Pub Date : 2024-10-24DOI: 10.1016/j.fluid.2024.114270
Xurui Li , Jianxiang Tian
Based on our previous work [Fluid Phase Equilibria, 2023, 567, 113709], we here use the radial distribution function (RDF) to determine the state points (density and temperature) of a fluid under the Yukawa potential at equilibrium. The reduced density and reduced temperature are defined as and , respectively. Through the Molecular Dynamics (MD) simulations, we obtain equilibrium configurations and use these data for building models via two methods. The first method establishes two empirical correlations for each potential considered, one between the heights of the first peaks of the RDFs and state points, as well as the other between the displacements of the first peaks of the RDFs and state points. Through these empirical correlations, we can determine the state points of new Yukawa fluid systems with 100% accuracy. The second method utilizes artificial neural network models to predict state points from the heights and displacements of the first peaks of the RDFs, achieving 100% accuracy when the predicted results are rounded to one decimal place. The success of these methods again demonstrates the feasibility of determining state points solely based on equilibrium configurations, is an extension from the Lennard-Jones fluids to the Yukawa potential related fluids.
{"title":"Determining state points through the radial distribution function of Yukawa fluids at equilibrium","authors":"Xurui Li , Jianxiang Tian","doi":"10.1016/j.fluid.2024.114270","DOIUrl":"10.1016/j.fluid.2024.114270","url":null,"abstract":"<div><div>Based on our previous work [<strong><em>Fluid Phase Equilibria</em></strong>, 2023, <strong>567</strong>, 113709], we here use the radial distribution function (RDF) to determine the state points (density and temperature) of a fluid under the Yukawa potential at equilibrium. The reduced density and reduced temperature are defined as <span><math><mrow><msup><mrow><mi>ρ</mi></mrow><mo>*</mo></msup><mo>=</mo><mi>ρ</mi><msup><mrow><mi>σ</mi></mrow><mn>3</mn></msup></mrow></math></span> and <span><math><mrow><msup><mrow><mi>β</mi></mrow><mo>*</mo></msup><mo>=</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>T</mi></mrow><mo>*</mo></msup><mo>=</mo><mi>ϵ</mi><mo>/</mo><msub><mi>k</mi><mi>B</mi></msub><mi>T</mi></mrow></math></span>, respectively. Through the Molecular Dynamics (MD) simulations, we obtain equilibrium configurations and use these data for building models via two methods. The first method establishes two empirical correlations for each potential considered, one between the heights of the first peaks of the RDFs and state points, as well as the other between the displacements of the first peaks of the RDFs and state points. Through these empirical correlations, we can determine the state points of new Yukawa fluid systems with 100% accuracy. The second method utilizes artificial neural network models to predict state points from the heights and displacements of the first peaks of the RDFs, achieving 100% accuracy when the predicted results are rounded to one decimal place. The success of these methods again demonstrates the feasibility of determining state points solely based on equilibrium configurations, is an extension from the Lennard-Jones fluids to the Yukawa potential related fluids.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114270"},"PeriodicalIF":2.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.fluid.2024.114259
Larissa F. Torres , Thales Barbalho , Iuri Segtovich , Cláudio Dariva , Frederico W. Tavares , Papa M. Ndiaye
The capability to accurately determine and predict the water content is essential to assess and plan potential flow assurance issues associated with water condensing from gas in pipelines and leading to hydrate formation. Various experimental techniques and devices have been evaluated/tested to determine water content and different equations of state are used to describe these data. Here, a critical review of experimental techniques and thermodynamic methods to determine water content is presented. Particular attention is paid to the experimental techniques using Chilled Mirror, Quartz Crystal Microbalance (QCM), and Tunable Diode Laser Spectroscopy (TDLAS). A literature review and an experimental data bank of water content in binary and ternary gas mixtures with methane and/or CO2 are also presented.
{"title":"A critical review of experimental methods, data, and predictions of water content","authors":"Larissa F. Torres , Thales Barbalho , Iuri Segtovich , Cláudio Dariva , Frederico W. Tavares , Papa M. Ndiaye","doi":"10.1016/j.fluid.2024.114259","DOIUrl":"10.1016/j.fluid.2024.114259","url":null,"abstract":"<div><div>The capability to accurately determine and predict the water content is essential to assess and plan potential flow assurance issues associated with water condensing from gas in pipelines and leading to hydrate formation. Various experimental techniques and devices have been evaluated/tested to determine water content and different equations of state are used to describe these data. Here, a critical review of experimental techniques and thermodynamic methods to determine water content is presented. Particular attention is paid to the experimental techniques using Chilled Mirror, Quartz Crystal Microbalance (QCM), and Tunable Diode Laser Spectroscopy (TDLAS). A literature review and an experimental data bank of water content in binary and ternary gas mixtures with methane and/or CO<sub>2</sub> are also presented.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114259"},"PeriodicalIF":2.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.fluid.2024.114262
Jibao Zhang , Yan Li , Yang Li , Mengqi Xiao , Yizhi Rao , Praveen Linga , Lijie Chen , Zhenyuan Yin
Hydrogen (H2) as the most abundant element offers a clean energy solution for a sustainable future. Thermodynamic hydrate promoters can enhance hydrate-based H2 storage under mild pressure conditions. 1,3-dioxolane (DIOX) as a low-toxicity promoter has attracted attention for its potential to improve H2 hydrate kinetics. However, the phase equilibria of H2-DIOX in the presence of DIOX and its thermodynamic promotion mechanism are not fully elaborated and warrant thorough investigation. In this study, the phase equilibria of H2-DIOX hydrates were measured for DIOX concentrations (CDIOX) ranging from 2.0 mol% to 5.56 mol%. The equilibrium temperature of H2-DIOX hydrates shifted rightward by 2.3 K at 15.0 MPa for 5.56 mol% DIOX compared to 2.0 mol% DIOX. The measured thermodynamic data were validated by fitting the H2-DIOX hydrate phase equilibira using the Clausius–Clapeyron equation. The cage occupancy of H2 and DIOX in H2-DIOX sII hydrates was revealed through Raman spectroscopy and DSC thermal analysis. Two types of hydrates (DIOX and H2-DIOX) were observed for all CDIOX. Single H2 molecules were enclathrated in the 512 cages of H2-DIOX hydrates and increasing CDIOX effectively enhanced DIOX molecules enclathration in the 51264 cages but had limited effect on the H2 molecules in the 512 cages. The findings of this study provide fundametnal thermodynamic data and cage occupancy charateristics for H2-DIOX sII hydrates below 15.0 MPa. The results provide guidance on the optimal thermodynamic promoter concentrations for future large-scale hydrate-based H2 storage application.
{"title":"Phase equilibria and guest gas occupancy characteristics of H2-DIOX sII hydrates based on calorimetric and Raman analysis","authors":"Jibao Zhang , Yan Li , Yang Li , Mengqi Xiao , Yizhi Rao , Praveen Linga , Lijie Chen , Zhenyuan Yin","doi":"10.1016/j.fluid.2024.114262","DOIUrl":"10.1016/j.fluid.2024.114262","url":null,"abstract":"<div><div>Hydrogen (H<sub>2</sub>) as the most abundant element offers a clean energy solution for a sustainable future. Thermodynamic hydrate promoters can enhance hydrate-based H<sub>2</sub> storage under mild pressure conditions. 1,3-dioxolane (DIOX) as a low-toxicity promoter has attracted attention for its potential to improve H<sub>2</sub> hydrate kinetics. However, the phase equilibria of H<sub>2</sub>-DIOX in the presence of DIOX and its thermodynamic promotion mechanism are not fully elaborated and warrant thorough investigation. In this study, the phase equilibria of H<sub>2</sub>-DIOX hydrates were measured for DIOX concentrations (<em>C<sub>DIOX</sub></em>) ranging from 2.0 mol% to 5.56 mol%. The equilibrium temperature of H<sub>2</sub>-DIOX hydrates shifted rightward by 2.3 K at 15.0 MPa for 5.56 mol% DIOX compared to 2.0 mol% DIOX. The measured thermodynamic data were validated by fitting the H<sub>2</sub>-DIOX hydrate phase equilibira using the Clausius–Clapeyron equation. The cage occupancy of H<sub>2</sub> and DIOX in H<sub>2</sub>-DIOX sII hydrates was revealed through Raman spectroscopy and DSC thermal analysis. Two types of hydrates (DIOX and H<sub>2</sub>-DIOX) were observed for all <em>C<sub>DIOX</sub></em>. Single H<sub>2</sub> molecules were enclathrated in the 5<sup>12</sup> cages of H<sub>2</sub>-DIOX hydrates and increasing <em>C<sub>DIOX</sub></em> effectively enhanced DIOX molecules enclathration in the 5<sup>1</sup><sup>2</sup>6<sup>4</sup> cages but had limited effect on the H<sub>2</sub> molecules in the 5<sup>12</sup> cages. The findings of this study provide fundametnal thermodynamic data and cage occupancy charateristics for H<sub>2</sub>-DIOX sII hydrates below 15.0 MPa. The results provide guidance on the optimal thermodynamic promoter concentrations for future large-scale hydrate-based H<sub>2</sub> storage application.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114262"},"PeriodicalIF":2.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This short paper investigates the applicability of our previously developed entropy scaling model to pure ionic liquids and concludes that it can be used without any modification and leads to very satisfactory results when coupled with the Peng-Robinson or Soave-Redlich-Kwong cubic equations of state. For the considered ionic liquids, the average deviations between calculated and experimental viscosities were found to be around 4.6 and 5.8% for the two cubic equations of state, respectively.
{"title":"Coupling cubic equations of state with the concept of entropy scaling to model the viscosity of ionic liquids","authors":"Aghilas Dehlouz , Romain Privat , Jean-Noël Jaubert","doi":"10.1016/j.fluid.2024.114261","DOIUrl":"10.1016/j.fluid.2024.114261","url":null,"abstract":"<div><div>This short paper investigates the applicability of our previously developed entropy scaling model to pure ionic liquids and concludes that it can be used without any modification and leads to very satisfactory results when coupled with the Peng-Robinson or Soave-Redlich-Kwong cubic equations of state. For the considered ionic liquids, the average deviations between calculated and experimental viscosities were found to be around 4.6 and 5.8% for the two cubic equations of state, respectively.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114261"},"PeriodicalIF":2.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-20DOI: 10.1016/j.fluid.2024.114260
Rajamani Krishna, Jasper M. van Baten
Microporous crystalline adsorbents such as zeolites, and metal-organic frameworks (MOFs) have potential use in a wide variety of separations applications. In applications such as CO2 capture, the Ideal Adsorbed Solution Theory (IAST) often fails to provide a quantitative description of mixture adsorption equilibrium especially in cation-exchanged zeolites. The failure of the IAST is ascribable to non-compliance with one or more tenets mandated by the IAST such as (a) homogeneous distribution of adsorbates within the pore landscape, (b) no preferential location of guest species, and (c) absence of molecular clustering due to say hydrogen bonding. The focus of this article is on the reliability of the Real Adsorbed Solution Theory (RAST) models for quantitative estimation of adsorption equilibrium. Configurational-Bias Monte Carlo (CBMC) simulations are undertaken to determine the adsorption equilibrium for ternary CO2/CH4/N2, CO2/CH4/C3H8, CO2/CH4/H2, and water/methanol/ethanol mixtures in NaX, LTA-4A, CHA, DDR, and MFI zeolites. Additionally, CBMC simulations of the constituent binary pairs are used to determine the Wilson or NRTL parameters, taking due account of the dependence of the activity coefficients on the spreading pressure. Use of the binary pair Wilson or NRTL parameters allows the estimation of ternary mixture adsorption equilibrium, that is tested against the CBMC data on component loadings. In all investigated guest/host combinations, the RAST provides a good estimation of ternary mixture adsorption equilibrium.
{"title":"How reliable is the Real Adsorbed Solution Theory (RAST) for estimating ternary mixture equilibrium in microporous host materials?","authors":"Rajamani Krishna, Jasper M. van Baten","doi":"10.1016/j.fluid.2024.114260","DOIUrl":"10.1016/j.fluid.2024.114260","url":null,"abstract":"<div><div>Microporous crystalline adsorbents such as zeolites, and metal-organic frameworks (MOFs) have potential use in a wide variety of separations applications. In applications such as CO<sub>2</sub> capture, the Ideal Adsorbed Solution Theory (IAST) often fails to provide a quantitative description of mixture adsorption equilibrium especially in cation-exchanged zeolites. The failure of the IAST is ascribable to non-compliance with one or more tenets mandated by the IAST such as (a) homogeneous distribution of adsorbates within the pore landscape, (b) no preferential location of guest species, and (c) absence of molecular clustering due to say hydrogen bonding. The focus of this article is on the reliability of the Real Adsorbed Solution Theory (RAST) models for quantitative estimation of adsorption equilibrium. Configurational-Bias Monte Carlo (CBMC) simulations are undertaken to determine the adsorption equilibrium for ternary CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub>, CO<sub>2</sub>/CH<sub>4</sub>/C<sub>3</sub>H<sub>8</sub>, CO<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>, and water/methanol/ethanol mixtures in NaX, LTA-4A, CHA, DDR, and MFI zeolites. Additionally, CBMC simulations of the constituent binary pairs are used to determine the Wilson or NRTL parameters, taking due account of the dependence of the activity coefficients on the spreading pressure. Use of the binary pair Wilson or NRTL parameters allows the estimation of ternary mixture adsorption equilibrium, that is tested against the CBMC data on component loadings. In all investigated guest/host combinations, the RAST provides a good estimation of ternary mixture adsorption equilibrium.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114260"},"PeriodicalIF":2.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.fluid.2024.114258
Gonçalo M.C. Silva, José Santos Pereira, Milton Ponte, Tiago M. Eusébio, Diogo Machacaz, Pedro Morgado, Eduardo J.M. Filipe
New thermodynamic data are reported for aqueous solutions of highly fluorinated alcohols of different chain lengths. The liquid-liquid equilibrium (LLE) T-x diagram of the binary mixture (1H,1H-perfluoropropanol + water) was determined, as well as the LLE phase diagram of the ternary mixture (1H,1H-perfluoropropanol + 1-propanol + water) at 298.15 K and atmospheric pressure. The mutual solubilities of water with several linear perfluorinated alcohols (CF3(CF2)nCH2OH, n = 1–5) and the tertiary alcohol perfluoro-t-butanol ((CF3)3COH) were also measured at 298.15 K. Finally, volumetric properties such as the excess molar volumes and partial molal volumes at infinite dilution of the different fluorinated alcohols in water were also determined and discussed comparing with equivalent data from the literature for the corresponding hydrogenated alcohols.
报告了不同链长的高氟化醇水溶液的新热力学数据。确定了二元混合物(1H,1H-全氟丙醇 + 水)的液液平衡(LLE)T-x 图,以及三元混合物(1H,1H-全氟丙醇 + 1-丙醇 + 水)在 298.15 K 和大气压力下的液液平衡相图。最后,还测定了水与几种线性全氟醇(CF3(CF2)nCH2OH,n = 1-5)和全氟叔丁醇((CF3)3COH)在 298.15 K 下的互溶性。
{"title":"Phase equilibria and volumetric properties of mixtures of highly fluorinated alcohols and water","authors":"Gonçalo M.C. Silva, José Santos Pereira, Milton Ponte, Tiago M. Eusébio, Diogo Machacaz, Pedro Morgado, Eduardo J.M. Filipe","doi":"10.1016/j.fluid.2024.114258","DOIUrl":"10.1016/j.fluid.2024.114258","url":null,"abstract":"<div><div>New thermodynamic data are reported for aqueous solutions of highly fluorinated alcohols of different chain lengths. The liquid-liquid equilibrium (LLE) <em>T-x</em> diagram of the binary mixture (1H,1H-perfluoropropanol + water) was determined, as well as the LLE phase diagram of the ternary mixture (1H,1H-perfluoropropanol + 1-propanol + water) at 298.15 K and atmospheric pressure. The mutual solubilities of water with several linear perfluorinated alcohols (CF<sub>3</sub>(CF<sub>2</sub>)<sub>n</sub>CH<sub>2</sub>OH, <em>n</em> = 1–5) and the tertiary alcohol perfluoro-<em>t</em>-butanol ((CF<sub>3</sub>)<sub>3</sub>COH) were also measured at 298.15 K. Finally, volumetric properties such as the excess molar volumes and partial molal volumes at infinite dilution of the different fluorinated alcohols in water were also determined and discussed comparing with equivalent data from the literature for the corresponding hydrogenated alcohols.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114258"},"PeriodicalIF":2.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ionic liquids possess novel properties and can efficiently absorb harmful gases, potentially serving as a new type of absorbent. In this study, the binary system of ionic liquid N-octylpyridinium tetrafluoroborate [OPy][BF4] and sulfur dioxide (SO2) has been selected as the research object, and the structure and properties of the system have been studied by molecular dynamics simulation. The interaction between SO2 and ionic liquids is explored by using the radial distribution functions (RDFs), coordination numbers (CNs) and spatial distribution functions (SDFs). The results of microstructures show that due to the strong interaction with anions, SO2 is mostly orderly distributed around the anions of ionic liquids. However, the coordination ability of the polar region of the ionic liquid and SO2 is nearly equivalent to that of the non-polar region. At the same time, it is found that the addition of SO2 enhanced the order degree of the polar and the non-polar regions of ionic liquids, especially on non-polar regions. Through the discussion of the interaction between [OPy][BF4] and SO2, it can be concluded that the mechanism of SO2 absorption by [OPy][BF4] is the combined effect of anions and cations. This study aims to provide new insights for the potential applications of ionic liquids in industrial fields such as petroleum and flue gas desulfurization.
{"title":"Molecular dynamics simulation of the interaction between ionic liquid [OPy][BF4] and SO2","authors":"Guanglai Zhu , Siwen Zhou , Zhaopeng Ma , Jianqiang Xu","doi":"10.1016/j.fluid.2024.114257","DOIUrl":"10.1016/j.fluid.2024.114257","url":null,"abstract":"<div><div>Ionic liquids possess novel properties and can efficiently absorb harmful gases, potentially serving as a new type of absorbent. In this study, the binary system of ionic liquid N-octylpyridinium tetrafluoroborate [OPy][BF<sub>4</sub>] and sulfur dioxide (SO<sub>2</sub>) has been selected as the research object, and the structure and properties of the system have been studied by molecular dynamics simulation. The interaction between SO<sub>2</sub> and ionic liquids is explored by using the radial distribution functions (RDFs), coordination numbers (CNs) and spatial distribution functions (SDFs). The results of microstructures show that due to the strong interaction with anions, SO<sub>2</sub> is mostly orderly distributed around the anions of ionic liquids. However, the coordination ability of the polar region of the ionic liquid and SO<sub>2</sub> is nearly equivalent to that of the non-polar region. At the same time, it is found that the addition of SO<sub>2</sub> enhanced the order degree of the polar and the non-polar regions of ionic liquids, especially on non-polar regions. Through the discussion of the interaction between [OPy][BF<sub>4</sub>] and SO<sub>2</sub>, it can be concluded that the mechanism of SO<sub>2</sub> absorption by [OPy][BF<sub>4</sub>] is the combined effect of anions and cations. This study aims to provide new insights for the potential applications of ionic liquids in industrial fields such as petroleum and flue gas desulfurization.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114257"},"PeriodicalIF":2.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.fluid.2024.114250
Simon Müller , Thomas Nevolianis , Miquel Garcia-Ratés , Christoph Riplinger , Kai Leonhard , Irina Smirnova
In this study, we introduce openCOSMO-RS 24a, an improved version of the open-source COSMO-RS model parameterized using quantum chemical calculations from ORCA 6.0, leveraging a comprehensive dataset that includes solvation free energies, partition coefficients, and infinite dilution activity coefficients for various solutes and solvents mainly at 25 °C. This is the first version of the model also capable of predicting solvation free energies based on ORCA calculations. Additionally, we develop a Quantitative Structure-Property Relationships model to predict molar volumes of the solvents, an essential requirement for predicting solvation free energies and partition coefficients from structure alone. Our results show that openCOSMO-RS 24a achieves an average absolute deviation of 0.45 kcal mol1 for solvation free energies, 0.76 for the logarithm of the partition coefficients, and 0.51 for the logarithm of infinite dilution activity coefficients, demonstrating improvements over the previous openCOSMO-RS 22 parameterization and comparable results to COSMOtherm 24 BP-TZVP. The user interface was extended to be able to use it as solvation model directly from within ORCA 6.0 or from the command line to provide researchers with a robust tool for applications in chemical and materials science.
{"title":"Predicting solvation free energies for neutral molecules in any solvent with openCOSMO-RS","authors":"Simon Müller , Thomas Nevolianis , Miquel Garcia-Ratés , Christoph Riplinger , Kai Leonhard , Irina Smirnova","doi":"10.1016/j.fluid.2024.114250","DOIUrl":"10.1016/j.fluid.2024.114250","url":null,"abstract":"<div><div>In this study, we introduce openCOSMO-RS 24a, an improved version of the open-source COSMO-RS model parameterized using quantum chemical calculations from ORCA 6.0, leveraging a comprehensive dataset that includes solvation free energies, partition coefficients, and infinite dilution activity coefficients for various solutes and solvents mainly at 25 °C. This is the first version of the model also capable of predicting solvation free energies based on ORCA calculations. Additionally, we develop a Quantitative Structure-Property Relationships model to predict molar volumes of the solvents, an essential requirement for predicting solvation free energies and partition coefficients from structure alone. Our results show that openCOSMO-RS 24a achieves an average absolute deviation of 0.45 kcal mol<sup>1</sup> for solvation free energies, 0.76 for the logarithm of the partition coefficients, and 0.51 for the logarithm of infinite dilution activity coefficients, demonstrating improvements over the previous openCOSMO-RS 22 parameterization and comparable results to COSMOtherm 24 BP-TZVP. The user interface was extended to be able to use it as solvation model directly from within ORCA 6.0 or from the command line to provide researchers with a robust tool for applications in chemical and materials science.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114250"},"PeriodicalIF":2.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.fluid.2024.114244
Oleg V. Kashurin , Vladimir I. Deshchenya , Nikolay D. Kondratyuk
The shear viscosity of organic liquids is very important for industrial applications. This paper focuses on the blind prediction of concentration-viscosity dependencies for organic mixtures at 298.15 K and 1 bar using molecular dynamics methods. Two mixtures are considered: tributyrin+1-decanol and 1,2-butanediol+1-decanol. The interatomic interactions are described using the COMPASS force field, which is modified for the reproduction of pure compound viscosities. The Green–Kubo method is used to calculate the shear viscosities. Our approach provides accurate predictions for the viscosities of mixtures with a relative mean absolute error below 10%. This work is devoted to the participation in the 12th Industrial Fluid Properties Simulation Challenge.
有机液体的剪切粘度对工业应用非常重要。本文的重点是利用分子动力学方法,对 298.15 K 和 1 bar 下有机混合物的浓度-粘度依赖关系进行盲预测。本文考虑了两种混合物:三丁炔+1-癸醇和 1,2-丁二醇+1-癸醇。原子间的相互作用使用 COMPASS 力场进行描述,为再现纯化合物的粘度对其进行了修改。格林-久保法用于计算剪切粘度。我们的方法可以准确预测混合物的粘度,相对平均绝对误差低于 10%。这项工作是为了参加第 12 届工业流体特性模拟挑战赛。
{"title":"Predicting viscosity-concentration dependencies of binary organic mixtures using molecular dynamics methods","authors":"Oleg V. Kashurin , Vladimir I. Deshchenya , Nikolay D. Kondratyuk","doi":"10.1016/j.fluid.2024.114244","DOIUrl":"10.1016/j.fluid.2024.114244","url":null,"abstract":"<div><div>The shear viscosity of organic liquids is very important for industrial applications. This paper focuses on the blind prediction of concentration-viscosity dependencies for organic mixtures at 298.15 K and 1 bar using molecular dynamics methods. Two mixtures are considered: tributyrin+1-decanol and 1,2-butanediol+1-decanol. The interatomic interactions are described using the COMPASS force field, which is modified for the reproduction of pure compound viscosities. The Green–Kubo method is used to calculate the shear viscosities. Our approach provides accurate predictions for the viscosities of mixtures with a relative mean absolute error below 10%. This work is devoted to the participation in the 12th Industrial Fluid Properties Simulation Challenge.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114244"},"PeriodicalIF":2.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.fluid.2024.114256
Ying Zhou , Zhuo Chen , Nobuo Maeda , Huazhou Li
The effects of iodide salts and ion specificity on the thermodynamic inhibition of CH4 and CO2 hydrates have not been thoroughly investigated. In this study, we employ the isochoric pressure-search method to measure the dissociation temperature (272.48 – 286.54 K) and pressure (1.38 – 11.24 MPa) of CH4 and CO2 hydrates in iodide solutions with concentrations of 6.24 wt% and 12.48 wt%. The measured data are subsequently used to validate a thermodynamic model integrating the Pitzer model into the van der Waals-Platteeuw (vdW-P) model for predicting the dissociation pressure of gas hydrates. The model can accurately predict the dissociation conditions of CH4 and CO2 hydrates in iodide solutions. The experimental results reveal that the inhibition effect of iodide salts on CH4 and CO2 hydrates is enhanced with an increasing salt concentration. Additionally, the dissociation temperature suppression of CH4 and CO2 hydrates is correlated with water activities of different salt solutions to investigate the effect of ion specificity on the thermodynamic inhibition of these hydrates. Our analysis demonstrates that ion specificity exists in the thermodynamic inhibition of CO2 hydrate but does not apply to CH4 hydrate. In addition, anions play a major role in the thermodynamic inhibition of CO2 hydrate.
碘盐和离子特异性对 CH4 和 CO2 水合物热力学抑制作用的影响尚未得到深入研究。在本研究中,我们采用等时压力搜索法测量了浓度为 6.24 wt% 和 12.48 wt% 的碘化物溶液中 CH4 和 CO2 水合物的解离温度(272.48 - 286.54 K)和压力(1.38 - 11.24 MPa)。测量数据随后被用于验证一个热力学模型,该模型将皮策模型集成到范德瓦耳斯-普拉蒂奥乌(vdW-P)模型中,用于预测气体水合物的解离压力。该模型可以准确预测 CH4 和 CO2 水合物在碘化物溶液中的解离条件。实验结果表明,碘盐对 CH4 和 CO2 水合物的抑制作用随盐浓度的增加而增强。此外,CH4 和 CO2 水合物的解离温度抑制与不同盐溶液的水活度相关,以研究离子特异性对这些水合物热力学抑制作用的影响。我们的分析表明,离子特异性存在于 CO2 水合物的热力学抑制中,但不适用于 CH4 水合物。此外,阴离子在二氧化碳水合物的热力学抑制作用中起主要作用。
{"title":"Effect of Ion Specificity on Thermodynamic Inhibition of CH4 and CO2 Hydrates: An Experimental and Modeling Study","authors":"Ying Zhou , Zhuo Chen , Nobuo Maeda , Huazhou Li","doi":"10.1016/j.fluid.2024.114256","DOIUrl":"10.1016/j.fluid.2024.114256","url":null,"abstract":"<div><div>The effects of iodide salts and ion specificity on the thermodynamic inhibition of CH<sub>4</sub> and CO<sub>2</sub> hydrates have not been thoroughly investigated. In this study, we employ the isochoric pressure-search method to measure the dissociation temperature (272.48 – 286.54 K) and pressure (1.38 – 11.24 MPa) of CH<sub>4</sub> and CO<sub>2</sub> hydrates in iodide solutions with concentrations of 6.24 wt% and 12.48 wt%. The measured data are subsequently used to validate a thermodynamic model integrating the Pitzer model into the van der Waals-Platteeuw (vdW-P) model for predicting the dissociation pressure of gas hydrates. The model can accurately predict the dissociation conditions of CH<sub>4</sub> and CO<sub>2</sub> hydrates in iodide solutions. The experimental results reveal that the inhibition effect of iodide salts on CH<sub>4</sub> and CO<sub>2</sub> hydrates is enhanced with an increasing salt concentration. Additionally, the dissociation temperature suppression of CH<sub>4</sub> and CO<sub>2</sub> hydrates is correlated with water activities of different salt solutions to investigate the effect of ion specificity on the thermodynamic inhibition of these hydrates. Our analysis demonstrates that ion specificity exists in the thermodynamic inhibition of CO<sub>2</sub> hydrate but does not apply to CH<sub>4</sub> hydrate. In addition, anions play a major role in the thermodynamic inhibition of CO<sub>2</sub> hydrate.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114256"},"PeriodicalIF":2.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}