首页 > 最新文献

Fluid Phase Equilibria最新文献

英文 中文
Can liquid-liquid equilibria be predicted by the combination of a cubic equation of state and a gE model not suitable for liquid-liquid equilibria? 立方状态方程与不适合液液平衡的 gE 模型相结合能否预测液液平衡?
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-12 DOI: 10.1016/j.fluid.2024.114249
Romain Privat , Jean-Noël Jaubert , Georgios M. Kontogeorgis
In modern versions of cubic equations of state (EoS), the mixing rules for EoS parameters are derived from an activity coefficient model using either the Huron-Vidal or the Zero Reference Pressure (ZRP) approach. As it is a fact that Wilson's activity coefficient model cannot predict liquid-liquid equilibria (LLE), this article attempts to answer the question: if Wilson's model is coupled with a cubic EoS, is the resulting model capable of predicting LLE?
This question is actually becoming increasingly important as recent EoS rely on such a coupling (e.g., the tc-PR EoS). We show that although Wilson's model is mathematically unable to predict instable liquid phases, this is not true for Wilson-EoS models (i.e., EoS incorporating Wilson's model). However, it is also shown that the capacity of Wilson-EoS to predict LLE depends not only on the approach chosen (Huron-Vidal or ZRP) but also on mixture characteristics (such as the ratio of covolumes, the ratio of critical attractive parameters, the binary interaction parameters etc.).
在现代版本的立方状态方程(EoS)中,EoS 参数的混合规则是通过使用休伦-维达尔法(Huron-Vidal)或零参考压力法(ZRP)的活度系数模型推导出来的。事实上,威尔逊的活度系数模型无法预测液液平衡(LLE),因此本文试图回答这样一个问题:如果将威尔逊模型与立方 EoS 相耦合,得到的模型是否能够预测 LLE?我们的研究表明,虽然威尔逊模型在数学上无法预测不稳定液相,但威尔逊-EoS 模型(即包含威尔逊模型的 EoS)却并非如此。然而,研究还表明,Wilson-EoS 预测 LLE 的能力不仅取决于所选择的方法(Huron-Vidal 或 ZRP),还取决于混合物的特征(如共容比、临界吸引力参数比、二元相互作用参数等)。
{"title":"Can liquid-liquid equilibria be predicted by the combination of a cubic equation of state and a gE model not suitable for liquid-liquid equilibria?","authors":"Romain Privat ,&nbsp;Jean-Noël Jaubert ,&nbsp;Georgios M. Kontogeorgis","doi":"10.1016/j.fluid.2024.114249","DOIUrl":"10.1016/j.fluid.2024.114249","url":null,"abstract":"<div><div>In modern versions of cubic equations of state (EoS), the mixing rules for EoS parameters are derived from an activity coefficient model using either the Huron-Vidal or the Zero Reference Pressure (ZRP) approach. As it is a fact that Wilson's activity coefficient model cannot predict liquid-liquid equilibria (LLE), this article attempts to answer the question: if Wilson's model is coupled with a cubic EoS, is the resulting model capable of predicting LLE?</div><div>This question is actually becoming increasingly important as recent EoS rely on such a coupling (e.g., the tc-PR EoS). We show that although Wilson's model is mathematically unable to predict instable liquid phases, this is not true for Wilson-EoS models (i.e., EoS incorporating Wilson's model). However, it is also shown that the capacity of Wilson-EoS to predict LLE depends not only on the approach chosen (Huron-Vidal or ZRP) but also on mixture characteristics (such as the ratio of covolumes, the ratio of critical attractive parameters, the binary interaction parameters etc.).</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114249"},"PeriodicalIF":2.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wetting and interfacial behavior of imidazolium-based ionic liquids and water: A comprehensive review 咪唑基离子液体与水的润湿和界面行为:全面综述
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-11 DOI: 10.1016/j.fluid.2024.114252
Sanchari Bhattacharjee, Devargya Chakraborty, Sandip Khan
Ionic liquids (ILs) have garnered considerable attention for their diverse applications, notably in controlling wettability on specific solid substrates, which holds ramifications for various processes reliant on interfacial behaviour encompassing adhesion and wetting. This review encompasses key advancements in IL wetting behavior and its implications. Factors such as drop size, temperature, alkyl chain structure, anion type, water concentration, and external electric fields influence the contact angle of ILs and their aqueous solutions. Despite challenges arising from IL property susceptibility to water content and wettability measurement sensitivity to solid surface, this review navigates the extent of IL wetting research, addressing line tension, surface tension measurement, and hydrogen bonding. The study aspires to furnish profound insights into IL wetting dynamics, informing IL-based fluidic technology design and elucidating intricate static and dynamic wetting attributes in analogous complex fluids.
离子液体(IL)因其多样化的应用而备受关注,尤其是在控制特定固体基底的润湿性方面,这对依赖于包括粘附和润湿在内的界面行为的各种工艺都有影响。本综述涵盖了 IL 润湿行为及其影响方面的主要进展。液滴大小、温度、烷基链结构、阴离子类型、水浓度和外部电场等因素都会影响 IL 及其水溶液的接触角。尽管 IL 特性易受含水量的影响以及润湿性测量对固体表面的敏感性带来了挑战,但本综述仍对 IL 润湿研究的范围进行了导航,探讨了线张力、表面张力测量和氢键等问题。本研究旨在提供有关 IL 润湿动力学的深刻见解,为基于 IL 的流体技术设计提供信息,并阐明类似复杂流体中错综复杂的静态和动态润湿属性。
{"title":"Wetting and interfacial behavior of imidazolium-based ionic liquids and water: A comprehensive review","authors":"Sanchari Bhattacharjee,&nbsp;Devargya Chakraborty,&nbsp;Sandip Khan","doi":"10.1016/j.fluid.2024.114252","DOIUrl":"10.1016/j.fluid.2024.114252","url":null,"abstract":"<div><div>Ionic liquids (ILs) have garnered considerable attention for their diverse applications, notably in controlling wettability on specific solid substrates, which holds ramifications for various processes reliant on interfacial behaviour encompassing adhesion and wetting. This review encompasses key advancements in IL wetting behavior and its implications. Factors such as drop size, temperature, alkyl chain structure, anion type, water concentration, and external electric fields influence the contact angle of ILs and their aqueous solutions. Despite challenges arising from IL property susceptibility to water content and wettability measurement sensitivity to solid surface, this review navigates the extent of IL wetting research, addressing line tension, surface tension measurement, and hydrogen bonding. The study aspires to furnish profound insights into IL wetting dynamics, informing IL-based fluidic technology design and elucidating intricate static and dynamic wetting attributes in analogous complex fluids.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114252"},"PeriodicalIF":2.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A calorimetric and Raman spectroscopy study on the phase behavior of DIOX + CO2 hydrate 关于 DIOX + CO2 水合物相行为的量热和拉曼光谱研究
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-11 DOI: 10.1016/j.fluid.2024.114253
Qing-Yi Xiao , Xi-Yue Li , Dong-Liang Zhong , Jin Yan
This work presents a calorimetric and Raman spectroscopy investigation on the phase behavior of DIOX (1,3-Dioxolane) + CO2 hydrate. A high-pressure micro-differential scanning calorimeter (HP μ-DSC) was used to determine the phase equilibrium data of DIOX + CO2 hydrate formed at 1 mol% and 5.56 mol% DIOX. A high-pressure in situ Raman spectroscopy apparatus was used to record the transient CO2 Raman spectra. The spectra were employed to study CO2 incorporation into the hydrate cages during the DIOX hydrate formation process. The results indicate that the DIOX + CO2 hydrate formed at 5.56 mol% DIOX is more stable than that formed at 1 mol% DIOX. The amount of DIOX + CO2 hydrate is increased when increasing the pressure from 3.0 MPa to 4.8 MPa, and more CO2 molecules are captured in the hydrate. Through the in situ Raman spectroscopy experiments, it is found that DIOX hydrate formed quickly at the beginning of the experiment and CO2 molecules were trapped in the small cages more slowly than the incorporation of DIOX into the hydrate. The results reported in this work have confirmed the feasibility of using DIOX as a thermodynamic additive to promote the hydrate-based CO2 capture.
本研究采用热量计和拉曼光谱对 DIOX(1,3-二氧戊环)+ CO2 水合物的相行为进行了研究。使用高压微差扫描量热仪(HP μ-DSC)测定了 DIOX + CO2 水合物在 1 mol% 和 5.56 mol% DIOX 浓度下形成的相平衡数据。使用高压原位拉曼光谱仪器记录了瞬态 CO2 拉曼光谱。这些光谱被用来研究 DIOX 水合物形成过程中二氧化碳掺入水合物笼子的情况。结果表明,在 5.56 摩尔 DIOX 浓度下形成的 DIOX + CO2 水合物比在 1 摩尔 DIOX 浓度下形成的 DIOX + CO2 水合物更稳定。当压力从 3.0 兆帕增加到 4.8 兆帕时,DIOX + CO2 水合物的数量增加,水合物中捕获了更多的 CO2 分子。通过原位拉曼光谱实验发现,DIOX 水合物在实验开始时形成较快,CO2 分子被捕获到小笼中的速度比 DIOX 融入水合物的速度慢。这项工作报告的结果证实了使用 DIOX 作为热力学添加剂来促进基于水合物的二氧化碳捕获的可行性。
{"title":"A calorimetric and Raman spectroscopy study on the phase behavior of DIOX + CO2 hydrate","authors":"Qing-Yi Xiao ,&nbsp;Xi-Yue Li ,&nbsp;Dong-Liang Zhong ,&nbsp;Jin Yan","doi":"10.1016/j.fluid.2024.114253","DOIUrl":"10.1016/j.fluid.2024.114253","url":null,"abstract":"<div><div>This work presents a calorimetric and Raman spectroscopy investigation on the phase behavior of DIOX (1,3-Dioxolane) + CO<sub>2</sub> hydrate. A high-pressure micro-differential scanning calorimeter (HP μ-DSC) was used to determine the phase equilibrium data of DIOX + CO<sub>2</sub> hydrate formed at 1 mol% and 5.56 mol% DIOX. A high-pressure in situ Raman spectroscopy apparatus was used to record the transient CO<sub>2</sub> Raman spectra. The spectra were employed to study CO<sub>2</sub> incorporation into the hydrate cages during the DIOX hydrate formation process. The results indicate that the DIOX + CO<sub>2</sub> hydrate formed at 5.56 mol% DIOX is more stable than that formed at 1 mol% DIOX. The amount of DIOX + CO<sub>2</sub> hydrate is increased when increasing the pressure from 3.0 MPa to 4.8 MPa, and more CO<sub>2</sub> molecules are captured in the hydrate. Through the in situ Raman spectroscopy experiments, it is found that DIOX hydrate formed quickly at the beginning of the experiment and CO<sub>2</sub> molecules were trapped in the small cages more slowly than the incorporation of DIOX into the hydrate. The results reported in this work have confirmed the feasibility of using DIOX as a thermodynamic additive to promote the hydrate-based CO<sub>2</sub> capture.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114253"},"PeriodicalIF":2.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermophysical properties: Viscosity, density, and excess properties of 2-propanol and n-Decane mixtures from 283.15 K to 343.15 K under atmospheric conditions 热物理性质:大气条件下 283.15 K 至 343.15 K 的 2-丙醇和正癸烷混合物的粘度、密度和过量特性
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-11 DOI: 10.1016/j.fluid.2024.114254
Abdulalim Ibrahim , Christophe Coquelet , Alain Valtz , Fabienne Espitalier
To study the effects of temperature as well as molecular interaction of a fluid system on the thermophysical properties of 2-propanol and n-Decane binary mixture, the density (ρ), dynamic viscosity (η), speed of sound (u), and refractive index (nD) of pure 2-propanol and n-Decane, along with their binary mixtures, were experimentally measured across the entire compositional range at temperatures from 283.15 to 343.15 K and atmospheric pressure. These experimental measurements helped in the evaluation of various thermophysical properties, such as excess molar volume (vE), coefficient of thermal expansion (αE), and isentropic compressibility (κsE). The experimental dynamic viscosity (η) and density (ρ) data were used to evaluate kinematic viscosity (v) and Gibbs free energy (ΔG) of flow with an equation based on Eyring's absolute state theory, and their corresponding excess properties. The excess properties of the binary mixtures were correlated using a Redlich-Kister type polynomial equation via the least-squares regression method, with fitting parameters determined for the binary system. Moreover, the Prigogine–Flory–Patterson theory (PFP) was utilized to identify the primary molecular interactions contributing to the excess molar volume at 293.15, 308.15, and 323.15 K for the binary mixtures. Additionally, the capability of the Eyring-NRTL model was tested to predict the viscosity as well as vapor-liquid equilibrium (VLE) of the binary system, and the correlated model results agreed with literature data.
为了研究流体系统的温度和分子相互作用对 2-丙醇和正癸烷二元混合物热物理性质的影响,我们在 283.15 至 343.15 K 的温度和大气压力下,对纯 2-丙醇和正癸烷以及它们的二元混合物的密度 (ρ)、动态粘度 (η)、声速 (u) 和折射率 (nD) 进行了实验测量。这些实验测量结果有助于评估各种热物理性质,如过量摩尔体积(vE)、热膨胀系数(αE)和等熵可压缩性(κsE)。利用实验得出的动态粘度 (η) 和密度 (ρ)数据,通过基于艾林绝对状态理论的方程来评估流动的运动粘度 (v) 和吉布斯自由能 (ΔG),以及它们相应的过剩特性。通过最小二乘回归法,使用 Redlich-Kister 型多项式方程对二元混合物的过剩性质进行了相关分析,并确定了二元体系的拟合参数。此外,还利用 Prigogine-Flory-Patterson 理论(PFP)确定了二元混合物在 293.15、308.15 和 323.15 K 下产生过剩摩尔体积的主要分子相互作用。此外,还测试了 Eyring-NRTL 模型预测二元体系粘度和汽液平衡 (VLE) 的能力,相关模型结果与文献数据一致。
{"title":"Thermophysical properties: Viscosity, density, and excess properties of 2-propanol and n-Decane mixtures from 283.15 K to 343.15 K under atmospheric conditions","authors":"Abdulalim Ibrahim ,&nbsp;Christophe Coquelet ,&nbsp;Alain Valtz ,&nbsp;Fabienne Espitalier","doi":"10.1016/j.fluid.2024.114254","DOIUrl":"10.1016/j.fluid.2024.114254","url":null,"abstract":"<div><div>To study the effects of temperature as well as molecular interaction of a fluid system on the thermophysical properties of 2-propanol and n-Decane binary mixture, the density (ρ), dynamic viscosity (η), speed of sound (<span><math><mi>u</mi></math></span>), and refractive index (<span><math><msub><mi>n</mi><mi>D</mi></msub></math></span>) of pure 2-propanol and n-Decane, along with their binary mixtures, were experimentally measured across the entire compositional range at temperatures from 283.15 to 343.15 K and atmospheric pressure. These experimental measurements helped in the evaluation of various thermophysical properties, such as excess molar volume <span><math><mrow><mo>(</mo><msup><mrow><mi>v</mi></mrow><mi>E</mi></msup><mo>)</mo></mrow></math></span>, coefficient of thermal expansion (<span><math><msup><mrow><mi>α</mi></mrow><mi>E</mi></msup></math></span>), and isentropic compressibility <span><math><mrow><mo>(</mo><msup><mrow><msub><mi>κ</mi><mi>s</mi></msub></mrow><mi>E</mi></msup><mo>)</mo></mrow></math></span>. The experimental dynamic viscosity (η) and density (ρ) data were used to evaluate kinematic viscosity (<strong><em>v</em></strong>) and Gibbs free energy (Δ<em>G</em>) of flow with an equation based on Eyring's absolute state theory, and their corresponding excess properties. The excess properties of the binary mixtures were correlated using a Redlich-Kister type polynomial equation via the least-squares regression method, with fitting parameters determined for the binary system. Moreover, the Prigogine–Flory–Patterson theory (PFP) was utilized to identify the primary molecular interactions contributing to the excess molar volume at 293.15, 308.15, and 323.15 K for the binary mixtures. Additionally, the capability of the Eyring-NRTL model was tested to predict the viscosity as well as vapor-liquid equilibrium (VLE) of the binary system, and the correlated model results agreed with literature data.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114254"},"PeriodicalIF":2.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of excipients on solubility of oxcarbazepine: Modeling and prediction based on thermodynamic models 辅料对奥卡西平溶解度的影响:基于热力学模型的建模和预测
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-09 DOI: 10.1016/j.fluid.2024.114251
Qinxi Fan , Mingdong Zhang , Yewei Ding , Alexey I. Victorov , Yuanhui Ji
In this work, the solubility of oxcarbazepine in polymers (PEG 6000, PEG 20,000, PVP K25, and PVP K30) and their aqueous solutions was investigated by experimental measurement and thermodynamic modeling. Firstly, the solubility of oxcarbazepine in water and polymers was modeled and the corresponding binary interaction parameters (oxcarbazepine + water and oxcarbazepine + polymer) were determined based on the experimental phase equilibrium data. Furthermore, the solubility of oxcarbazepine in the polymer aqueous solution (the mass ratios of polymers in water were 2 %, 4 %, and 6 %) was predicted by the solid-liquid equilibrium (SLE) coupled with the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). It was observed that the predicted results agreed well with the experimental data, and the average relative deviation (ARD) was <7 %. In this study, the solubility of oxcarbazepine in polymer aqueous solution was successfully predicted through the SLE coupled with the PC-SAFT, which was expected to provide theoretical guidance for the selection of pharmaceutical excipients and the rational design of preparations.
本研究通过实验测量和热力学建模研究了奥卡西平在聚合物(PEG 6000、PEG 20000、PVP K25 和 PVP K30)及其水溶液中的溶解度。首先建立了奥卡西平在水和聚合物中的溶解度模型,并根据实验相平衡数据确定了相应的二元相互作用参数(奥卡西平+水和奥卡西平+聚合物)。此外,还通过固液平衡(SLE)和扰动链统计关联流体理论(PC-SAFT)预测了奥卡西平在聚合物水溶液中的溶解度(聚合物在水中的质量比分别为 2%、4% 和 6%)。结果表明,预测结果与实验数据吻合良好,平均相对偏差(ARD)为 7%。本研究通过 SLE 结合 PC-SAFT 成功预测了奥卡西平在聚合物水溶液中的溶解度,有望为药用辅料的选择和制剂的合理设计提供理论指导。
{"title":"Influence of excipients on solubility of oxcarbazepine: Modeling and prediction based on thermodynamic models","authors":"Qinxi Fan ,&nbsp;Mingdong Zhang ,&nbsp;Yewei Ding ,&nbsp;Alexey I. Victorov ,&nbsp;Yuanhui Ji","doi":"10.1016/j.fluid.2024.114251","DOIUrl":"10.1016/j.fluid.2024.114251","url":null,"abstract":"<div><div>In this work, the solubility of oxcarbazepine in polymers (PEG 6000, PEG 20,000, PVP K25, and PVP K30) and their aqueous solutions was investigated by experimental measurement and thermodynamic modeling. Firstly, the solubility of oxcarbazepine in water and polymers was modeled and the corresponding binary interaction parameters (oxcarbazepine + water and oxcarbazepine + polymer) were determined based on the experimental phase equilibrium data. Furthermore, the solubility of oxcarbazepine in the polymer aqueous solution (the mass ratios of polymers in water were 2 %, 4 %, and 6 %) was predicted by the solid-liquid equilibrium (SLE) coupled with the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). It was observed that the predicted results agreed well with the experimental data, and the average relative deviation (ARD) was &lt;7 %. In this study, the solubility of oxcarbazepine in polymer aqueous solution was successfully predicted through the SLE coupled with the PC-SAFT, which was expected to provide theoretical guidance for the selection of pharmaceutical excipients and the rational design of preparations.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114251"},"PeriodicalIF":2.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vapor-liquid equilibria for the CO2 + trimethoxymethylsilane and CO2 + triethoxymethylsilane systems under high-pressure conditions 高压条件下二氧化碳+三甲氧基甲基硅烷和二氧化碳+三甲氧基甲基硅烷体系的气液平衡
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-09 DOI: 10.1016/j.fluid.2024.114246
Divya Baskaran , Jongho Kim , Uma Sankar Behera, Hun-Soo Byun
New binary isotherms are crucial for designing chemical separation processes within supercritical carbon dioxide (CO2) + trialkoxysilane systems. Vapor-liquid equilibria (VLE) were investigated for two-component systems, trimethoxymethylsilane + CO2 and triethoxymethylsilane + CO2, at five temperatures (313.2, 333.2, 353.2, 373.2, and 393.2 K) and pressures up to 14.07 MPa using a synthetic high-pressure phase equilibria apparatus. The pressure-temperature (P-T) plot indicates that the critical mixture curve lies between the critical points of CO2 and the trialkoxysilane compounds. The solubility of trimethoxymethylsilane and triethoxymethylsilane in CO2 increased with increasing temperature at constant pressure, following a type-I phase behavior characteristic. The experimentally observed VLE values of the CO2 + trialkoxysilane systems were correlated using the Peng-Robinson equation of state with binary parameters (kij and ηij) in the conventional mixing rule. The model accuracy was validated by calculating the average relative deviation percentage for the pressure of the binary systems, resulting in values of 4.98% for the trimethoxymethylsilane + CO2 system and 3.64% for the triethoxymethylsilane + CO2 system. The estimated variables fell within reasonable limits and showed no significant differences between the predicted and observed VLE data for both systems.
新的二元等温线对于设计超临界二氧化碳(CO2)+三烷氧基硅烷体系中的化学分离过程至关重要。使用合成的高压相平衡仪器,在五种温度(313.2、333.2、353.2、373.2 和 393.2 K)和最高 14.07 MPa 的压力下,研究了双组分系统(三甲氧基甲基硅烷 + CO2 和三甲氧基甲基硅烷 + CO2)的汽液平衡 (VLE)。压力-温度(P-T)图表明,临界混合物曲线位于二氧化碳和三烷氧基硅烷化合物的临界点之间。在恒压条件下,三甲氧基甲基硅烷和三甲氧基甲基硅烷在 CO2 中的溶解度随着温度的升高而增加,这符合 I 型相行为特征。利用彭-罗宾逊状态方程和传统混合规则中的二元参数(kij 和 ηij),将实验观察到的 CO2 + 三烷氧基硅烷体系的 VLE 值联系起来。通过计算二元体系压力的平均相对偏差百分比验证了模型的准确性,结果是三甲氧基甲基硅烷 + CO2 体系的相对偏差百分比为 4.98%,三甲氧基甲基硅烷 + CO2 体系的相对偏差百分比为 3.64%。估算的变量均在合理范围内,且两种体系的预测 VLE 数据与观测 VLE 数据之间无明显差异。
{"title":"Vapor-liquid equilibria for the CO2 + trimethoxymethylsilane and CO2 + triethoxymethylsilane systems under high-pressure conditions","authors":"Divya Baskaran ,&nbsp;Jongho Kim ,&nbsp;Uma Sankar Behera,&nbsp;Hun-Soo Byun","doi":"10.1016/j.fluid.2024.114246","DOIUrl":"10.1016/j.fluid.2024.114246","url":null,"abstract":"<div><div>New binary isotherms are crucial for designing chemical separation processes within supercritical carbon dioxide (CO<sub>2</sub>) + trialkoxysilane systems. Vapor-liquid equilibria (VLE) were investigated for two-component systems, trimethoxymethylsilane + CO<sub>2</sub> and triethoxymethylsilane + CO<sub>2</sub>, at five temperatures (313.2, 333.2, 353.2, 373.2, and 393.2 K) and pressures up to 14.07 MPa using a synthetic high-pressure phase equilibria apparatus. The pressure-temperature (<em>P-T</em>) plot indicates that the critical mixture curve lies between the critical points of CO<sub>2</sub> and the trialkoxysilane compounds. The solubility of trimethoxymethylsilane and triethoxymethylsilane in CO<sub>2</sub> increased with increasing temperature at constant pressure, following a type-I phase behavior characteristic. The experimentally observed VLE values of the CO<sub>2</sub> + trialkoxysilane systems were correlated using the Peng-Robinson equation of state with binary parameters (<em>k<sub>ij</sub></em> and <em>η<sub>ij</sub></em>) in the conventional mixing rule. The model accuracy was validated by calculating the average relative deviation percentage for the pressure of the binary systems, resulting in values of 4.98% for the trimethoxymethylsilane + CO<sub>2</sub> system and 3.64% for the triethoxymethylsilane + CO<sub>2</sub> system. The estimated variables fell within reasonable limits and showed no significant differences between the predicted and observed VLE data for both systems.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114246"},"PeriodicalIF":2.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speed of sound measurements of binary n-octane+ ethylcyclohexane mixture at liquid-gas phase transition curve 二元正辛烷+乙基环己烷混合物在液气相变曲线处的声速测量结果
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-09 DOI: 10.1016/j.fluid.2024.114248
Eugene G. Pashuk , Jiangtao Wu , Ilmutdin M. Abdulagatov
Bio-jet fuel is a key element in the aviation industry to reduce operating costs and environmental impacts. Bio-jet fuel is a complex mixture of four hydrocarbons (n-alkanes, isoalkanes, cycloalkanes and aromatics). In the present work, the speed of sound in pure n-octane, ethylcyclohexane, and their mixtures with six selected compositions of (0.3004, 0.4191, 0.4999, 0.5538, 0.6991, and 0.7852 mole fraction of ethylcyclohexane) has been measured along the l-G saturation curve in the temperature ranges from (286 to 443) K using the pulse method with a constant (acoustic) sounding base. The combined expanded absolute and relative uncertainties (0.95 level of confidence, k = 2) of the temperature, concentration, and speed of sound measurements are estimated to be 20 mK, 0.0006 mole fraction, and 0.2 %, respectively. The measured speed of sound data together with our previous reported density data for the pure component (ethylcyclohexane) and the mixture were used to calculate derived thermodynamic properties, such as isentropic compressibility kS and heat capacity ratios CPCV as a function of temperature along the l-G saturation curve for the pure components and the mixture for selected concentration of x = 0.8 mole fraction of ethylcyclohexane. The deviation of the measured speed of sound data for the mixture from the linear additive rule has been determined using the pure component data.
生物喷气燃料是航空业降低运营成本和环境影响的关键因素。生物喷气燃料是四种碳氢化合物(正烷烃、异构烷烃、环烷烃和芳烃)的复杂混合物。在本研究中,采用脉冲法和恒定(声学)探测基,沿着 l-G 饱和曲线测量了纯正辛烷、乙基环己烷和它们的六种混合物(乙基环己烷的摩尔分数分别为 0.3004、0.4191、0.4999、0.5538、0.6991 和 0.7852)的声速,温度范围为(286 至 443)K。温度、浓度和声速测量的绝对和相对不确定度(置信度为 0.95,k = 2)分别为 20 mK、0.0006 摩尔分数和 0.2%。测得的声速数据与我们之前报告的纯组分(乙基环己烷)和混合物的密度数据一起,用于计算推导出的热力学性质,如等熵压缩率 kS 和热容比 CPCV,它们是纯组分和混合物(选定的乙基环己烷浓度 x = 0.8 摩尔分数)沿 l-G 饱和曲线的温度函数。混合物的声速测量数据与线性添加剂规则的偏差是通过纯组分数据确定的。
{"title":"Speed of sound measurements of binary n-octane+ ethylcyclohexane mixture at liquid-gas phase transition curve","authors":"Eugene G. Pashuk ,&nbsp;Jiangtao Wu ,&nbsp;Ilmutdin M. Abdulagatov","doi":"10.1016/j.fluid.2024.114248","DOIUrl":"10.1016/j.fluid.2024.114248","url":null,"abstract":"<div><div>Bio-jet fuel is a key element in the aviation industry to reduce operating costs and environmental impacts. Bio-jet fuel is a complex mixture of four hydrocarbons (<em>n</em>-alkanes, isoalkanes, cycloalkanes and aromatics). In the present work, the speed of sound in pure <em>n</em>-octane, <em>ethylcyclohexane</em>, and their mixtures with six selected compositions of (0.3004, 0.4191, 0.4999, 0.5538, 0.6991, and 0.7852 mole fraction of ethylcyclohexane) has been measured along the l-G saturation curve in the temperature ranges from (286 to 443) K using the pulse method with a constant (acoustic) sounding base. The combined expanded absolute and relative uncertainties (0.95 level of confidence, <em>k</em> = 2) of the temperature, concentration, and speed of sound measurements are estimated to be 20 mK, 0.0006 mole fraction, and 0.2 %, respectively. The measured speed of sound data together with our previous reported density data for the pure component (<em>ethylcyclohexane</em>) and the mixture were used to calculate derived thermodynamic properties, such as isentropic compressibility <span><math><msub><mi>k</mi><mi>S</mi></msub></math></span> and heat capacity ratios <span><math><mfrac><msub><mi>C</mi><mi>P</mi></msub><msub><mi>C</mi><mi>V</mi></msub></mfrac></math></span> as a function of temperature along the l-G saturation curve for the pure components and the mixture for selected concentration of <em>x</em> = 0.8 mole fraction of <em>ethylcyclohexane</em>. The deviation of the measured speed of sound data for the mixture from the linear additive rule has been determined using the pure component data.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114248"},"PeriodicalIF":2.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic modelling of systems involved in natural gas dehydration with triethylene glycol using a group contribution association model 利用群体贡献关联模型建立天然气与三甘醇脱水系统的热力学模型
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-05 DOI: 10.1016/j.fluid.2024.114241
George Tasios , Vasiliki Louli , Efstathios Skouras , Even Solbraa , Epaminondas Voutsas
Natural gas (NG) dehydration through absorption into Triethylene Glycol (TEG) is one of the most important applications in the NG industry. The optimal design of the TEG dehydration process requires a deep understanding of the thermodynamic behavior of mixtures containing TEG, water, hydrocarbons, and other compounds present in natural gas. In this work, the recently developed Universal Mixing Rule – Cubic Plus Association (UMR-CPA) group contribution equation of state (EoS) is extended to these systems. UMR-CPA combines the PR-CPA EoS with the UNIFAC group contribution activity coefficient model through the Universal Mixing Rules. Parameters for pure water, TEG and NG components were determined by accurately fitting vapor pressure, density and heat capacity data. For non-associating compounds, the model leads to overall deviations of 1.2 % in vapor pressures and 6.1 % in isobaric heat capacities. Water properties are also quite accurately described, with overall deviations of approximately 0.4 %, 1.2 % and 5.7 % in vapor pressures, liquid densities and isobaric heat capacities, respectively. The model was then applied to mixtures of water and TEG with gases and hydrocarbons by correlating the proper group interaction parameters. Very satisfactory results were obtained for both vapor-liquid and liquid-liquid phase equilibria in these systems, where also an adequate reproduction of the minimum of hydrocarbon solubility in water was noted. Finally, the UMR-CPA EoS was further validated through the prediction of the phase behavior of ternary systems including TEG and/or water and NG compounds. Very good predictions were achieved for the low TEG and water content in the vapor phase of the TEG-H2O-CH4 ternary system, with absolute deviations of around 0.05 and 23.26 ppm, respectively. Overall, the model yields accurate predictions, suggesting its suitability for designing the TEG dehydration process.
通过吸收三乙二醇 (TEG) 实现天然气 (NG) 脱水是 NG 工业中最重要的应用之一。要优化 TEG 脱水工艺的设计,就必须深入了解天然气中含有 TEG、水、碳氢化合物和其他化合物的混合物的热力学行为。在这项工作中,最近开发的通用混合规则-立方加联结(UMR-CPA)组贡献状态方程(EoS)被扩展到这些系统中。UMR-CPA 通过通用混合规则将 PR-CPA EoS 与 UNIFAC 群体贡献活动系数模型相结合。通过精确拟合蒸汽压力、密度和热容量数据,确定了纯水、TEG 和 NG 成分的参数。对于非缔合化合物,该模型导致的蒸汽压总体偏差为 1.2%,等压热容总体偏差为 6.1%。水的性质也得到了相当准确的描述,蒸气压、液体密度和等压热容的总体偏差分别约为 0.4%、1.2% 和 5.7%。然后,通过关联适当的基团相互作用参数,将该模型应用于水和 TEG 与气体和碳氢化合物的混合物。在这些系统中,气-液相和液-液相平衡都得到了非常令人满意的结果,同时还注意到碳氢化合物在水中的最小溶解度也得到了充分的再现。最后,通过预测包括 TEG 和/或水和 NG 化合物在内的三元系统的相行为,进一步验证了 UMR-CPA EoS。对 TEG-H2O-CH4 三元体系气相中较低的 TEG 和水含量进行了非常好的预测,绝对偏差分别约为 0.05 和 23.26 ppm。总体而言,该模型能得出准确的预测结果,表明其适用于设计 TEG 脱水过程。
{"title":"Thermodynamic modelling of systems involved in natural gas dehydration with triethylene glycol using a group contribution association model","authors":"George Tasios ,&nbsp;Vasiliki Louli ,&nbsp;Efstathios Skouras ,&nbsp;Even Solbraa ,&nbsp;Epaminondas Voutsas","doi":"10.1016/j.fluid.2024.114241","DOIUrl":"10.1016/j.fluid.2024.114241","url":null,"abstract":"<div><div>Natural gas (NG) dehydration through absorption into Triethylene Glycol (TEG) is one of the most important applications in the NG industry. The optimal design of the TEG dehydration process requires a deep understanding of the thermodynamic behavior of mixtures containing TEG, water, hydrocarbons, and other compounds present in natural gas. In this work, the recently developed Universal Mixing Rule – Cubic Plus Association (UMR-CPA) group contribution equation of state (EoS) is extended to these systems. UMR-CPA combines the PR-CPA EoS with the UNIFAC group contribution activity coefficient model through the Universal Mixing Rules. Parameters for pure water, TEG and NG components were determined by accurately fitting vapor pressure, density and heat capacity data. For non-associating compounds, the model leads to overall deviations of 1.2 % in vapor pressures and 6.1 % in isobaric heat capacities. Water properties are also quite accurately described, with overall deviations of approximately 0.4 %, 1.2 % and 5.7 % in vapor pressures, liquid densities and isobaric heat capacities, respectively. The model was then applied to mixtures of water and TEG with gases and hydrocarbons by correlating the proper group interaction parameters. Very satisfactory results were obtained for both vapor-liquid and liquid-liquid phase equilibria in these systems, where also an adequate reproduction of the minimum of hydrocarbon solubility in water was noted. Finally, the UMR-CPA EoS was further validated through the prediction of the phase behavior of ternary systems including TEG and/or water and NG compounds. Very good predictions were achieved for the low TEG and water content in the vapor phase of the TEG-H<sub>2</sub>O-CH<sub>4</sub> ternary system, with absolute deviations of around 0.05 and 23.26 ppm, respectively. Overall, the model yields accurate predictions, suggesting its suitability for designing the TEG dehydration process.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"588 ","pages":"Article 114241"},"PeriodicalIF":2.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-sorption of volatile components in polymer-based pharmaceutical formulations 聚合物基药物制剂中挥发性成分的共吸附作用
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-05 DOI: 10.1016/j.fluid.2024.114247
Jana Kerkhoff , Dominik Borrmann , Gabriele Sadowski
Amorphous Solid Dispersions (ASDs) are mixtures of active pharmaceutical ingredients (APIs) and polymers aiming to increase API aqueous solubility and bioavailability. ASDs are often produced using solvent-based manufacturing, such as spray drying. Due to solubility or miscibility limitations in one solvent, solvent mixtures are frequently used for this purpose. Drying solvents or solvent mixtures from polymer-based products like ASDs is an energy-intensive and time-consuming process. Designing and optimising this drying process requires knowledge of the sorption isotherms of the solvent(s) in these polymer-based products. In this work, we developed a novel approach for measuring the simultaneous absorption/desorption of two solvents in a polymer. Combining classical dynamic vapour sorption (DVS) measurements with Raman spectroscopy, this innovative approach provides a more detailed and accurate measurement of the sorption isotherms than common methods. Moreover, we developed an approach for precisely predicting the sorption equilibria in three-component systems just based on sorption data of the corresponding binary subsystems. Our modelling approach combines the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) with the Non-Equilibrium Thermodynamics of Glassy Polymers (NET-GP). Building on the description of the sorption isotherms of either water or ethanol in poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and in indomethacin (IND), we were able to quantitatively predict the simultaneous sorption of water and ethanol in PVPVA64 and the one of ethanol in an IND/PVPVA64 ASD.
无定形固体分散体(ASD)是活性药物成分(API)和聚合物的混合物,旨在提高 API 的水溶性和生物利用度。ASD 通常采用喷雾干燥等溶剂型生产工艺。由于在一种溶剂中的溶解度或混溶性受到限制,因此经常使用混合溶剂。从 ASD 等聚合物基产品中干燥溶剂或溶剂混合物是一个耗能耗时的过程。设计和优化这种干燥工艺需要了解这些聚合物基产品中溶剂的吸附等温线。在这项工作中,我们开发了一种测量聚合物中两种溶剂同时吸收/解吸的新方法。这种创新方法将经典的动态蒸汽吸附 (DVS) 测量与拉曼光谱相结合,提供了比普通方法更详细、更精确的吸附等温线测量。此外,我们还根据相应二元子系统的吸附数据,开发了一种精确预测三组分系统吸附平衡的方法。我们的建模方法结合了扰动链统计关联流体理论(PC-SAFT)和玻璃聚合物非平衡热力学(NET-GP)。基于水或乙醇在聚(乙烯基吡咯烷酮-醋酸乙烯酯)(PVPVA64)和吲哚美辛(IND)中的吸附等温线描述,我们能够定量预测水和乙醇在 PVPVA64 中的同时吸附以及乙醇在 IND/PVPVA64 ASD 中的吸附。
{"title":"Co-sorption of volatile components in polymer-based pharmaceutical formulations","authors":"Jana Kerkhoff ,&nbsp;Dominik Borrmann ,&nbsp;Gabriele Sadowski","doi":"10.1016/j.fluid.2024.114247","DOIUrl":"10.1016/j.fluid.2024.114247","url":null,"abstract":"<div><div>Amorphous Solid Dispersions (ASDs) are mixtures of active pharmaceutical ingredients (APIs) and polymers aiming to increase API aqueous solubility and bioavailability. ASDs are often produced using solvent-based manufacturing, such as spray drying. Due to solubility or miscibility limitations in one solvent, solvent mixtures are frequently used for this purpose. Drying solvents or solvent mixtures from polymer-based products like ASDs is an energy-intensive and time-consuming process. Designing and optimising this drying process requires knowledge of the sorption isotherms of the solvent(s) in these polymer-based products. In this work, we developed a novel approach for measuring the simultaneous absorption/desorption of two solvents in a polymer. Combining classical dynamic vapour sorption (DVS) measurements with Raman spectroscopy, this innovative approach provides a more detailed and accurate measurement of the sorption isotherms than common methods. Moreover, we developed an approach for precisely predicting the sorption equilibria in three-component systems just based on sorption data of the corresponding binary subsystems. Our modelling approach combines the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) with the Non-Equilibrium Thermodynamics of Glassy Polymers (NET-GP). Building on the description of the sorption isotherms of either water or ethanol in poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and in indomethacin (IND), we were able to quantitatively predict the simultaneous sorption of water and ethanol in PVPVA64 and the one of ethanol in an IND/PVPVA64 ASD.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114247"},"PeriodicalIF":2.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of dissociation enthalpies of methane hydrates in the absence and presence of ionic liquids using the Clausius-Clapeyron approach 利用克劳修斯-克拉皮隆方法评估无离子液体和有离子液体时甲烷水合物的解离焓
IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-02 DOI: 10.1016/j.fluid.2024.114245
Mohammad Arshad , Tausif Altamash , Anastasiia Keba , Mohd Sajid Ali , Johan Jacquemin , José M.S.S. Esperança , Mohammad Tariq
The Clausius-Clapeyron (CC) equation is generally preferred to obtain dissociation enthalpies (ΔH) of hydrate-forming systems due to its ease of use. The application of other direct and indirect methods becomes more problematic if complex additives such as ionic liquids (ILs) are also present in the system. In this work, around 400 equilibrium data points for methane hydrates in the presence of over 80 ILs were collected from the literature in the temperature and pressure ranges of (272.10 – 306.07) K and (2.48 – 100.34) MPa, respectively. The ΔH of methane hydrates in the absence and presence of ionic liquids (ILs) have been calculated using the CC equation. The compressibility factor (z), required to calculate ΔH at each phase equilibrium condition has been obtained from three different approaches viz., Peng-Robinson (PR) equation of state, Soave-Redlich-Kwong (SRK) equation of state and Pitzer (Pz) correlation. The results were compared to the experimentally reported dissociation enthalpy (54.5 ± 1.5 kJ.mol−1) of methane hydrates. The role of the compressibility factor along with the slope of the equilibrium data set and the temperature/pressure range in determining the outcome of the CC equation has been discussed. The effect of molar mass, molar volume, and hydrate suppression temperature of the ILs on the ΔH of methane hydrates has been explored. The tested ILs do not show a systematic and significant influence on enthalpies, rather they show a large scattering in the ΔH values, which might mask any existing subtle effect of the ILs on the dissociation enthalpies. Therefore, this approach should be dealt with care to obtain molecular-level insights.
克劳修斯-克拉皮隆(CC)方程由于易于使用,通常被优先用于获取水合物形成体系的解离焓(ΔH)。如果体系中还存在离子液体(IL)等复杂添加剂,则其他直接和间接方法的应用就会变得更加困难。在这项工作中,从文献中收集了约 400 个甲烷水合物在 80 多种 IL 存在下的平衡数据点,温度和压力范围分别为 (272.10 - 306.07) K 和 (2.48 - 100.34) MPa。使用 CC 方程计算了没有离子液体 (IL) 和有离子液体 (IL) 时甲烷水合物的 ΔH。计算每个相平衡条件下 ΔH 所需的可压缩因子 (z) 是通过三种不同的方法获得的,即彭-罗宾逊 (PR) 状态方程、索夫-雷德里希-邝 (SRK) 状态方程和皮策 (Pz) 相关性。研究结果与实验报告的甲烷水合物解离焓(54.5 ± 1.5 kJ.mol-1 )进行了比较。讨论了可压缩因子、平衡数据集斜率和温度/压力范围在决定 CC 方程结果中的作用。还探讨了 IL 的摩尔质量、摩尔体积和水合物抑制温度对甲烷水合物 ΔH 的影响。测试结果表明,ILs 对焓值的影响并不系统且不明显,相反,它们在 ΔH 值上表现出很大的分散性,这可能会掩盖 ILs 对解离焓值的任何微妙影响。因此,应谨慎处理这种方法,以获得分子层面的见解。
{"title":"Assessment of dissociation enthalpies of methane hydrates in the absence and presence of ionic liquids using the Clausius-Clapeyron approach","authors":"Mohammad Arshad ,&nbsp;Tausif Altamash ,&nbsp;Anastasiia Keba ,&nbsp;Mohd Sajid Ali ,&nbsp;Johan Jacquemin ,&nbsp;José M.S.S. Esperança ,&nbsp;Mohammad Tariq","doi":"10.1016/j.fluid.2024.114245","DOIUrl":"10.1016/j.fluid.2024.114245","url":null,"abstract":"<div><div>The Clausius-Clapeyron (CC) equation is generally preferred to obtain dissociation enthalpies (ΔH) of hydrate-forming systems due to its ease of use. The application of other direct and indirect methods becomes more problematic if complex additives such as ionic liquids (ILs) are also present in the system. In this work, around 400 equilibrium data points for methane hydrates in the presence of over 80 ILs were collected from the literature in the temperature and pressure ranges of (272.10 – 306.07) K and (2.48 – 100.34) MPa, respectively. The ΔH of methane hydrates in the absence and presence of ionic liquids (ILs) have been calculated using the CC equation. The compressibility factor (<em>z</em>), required to calculate ΔH at each phase equilibrium condition has been obtained from three different approaches <em>viz</em>., Peng-Robinson (PR) equation of state, Soave-Redlich-Kwong (SRK) equation of state and Pitzer (Pz) correlation. The results were compared to the experimentally reported dissociation enthalpy (54.5 ± 1.5 kJ.mol<sup>−1</sup>) of methane hydrates. The role of the compressibility factor along with the slope of the equilibrium data set and the temperature/pressure range in determining the outcome of the CC equation has been discussed. The effect of molar mass, molar volume, and hydrate suppression temperature of the ILs on the ΔH of methane hydrates has been explored. The tested ILs do not show a systematic and significant influence on enthalpies, rather they show a large scattering in the ΔH values, which might mask any existing subtle effect of the ILs on the dissociation enthalpies. Therefore, this approach should be dealt with care to obtain molecular-level insights.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114245"},"PeriodicalIF":2.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fluid Phase Equilibria
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1