding than did the 1 or 5 mg/kg IA groups. No significant increase in infarct volume was observed after IA or IV treatment. Rats treated with 30 mg/kg rt-PA by either the IA or IV route had greater neurological dysfunction compared to all other groups.
Conclusions: Administration of rt-PA by the IA route following 6 hours of MCAo results in greater ICH and worse functional recovery than comparable dosages IV. Significantly greater bleeding was observed when the IA dose was a tenth of the IV dose. The increased bleeding did not translate in larger infarct volumes.
{"title":"Intra-arterial administration of recombinant tissue-type plasminogen activator (rt-PA) causes more intracranial bleeding than does intravenous rt-PA in a transient rat middle cerebral artery occlusion model.","authors":"R Christian Crumrine, Victor J Marder, G McLeod Taylor, Joseph C Lamanna, Constantinos P Tsipis, Philip Scuderi, Stephen R Petteway, Vikram Arora","doi":"10.1186/2040-7378-3-10","DOIUrl":"https://doi.org/10.1186/2040-7378-3-10","url":null,"abstract":"<p><strong>Background: </strong>Intra-arterial (IA) administration of rt-PA for ischemic stroke has the potential for greater thrombolytic efficacy, especially for a large thrombus in the M1 or M2 segment of the middle cerebral artery (MCA). Intracranial hemorrhage (ICH) is a concern with IA or intravenous (IV) administration especially as the therapeutic window is extended. However, because IA administration delivers a higher local concentration of agent, the incidence and severity of ICH may be greater than with similar doses IV. We investigated the safety of rt-PA administration by IA compared to IV infusion following 6 hours of MCA occlusion (MCAo) with reflow in the spontaneously hypertensive rat (SHR).</p><p><strong>Methods: </strong>Male SHRs were subjected to 6 hours MCAo with 18 hours reflow using a snare ligature model. They were treated with IA saline, IA rt-PA (1, 5, 10, 30 mg/kg), or IV rt-PA (10 and 30 mg/kg) by a 10 to 60 minute infusion beginning approximately 1 minute before reflow. The rats were recovered for 24 hours after MCAo onset at which time Bleeding Score, infarct volume, and Modified Bederson Score were measured.</p><p><strong>Results: </strong>Greater hemorrhagic transformation occurred with 10 and 30 mg/kg rt-PA administered IA than IV. The IV 10 mg/kg rt-PA dosage induced significantly less bleeding than did the 1 or 5 mg/kg IA groups. No significant increase in infarct volume was observed after IA or IV treatment. Rats treated with 30 mg/kg rt-PA by either the IA or IV route had greater neurological dysfunction compared to all other groups.</p><p><strong>Conclusions: </strong>Administration of rt-PA by the IA route following 6 hours of MCAo results in greater ICH and worse functional recovery than comparable dosages IV. Significantly greater bleeding was observed when the IA dose was a tenth of the IV dose. The increased bleeding did not translate in larger infarct volumes.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2011-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-10","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30153005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon F De Meyer, Tobias Schwarz, Daphne Schatzberg, Denisa D Wagner
Background: Platelets play an important role in ischemic stroke. GPIbα is a major platelet receptor that is critical for platelet adhesion to exposed subendothelial matrix components at sites of vascular damage.
Methods: In this study, we used transgenic mice in which the extracellular part of GPIbα is replaced by human interleukin 4-receptor (GPIbα/IL4Rα). We observed normal brain vasculature in these mice. We compared infarct size in GPIbα/IL4Rα and wild-type (WT) mice 23 hours after 1-hour transient middle cerebral artery occlusion (tMCAO). In addition, the functional outcome was evaluated using a modified Bederson score.
Results: We found a significantly smaller infarct size in GPIbα/IL4Rα mice compared to WT mice (38.0 ± 6.5 mm3 vs. 74.2 ± 8.6 mm3, p < 0.001). The decrease in infarct size was functionally relevant as indicated by a significantly better functional Bederson score in GPIbα/IL4Rα mice compared to WT animals (1.3 ± 0.4 vs. 2.7 ± 0.3, p < 0.05).
Conclusions: Our data illustrate and further confirm the important role of platelet GPIbα in ischemic stroke, suggesting that targeted inhibition of this receptor may open new avenues in stroke treatment.
背景:血小板在缺血性脑卒中中起重要作用。GPIbα是一种主要的血小板受体,对于血小板粘附血管损伤部位暴露的内皮下基质成分至关重要。方法:采用人白细胞介素4受体(GPIbα/IL4Rα)替代GPIbα细胞外部分的转基因小鼠。我们在这些小鼠中观察到正常的脑血管。我们比较了GPIbα/IL4Rα和野生型(WT)小鼠在1小时短暂性大脑中动脉闭塞(tMCAO)后23小时的梗死面积。此外,使用改良的Bederson评分对功能结果进行评估。结果:我们发现GPIbα/IL4Rα小鼠的梗死面积明显小于WT小鼠(38.0±6.5 mm3比74.2±8.6 mm3, p < 0.001)。与WT动物相比,GPIbα/IL4Rα小鼠的功能Bederson评分显著提高(1.3±0.4比2.7±0.3,p < 0.05),表明梗死面积的减少与功能相关。结论:我们的数据说明并进一步证实了血小板GPIbα在缺血性卒中中的重要作用,提示靶向抑制该受体可能为卒中治疗开辟新的途径。
{"title":"Platelet glycoprotein Ibα is an important mediator of ischemic stroke in mice.","authors":"Simon F De Meyer, Tobias Schwarz, Daphne Schatzberg, Denisa D Wagner","doi":"10.1186/2040-7378-3-9","DOIUrl":"https://doi.org/10.1186/2040-7378-3-9","url":null,"abstract":"<p><strong>Background: </strong>Platelets play an important role in ischemic stroke. GPIbα is a major platelet receptor that is critical for platelet adhesion to exposed subendothelial matrix components at sites of vascular damage.</p><p><strong>Methods: </strong>In this study, we used transgenic mice in which the extracellular part of GPIbα is replaced by human interleukin 4-receptor (GPIbα/IL4Rα). We observed normal brain vasculature in these mice. We compared infarct size in GPIbα/IL4Rα and wild-type (WT) mice 23 hours after 1-hour transient middle cerebral artery occlusion (tMCAO). In addition, the functional outcome was evaluated using a modified Bederson score.</p><p><strong>Results: </strong>We found a significantly smaller infarct size in GPIbα/IL4Rα mice compared to WT mice (38.0 ± 6.5 mm3 vs. 74.2 ± 8.6 mm3, p < 0.001). The decrease in infarct size was functionally relevant as indicated by a significantly better functional Bederson score in GPIbα/IL4Rα mice compared to WT animals (1.3 ± 0.4 vs. 2.7 ± 0.3, p < 0.05).</p><p><strong>Conclusions: </strong>Our data illustrate and further confirm the important role of platelet GPIbα in ischemic stroke, suggesting that targeted inhibition of this receptor may open new avenues in stroke treatment.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 ","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2011-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30139292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvia Manzanero, Mathias Gelderblom, Tim Magnus, Thiruma V Arumugam
Stroke, a major cause of disability and mortality in the elderly, occurs when a cerebral blood vessel is occluded or ruptured, resulting in ischemic damage and death of brain cells. The injury mechanism involves metabolic and oxidative stress, excitotoxicity, apoptosis and inflammatory processes, including activation of glial cells and infiltration of leukocytes. In animal models, dietary energy restriction, by daily calorie reduction (CR) or intermittent fasting (IF), extends lifespan and decreases the development of age-related diseases. Dietary energy restriction may also benefit neurons, as suggested by experimental evidence showing that CR and IF protect neurons against degeneration in animal models. Recent findings by our group and others suggest the possibility that dietary energy restriction may protect against stroke induced brain injury, in part by inducing the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF); protein chaperones, including heat shock protein 70 (Hsp70) and glucose regulated protein 78 (GRP78); antioxidant enzymes, such as superoxide dismutases (SOD) and heme oxygenase-1 (HO-1), silent information regulator T1 (SIRT1), uncoupling proteins and anti-inflammatory cytokines. This article discusses the protective mechanisms activated by dietary energy restriction in ischemic stroke.
{"title":"Calorie restriction and stroke.","authors":"Silvia Manzanero, Mathias Gelderblom, Tim Magnus, Thiruma V Arumugam","doi":"10.1186/2040-7378-3-8","DOIUrl":"https://doi.org/10.1186/2040-7378-3-8","url":null,"abstract":"<p><p> Stroke, a major cause of disability and mortality in the elderly, occurs when a cerebral blood vessel is occluded or ruptured, resulting in ischemic damage and death of brain cells. The injury mechanism involves metabolic and oxidative stress, excitotoxicity, apoptosis and inflammatory processes, including activation of glial cells and infiltration of leukocytes. In animal models, dietary energy restriction, by daily calorie reduction (CR) or intermittent fasting (IF), extends lifespan and decreases the development of age-related diseases. Dietary energy restriction may also benefit neurons, as suggested by experimental evidence showing that CR and IF protect neurons against degeneration in animal models. Recent findings by our group and others suggest the possibility that dietary energy restriction may protect against stroke induced brain injury, in part by inducing the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF); protein chaperones, including heat shock protein 70 (Hsp70) and glucose regulated protein 78 (GRP78); antioxidant enzymes, such as superoxide dismutases (SOD) and heme oxygenase-1 (HO-1), silent information regulator T1 (SIRT1), uncoupling proteins and anti-inflammatory cytokines. This article discusses the protective mechanisms activated by dietary energy restriction in ischemic stroke.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 ","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2011-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30137050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne Waschbisch, Arndt Manzel, Ralf A Linker, De-Hyung Lee
The investigation of central nervous system vascular changes in the pathophysiology of multiple sclerosis (MS) is a time-honored concept. Yet, recent reports on changes in venous cerebrospinal outflow, the advent of new magnetic resonance imaging techniques and the investigation of immunomodulatory properties of several vascular mediators on the molecular level have added new excitement to hypotheses centering around vascular pathology as determining factor in the pathophysiology of MS. Here we critically review the concept of chronic cerebrospinal venous insufficiency in MS patients and describe new imaging techniques including perfusion weighted imaging, susceptibility weighted imaging and diffusion weighted imaging which reveal central nervous system hypoperfusion, perivascular iron deposition and diffuse structural changes in the MS brain. On a molecular basis, vascular mediators represent interesting targets connecting vascular pathology with immunomodulation. In summary, the relation of venous changes to the pathophysiology of MS may not be as simple as initially described and it certainly seems awkward to think of the complex disease MS solely as result of a simple venous outflow obstruction. Yet, the investigation of new vascular concepts as one variable in the pathophysiology of the autoimmune attack seems very worthwhile and may add to a better understanding of this devastating disorder.
{"title":"Vascular pathology in multiple sclerosis: mind boosting or myth busting?","authors":"Anne Waschbisch, Arndt Manzel, Ralf A Linker, De-Hyung Lee","doi":"10.1186/2040-7378-3-7","DOIUrl":"https://doi.org/10.1186/2040-7378-3-7","url":null,"abstract":"<p><p> The investigation of central nervous system vascular changes in the pathophysiology of multiple sclerosis (MS) is a time-honored concept. Yet, recent reports on changes in venous cerebrospinal outflow, the advent of new magnetic resonance imaging techniques and the investigation of immunomodulatory properties of several vascular mediators on the molecular level have added new excitement to hypotheses centering around vascular pathology as determining factor in the pathophysiology of MS. Here we critically review the concept of chronic cerebrospinal venous insufficiency in MS patients and describe new imaging techniques including perfusion weighted imaging, susceptibility weighted imaging and diffusion weighted imaging which reveal central nervous system hypoperfusion, perivascular iron deposition and diffuse structural changes in the MS brain. On a molecular basis, vascular mediators represent interesting targets connecting vascular pathology with immunomodulation. In summary, the relation of venous changes to the pathophysiology of MS may not be as simple as initially described and it certainly seems awkward to think of the complex disease MS solely as result of a simple venous outflow obstruction. Yet, the investigation of new vascular concepts as one variable in the pathophysiology of the autoimmune attack seems very worthwhile and may add to a better understanding of this devastating disorder.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2011-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29862713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Freret, Pascale Schumann-Bard, Michel Boulouard, Valentine Bouet
Despite extensive research efforts in the field of cerebral ischemia, numerous disappointments came from the translational step. Even if experimental studies showed a large number of promising drugs, most of them failed to be efficient in clinical trials. Based on these reports, factors that play a significant role in causing outcome differences between animal experiments and clinical trials have been identified; and latest works in the field have tried to discard them in order to improve the scope of the results. Nevertheless, efforts must be maintained, especially for long-term functional evaluations. As observed in clinical practice, animals display a large degree of spontaneous recovery after stroke. The neurological impairment, assessed by basic items, typically disappears during the firsts week following stroke in rodents. On the contrary, more demanding sensorimotor and cognitive tasks underline other deficits, which are usually long-lasting. Unfortunately, studies addressing such behavioral impairments are less abundant. Because the characterization of long-term functional recovery is critical for evaluating the efficacy of potential therapeutic agents in experimental strokes, behavioral tests that proved sensitive enough to detect long-term deficits are reported here. And since the ultimate goal of any stroke therapy is the restoration of normal function, an objective appraisal of the behavioral deficits should be done.
{"title":"On the importance of long-term functional assessment after stroke to improve translation from bench to bedside.","authors":"Thomas Freret, Pascale Schumann-Bard, Michel Boulouard, Valentine Bouet","doi":"10.1186/2040-7378-3-6","DOIUrl":"https://doi.org/10.1186/2040-7378-3-6","url":null,"abstract":"<p><p> Despite extensive research efforts in the field of cerebral ischemia, numerous disappointments came from the translational step. Even if experimental studies showed a large number of promising drugs, most of them failed to be efficient in clinical trials. Based on these reports, factors that play a significant role in causing outcome differences between animal experiments and clinical trials have been identified; and latest works in the field have tried to discard them in order to improve the scope of the results. Nevertheless, efforts must be maintained, especially for long-term functional evaluations. As observed in clinical practice, animals display a large degree of spontaneous recovery after stroke. The neurological impairment, assessed by basic items, typically disappears during the firsts week following stroke in rodents. On the contrary, more demanding sensorimotor and cognitive tasks underline other deficits, which are usually long-lasting. Unfortunately, studies addressing such behavioral impairments are less abundant. Because the characterization of long-term functional recovery is critical for evaluating the efficacy of potential therapeutic agents in experimental strokes, behavioral tests that proved sensitive enough to detect long-term deficits are reported here. And since the ultimate goal of any stroke therapy is the restoration of normal function, an objective appraisal of the behavioral deficits should be done.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 ","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2011-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29944483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominik Michalski, Johann Pelz, Christopher Weise, Johannes Kacza, Johannes Boltze, Jens Grosche, Manja Kamprad, Dietmar Schneider, Carsten Hobohm, Wolfgang Härtig
Background: After promising results in experimental stroke, normobaric (NBO) or hyperbaric oxygenation (HBO) have recently been discussed as co-medication with tissue plasminogen activator (tPA) for improving outcome. This study assessed the interactions of hyperoxia and tPA, focusing on survival, early functional outcome and blood-brain barrier (BBB) integrity following experimental stroke.
Methods: Rats (n = 109) underwent embolic middle cerebral artery occlusion or sham surgery. Animals were assigned to: Control, NBO (60-minute pure oxygen), HBO (60-minute pure oxygen at 2.4 absolute atmospheres), tPA, or HBO+tPA. Functional impairment was assessed at 4 and 24 hours using Menzies score, followed by intravenous application of FITC-albumin as a BBB permeability marker, which was allowed to circulate for 1 hour. Further, blood sampling was performed at 5 and 25 hours for MMP-2, MMP-9, TIMP-1 and TIMP-2 concentration.
Results: Mortality rates did not differ significantly between groups, whereas functional improvement was found for NBO, tPA and HBO+tPA. NBO and HBO tended to stabilize BBB and to reduce MMP-2. tPA tended to increase BBB permeability with corresponding MMP and TIMP elevation. Co-administered HBO failed to attenuate these early deleterious effects, independent of functional improvement.
Conclusions: The long-term consequences of simultaneously applied tPA and both NBO and HBO need to be addressed by further studies to identify therapeutic potencies in acute stroke, and to avoid unfavorable courses following combined treatment.
{"title":"Early outcome and blood-brain barrier integrity after co-administered thrombolysis and hyperbaric oxygenation in experimental stroke.","authors":"Dominik Michalski, Johann Pelz, Christopher Weise, Johannes Kacza, Johannes Boltze, Jens Grosche, Manja Kamprad, Dietmar Schneider, Carsten Hobohm, Wolfgang Härtig","doi":"10.1186/2040-7378-3-5","DOIUrl":"https://doi.org/10.1186/2040-7378-3-5","url":null,"abstract":"<p><strong>Background: </strong>After promising results in experimental stroke, normobaric (NBO) or hyperbaric oxygenation (HBO) have recently been discussed as co-medication with tissue plasminogen activator (tPA) for improving outcome. This study assessed the interactions of hyperoxia and tPA, focusing on survival, early functional outcome and blood-brain barrier (BBB) integrity following experimental stroke.</p><p><strong>Methods: </strong>Rats (n = 109) underwent embolic middle cerebral artery occlusion or sham surgery. Animals were assigned to: Control, NBO (60-minute pure oxygen), HBO (60-minute pure oxygen at 2.4 absolute atmospheres), tPA, or HBO+tPA. Functional impairment was assessed at 4 and 24 hours using Menzies score, followed by intravenous application of FITC-albumin as a BBB permeability marker, which was allowed to circulate for 1 hour. Further, blood sampling was performed at 5 and 25 hours for MMP-2, MMP-9, TIMP-1 and TIMP-2 concentration.</p><p><strong>Results: </strong>Mortality rates did not differ significantly between groups, whereas functional improvement was found for NBO, tPA and HBO+tPA. NBO and HBO tended to stabilize BBB and to reduce MMP-2. tPA tended to increase BBB permeability with corresponding MMP and TIMP elevation. Co-administered HBO failed to attenuate these early deleterious effects, independent of functional improvement.</p><p><strong>Conclusions: </strong>The long-term consequences of simultaneously applied tPA and both NBO and HBO need to be addressed by further studies to identify therapeutic potencies in acute stroke, and to avoid unfavorable courses following combined treatment.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2011-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29941986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: This study was undertaken to test the hypothesis that a combination of excitatory anodal transcranial direct current stimulation (tDCS) to the contralateral motor cortex and inhibitory cathodal tDCS to the ipsilateral motor cortex of the motor performing hand (Bi-tDCS) would elicit more implicit motor sequence learning than anodal tDCS applied to the contralateral motor cortex alone (Uni-tDCS).
Methods: Eleven healthy right-handed adults underwent a randomized crossover experiment of Uni-tDCS, Bi-tDCS, or sham stimulation. Subjects performed a 12-digit finger sequence serial reaction time task with the right hand at baseline (Pre), at immediately (Post 1), and 24 hours after stimulation (Post 2). The ratios of reaction times of predetermined repeating sequence versus random sequence were subjected to statistical analysis.
Results: The paired t test showed that reaction time ratios were significant decreased by all stimulation types at Post 1 versus Pre (P < 0.01). However, mean reaction time ratios showed a significant decrease after Uni-tDCS (P < 0.01) and Bi-tDCS (P < 0.01), but only a marginal decreased after Sham (P = 0.05) at Post 2, which suggests that motor sequence learning is consolidated by Uni-tDCS and Bi-tDCS, but only partially consolidated by sham stimulation. No significant differences were observed between Uni-tDCS and Bi-tDCS in terms of in reaction time ratios at Post 1 or 2.
Conclusions: No significant difference was found between Uni-tDCS and Bi-tDCS in terms of induced implicit motor sequence learning, but tDCS led to greater consolidation of the learned motor sequence than sham stimulation. These findings need to be tested in the context of stroke hand motor rehabilitation.
{"title":"Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects.","authors":"Eun Kyoung Kang, Nam-Jong Paik","doi":"10.1186/2040-7378-3-4","DOIUrl":"https://doi.org/10.1186/2040-7378-3-4","url":null,"abstract":"<p><strong>Background: </strong>This study was undertaken to test the hypothesis that a combination of excitatory anodal transcranial direct current stimulation (tDCS) to the contralateral motor cortex and inhibitory cathodal tDCS to the ipsilateral motor cortex of the motor performing hand (Bi-tDCS) would elicit more implicit motor sequence learning than anodal tDCS applied to the contralateral motor cortex alone (Uni-tDCS).</p><p><strong>Methods: </strong>Eleven healthy right-handed adults underwent a randomized crossover experiment of Uni-tDCS, Bi-tDCS, or sham stimulation. Subjects performed a 12-digit finger sequence serial reaction time task with the right hand at baseline (Pre), at immediately (Post 1), and 24 hours after stimulation (Post 2). The ratios of reaction times of predetermined repeating sequence versus random sequence were subjected to statistical analysis.</p><p><strong>Results: </strong>The paired t test showed that reaction time ratios were significant decreased by all stimulation types at Post 1 versus Pre (P < 0.01). However, mean reaction time ratios showed a significant decrease after Uni-tDCS (P < 0.01) and Bi-tDCS (P < 0.01), but only a marginal decreased after Sham (P = 0.05) at Post 2, which suggests that motor sequence learning is consolidated by Uni-tDCS and Bi-tDCS, but only partially consolidated by sham stimulation. No significant differences were observed between Uni-tDCS and Bi-tDCS in terms of in reaction time ratios at Post 1 or 2.</p><p><strong>Conclusions: </strong>No significant difference was found between Uni-tDCS and Bi-tDCS in terms of induced implicit motor sequence learning, but tDCS led to greater consolidation of the learned motor sequence than sham stimulation. These findings need to be tested in the context of stroke hand motor rehabilitation.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2011-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29817901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tim Magnus, Ralf A Linker, Sven G Meuth, Christoph Kleinschnitz, Thomas Korn
{"title":"Report on the 2nd scientific meeting of the \"Verein zur Förderung des Wissenschaftlichen Nachwuchses in der Neurologie\" (NEUROWIND e.V.) held in Motzen, Germany, Oct. 29'th - Oct. 31'st, 2010.","authors":"Tim Magnus, Ralf A Linker, Sven G Meuth, Christoph Kleinschnitz, Thomas Korn","doi":"10.1186/2040-7378-3-3","DOIUrl":"https://doi.org/10.1186/2040-7378-3-3","url":null,"abstract":"","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29787555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Waltraud Pfeilschifter, Bożena Czech-Zechmeister, Marian Sujak, Christian Foerch, Thomas A Wichelhaus, Josef Pfeilschifter
Background: FTY720, an immunomodulator derived from a fungal metabolite which reduces circulating lymphocyte counts by increasing the homing of lymphocytes to the lymph nodes has recently gained interest in stroke research. The aim of this study was to evaluate the protective efficacy of FTY720 in cerebral ischemia in two different application paradigms and to gather first data on the effect of FTY720 on the rate of spontaneous bacterial infections in experimental stroke.
Methods: Middle cerebral artery occlusion (MCAO) in C57BL/6 mice (strain J, groups of 10 animals) was performed with two different durations of ischemia (90 min and 3 h) and FTY720 was applied 2 h after vessel occlusion to study the impact of reperfusion on the protective potency of FTY720. Lesion size was determined by TTC staining. Mice treated with FTY720 or vehicle were sacrificed 48 h after 90 min MCAO to determine the bacterial burden in lung and blood.
Results: FTY720 1 mg/kg significantly reduced ischemic lesion size when administered 2 h after the onset of MCAO for 3 h (45.4 ± 22.7 mm3 vs. 84.7 ± 23.6 mm3 in control mice, p = 0.001) and also when administered after reperfusion, 2 h after the onset of MCAO for 90 min (31.1 ± 28.49 mm3 vs. 69.6 ± 27.2 mm3 in control mice, p = 0.013). Bacterial burden of lung homogenates 48 h after stroke did not increase in the group treated with the immunomodulator FTY720 while there was no spontaneous bacteremia 48 h after MCAO in treated and untreated animals.
Conclusions: Our results corroborate the experimental evidence of the protective effect of FTY720 seen in different rodent stroke models. Interestingly, we found no increase in bacterial lung infections even though FTY720 strongly reduces the number of circulating leukocytes.
{"title":"Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice.","authors":"Waltraud Pfeilschifter, Bożena Czech-Zechmeister, Marian Sujak, Christian Foerch, Thomas A Wichelhaus, Josef Pfeilschifter","doi":"10.1186/2040-7378-3-2","DOIUrl":"https://doi.org/10.1186/2040-7378-3-2","url":null,"abstract":"<p><strong>Background: </strong>FTY720, an immunomodulator derived from a fungal metabolite which reduces circulating lymphocyte counts by increasing the homing of lymphocytes to the lymph nodes has recently gained interest in stroke research. The aim of this study was to evaluate the protective efficacy of FTY720 in cerebral ischemia in two different application paradigms and to gather first data on the effect of FTY720 on the rate of spontaneous bacterial infections in experimental stroke.</p><p><strong>Methods: </strong>Middle cerebral artery occlusion (MCAO) in C57BL/6 mice (strain J, groups of 10 animals) was performed with two different durations of ischemia (90 min and 3 h) and FTY720 was applied 2 h after vessel occlusion to study the impact of reperfusion on the protective potency of FTY720. Lesion size was determined by TTC staining. Mice treated with FTY720 or vehicle were sacrificed 48 h after 90 min MCAO to determine the bacterial burden in lung and blood.</p><p><strong>Results: </strong>FTY720 1 mg/kg significantly reduced ischemic lesion size when administered 2 h after the onset of MCAO for 3 h (45.4 ± 22.7 mm3 vs. 84.7 ± 23.6 mm3 in control mice, p = 0.001) and also when administered after reperfusion, 2 h after the onset of MCAO for 90 min (31.1 ± 28.49 mm3 vs. 69.6 ± 27.2 mm3 in control mice, p = 0.013). Bacterial burden of lung homogenates 48 h after stroke did not increase in the group treated with the immunomodulator FTY720 while there was no spontaneous bacteremia 48 h after MCAO in treated and untreated animals.</p><p><strong>Conclusions: </strong>Our results corroborate the experimental evidence of the protective effect of FTY720 seen in different rodent stroke models. Interestingly, we found no increase in bacterial lung infections even though FTY720 strongly reduces the number of circulating leukocytes.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 ","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2011-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29728557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simultaneous color contrast and color constancy are memory processes associated with color vision, however, the gender-related differences of 'physiologic color space' remains unknown. Color processing was studied in 16 (8 men and 8 women) right-handed healthy subjects using functional transcranial Doppler (fTCD) technique. Mean flow velocity (MFV) was recorded in both right (RMCA) and left (LMCA) middle cerebral arteries in dark and white light conditions, and during color (blue and yellow) stimulations. The data was plotted in a 3D quadratic curve fit to derive a 'physiologic color space' showing the effects of luminance and chromatic contrasts. In men, wavelength-differencing of opponent pairs (yellow-blue) was adjudged by changes in the RMCA MFV for Yellow plotted on the Y-axis, and the RMCA MFV for Blue plotted on the X-axis. In women, frequency-differencing for opponent pairs (blue-yellow) was adjudged by changes in the LMCA MFV for Yellow plotted on the Y-axis, and the LMCA MFV for Blue plotted on the X-axis. The luminance effect on the LMCA MFV in response to white light with the highest luminous flux, was plotted on the (Z - axis), in both men and women. The 3D-color space for women was a mirror-image of that for men, and showed enhanced color constancy. The exponential function model was applied to the data in men, while the logarithmic function model was applied to the data in women. Color space determination may be useful in the study of color memory, adaptive neuroplasticity, cognitive impairment in stroke and neurodegenerative diseases.
{"title":"Gender-related differences in physiologic color space: a functional transcranial Doppler (fTCD) study.","authors":"Philip C Njemanze","doi":"10.1186/2040-7378-3-1","DOIUrl":"https://doi.org/10.1186/2040-7378-3-1","url":null,"abstract":"<p><p> Simultaneous color contrast and color constancy are memory processes associated with color vision, however, the gender-related differences of 'physiologic color space' remains unknown. Color processing was studied in 16 (8 men and 8 women) right-handed healthy subjects using functional transcranial Doppler (fTCD) technique. Mean flow velocity (MFV) was recorded in both right (RMCA) and left (LMCA) middle cerebral arteries in dark and white light conditions, and during color (blue and yellow) stimulations. The data was plotted in a 3D quadratic curve fit to derive a 'physiologic color space' showing the effects of luminance and chromatic contrasts. In men, wavelength-differencing of opponent pairs (yellow-blue) was adjudged by changes in the RMCA MFV for Yellow plotted on the Y-axis, and the RMCA MFV for Blue plotted on the X-axis. In women, frequency-differencing for opponent pairs (blue-yellow) was adjudged by changes in the LMCA MFV for Yellow plotted on the Y-axis, and the LMCA MFV for Blue plotted on the X-axis. The luminance effect on the LMCA MFV in response to white light with the highest luminous flux, was plotted on the (Z - axis), in both men and women. The 3D-color space for women was a mirror-image of that for men, and showed enhanced color constancy. The exponential function model was applied to the data in men, while the logarithmic function model was applied to the data in women. Color space determination may be useful in the study of color memory, adaptive neuroplasticity, cognitive impairment in stroke and neurodegenerative diseases.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"3 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2011-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-3-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29663120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}