首页 > 最新文献

Evolving Systems最新文献

英文 中文
Evolving fuzzy neural classifier that integrates uncertainty from human-expert feedback. 融合人类专家反馈不确定性的进化模糊神经分类器。
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-01 DOI: 10.1007/s12530-022-09455-z
Paulo Vitor de Campos Souza, Edwin Lughofer

Evolving fuzzy neural networks are models capable of solving complex problems in a wide variety of contexts. In general, the quality of the data evaluated by a model has a direct impact on the quality of the results. Some procedures can generate uncertainty during data collection, which can be identified by experts to choose more suitable forms of model training. This paper proposes the integration of expert input on labeling uncertainty into evolving fuzzy neural classifiers (EFNC) in an approach called EFNC-U. Uncertainty is considered in class label input provided by experts, who may not be entirely confident in their labeling or who may have limited experience with the application scenario for which the data is processed. Further, we aimed to create highly interpretable fuzzy classification rules to gain a better understanding of the process and thus to enable the user to elicit new knowledge from the model. To prove our technique, we performed binary pattern classification tests within two application scenarios, cyber invasion and fraud detection in auctions. By explicitly considering class label uncertainty in the update process of the EFNC-U, improved accuracy trend lines were achieved compared to fully (and blindly) updating the classifiers with uncertain data. Integration of (simulated) labeling uncertainty smaller than 20% led to similar accuracy trends as using the original streams (unaffected by uncertainty). This demonstrates the robustness of our approach up to this uncertainty level. Finally, interpretable rules were elicited for a particular application (auction fraud identification) with reduced (and thus readable) antecedent lengths and with certainty values in the consequent class labels. Additionally, an average expected uncertainty of the rules were elicited based on the uncertainty levels in those samples which formed the corresponding rules.

进化模糊神经网络是一种能够在各种情况下解决复杂问题的模型。一般来说,模型评估的数据质量直接影响结果的质量。有些程序在数据收集过程中会产生不确定性,专家可以识别这些不确定性,从而选择更合适的模型训练形式。本文提出了一种称为EFNC- u的方法,将标记不确定性的专家输入集成到进化模糊神经分类器(EFNC)中。专家提供的类标签输入考虑了不确定性,他们可能对自己的标签不完全有信心,或者对数据处理的应用场景经验有限。此外,我们的目标是创建高度可解释的模糊分类规则,以更好地理解该过程,从而使用户能够从模型中获得新的知识。为了证明我们的技术,我们在网络入侵和拍卖欺诈检测两种应用场景下进行了二元模式分类测试。通过在EFNC-U的更新过程中明确考虑类标签的不确定性,与完全(和盲目)更新具有不确定数据的分类器相比,获得了更高的准确率趋势线。(模拟的)标签不确定性小于20%的集成导致与使用原始流(不受不确定性影响)相似的准确性趋势。这证明了我们的方法在这种不确定性水平上的稳健性。最后,为特定应用(拍卖欺诈识别)引出了可解释的规则,这些规则具有减少的(因此可读的)前置长度和随后类标签中的确定性值。此外,根据形成相应规则的样本的不确定性水平,得出规则的平均期望不确定性。
{"title":"Evolving fuzzy neural classifier that integrates uncertainty from human-expert feedback.","authors":"Paulo Vitor de Campos Souza,&nbsp;Edwin Lughofer","doi":"10.1007/s12530-022-09455-z","DOIUrl":"https://doi.org/10.1007/s12530-022-09455-z","url":null,"abstract":"<p><p>Evolving fuzzy neural networks are models capable of solving complex problems in a wide variety of contexts. In general, the quality of the data evaluated by a model has a direct impact on the quality of the results. Some procedures can generate uncertainty during data collection, which can be identified by experts to choose more suitable forms of model training. This paper proposes the integration of expert input on labeling uncertainty into evolving fuzzy neural classifiers (EFNC) in an approach called <i>EFNC-U</i>. Uncertainty is considered in class label input provided by experts, who may not be entirely confident in their labeling or who may have limited experience with the application scenario for which the data is processed. Further, we aimed to create highly interpretable fuzzy classification rules to gain a better understanding of the process and thus to enable the user to elicit new knowledge from the model. To prove our technique, we performed binary pattern classification tests within two application scenarios, cyber invasion and fraud detection in auctions. By explicitly considering class label uncertainty in the update process of the EFNC-U, improved accuracy trend lines were achieved compared to fully (and blindly) updating the classifiers with uncertain data. Integration of (simulated) labeling uncertainty smaller than 20% led to similar accuracy trends as using the original streams (unaffected by uncertainty). This demonstrates the robustness of our approach up to this uncertainty level. Finally, interpretable rules were elicited for a particular application (auction fraud identification) with reduced (and thus readable) antecedent lengths and with certainty values in the consequent class labels. Additionally, an average expected uncertainty of the rules were elicited based on the uncertainty levels in those samples which formed the corresponding rules.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"14 2","pages":"319-341"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9597002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Quick continual kernel learning on bounded memory space based on balancing between adaptation and forgetting 基于适应与遗忘平衡的有限记忆空间快速连续核学习
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-12-30 DOI: 10.1007/s12530-022-09476-8
K. Yamauchi
{"title":"Quick continual kernel learning on bounded memory space based on balancing between adaptation and forgetting","authors":"K. Yamauchi","doi":"10.1007/s12530-022-09476-8","DOIUrl":"https://doi.org/10.1007/s12530-022-09476-8","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"16 1","pages":"437-460"},"PeriodicalIF":3.2,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73473438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RGB-D indoor semantic segmentation network based on wavelet transform 基于小波变换的RGB-D室内语义分割网络
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-12-19 DOI: 10.1007/s12530-022-09479-5
Runze Fan, Yuhong Liu, Shiyi Jiang, R. Zhang
{"title":"RGB-D indoor semantic segmentation network based on wavelet transform","authors":"Runze Fan, Yuhong Liu, Shiyi Jiang, R. Zhang","doi":"10.1007/s12530-022-09479-5","DOIUrl":"https://doi.org/10.1007/s12530-022-09479-5","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"295 1","pages":"981 - 991"},"PeriodicalIF":3.2,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77119221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A fuzzy connective score fusion technique for 2D and 3D palmprint authentication system 二维和三维掌纹认证系统的模糊关联评分融合技术
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-12-18 DOI: 10.1007/s12530-022-09477-7
A. Attia, Rabah Hammouche, Samir Akhrouf, Z. Akhtar
{"title":"A fuzzy connective score fusion technique for 2D and 3D palmprint authentication system","authors":"A. Attia, Rabah Hammouche, Samir Akhrouf, Z. Akhtar","doi":"10.1007/s12530-022-09477-7","DOIUrl":"https://doi.org/10.1007/s12530-022-09477-7","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"12 1","pages":"891 - 901"},"PeriodicalIF":3.2,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87643801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A finger vein feature extraction network fusing global/local features and its lightweight network 一种融合全局/局部特征的手指静脉特征提取网络及其轻量级网络
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-11-21 DOI: 10.1007/s12530-022-09475-9
Wengui Xu, Lei Shen, Huaxia Wang, Yudong Yao
{"title":"A finger vein feature extraction network fusing global/local features and its lightweight network","authors":"Wengui Xu, Lei Shen, Huaxia Wang, Yudong Yao","doi":"10.1007/s12530-022-09475-9","DOIUrl":"https://doi.org/10.1007/s12530-022-09475-9","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"12 1","pages":"873 - 889"},"PeriodicalIF":3.2,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78100972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multichannel KHMF for speech separation with enthalpy based DOA and score based CNN (SCNN) 基于焓DOA和分数CNN (SCNN)的多通道KHMF语音分离
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-11-16 DOI: 10.1007/s12530-022-09473-x
Y. V. Koteswararao, C. R. Rao
{"title":"Multichannel KHMF for speech separation with enthalpy based DOA and score based CNN (SCNN)","authors":"Y. V. Koteswararao, C. R. Rao","doi":"10.1007/s12530-022-09473-x","DOIUrl":"https://doi.org/10.1007/s12530-022-09473-x","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"6 1","pages":"501-518"},"PeriodicalIF":3.2,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80162071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEMD-IoT: a deep ensemble model for IoT malware detection using CNNs and network traffic DEMD-IoT:使用cnn和网络流量进行物联网恶意软件检测的深度集成模型
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-10-11 DOI: 10.1007/s12530-022-09471-z
Mehrnoosh Nobakht, R. Javidan, A. Pourebrahimi
{"title":"DEMD-IoT: a deep ensemble model for IoT malware detection using CNNs and network traffic","authors":"Mehrnoosh Nobakht, R. Javidan, A. Pourebrahimi","doi":"10.1007/s12530-022-09471-z","DOIUrl":"https://doi.org/10.1007/s12530-022-09471-z","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"1 1","pages":"461-477"},"PeriodicalIF":3.2,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88606753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Prim based link quality and thermal aware adaptive routing protocol for IoMT using SigFox network in WBAN 基于Prim的WBAN SigFox网络IoMT链路质量和热感知自适应路由协议
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-10-11 DOI: 10.1007/s12530-022-09451-3
Padma Vijetha Dev Bakkaiahgari, K. Prasad
{"title":"Prim based link quality and thermal aware adaptive routing protocol for IoMT using SigFox network in WBAN","authors":"Padma Vijetha Dev Bakkaiahgari, K. Prasad","doi":"10.1007/s12530-022-09451-3","DOIUrl":"https://doi.org/10.1007/s12530-022-09451-3","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"27 1","pages":"533-544"},"PeriodicalIF":3.2,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83262558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An augmented reality PQRST based method to improve self-learning skills for preschool autistic children 基于增强现实PQRST的学龄前自闭症儿童自我学习能力提高方法
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-10-06 DOI: 10.1007/s12530-022-09472-y
Adel Sulaiman, Hameedur Rahman, Numan Ali, A. Shaikh, Muhammad Akram, W. H. Lim
{"title":"An augmented reality PQRST based method to improve self-learning skills for preschool autistic children","authors":"Adel Sulaiman, Hameedur Rahman, Numan Ali, A. Shaikh, Muhammad Akram, W. H. Lim","doi":"10.1007/s12530-022-09472-y","DOIUrl":"https://doi.org/10.1007/s12530-022-09472-y","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"34 5 1","pages":"859 - 872"},"PeriodicalIF":3.2,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77710400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Multi-class classification of Alzheimer’s disease through distinct neuroimaging computational approaches using Florbetapir PET scans 使用Florbetapir PET扫描通过不同的神经成像计算方法对阿尔茨海默病进行多类分类
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-10-02 DOI: 10.1007/s12530-022-09467-9
Nitika Goenka, Shamik Tiwari
{"title":"Multi-class classification of Alzheimer’s disease through distinct neuroimaging computational approaches using Florbetapir PET scans","authors":"Nitika Goenka, Shamik Tiwari","doi":"10.1007/s12530-022-09467-9","DOIUrl":"https://doi.org/10.1007/s12530-022-09467-9","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"3 1","pages":"801 - 824"},"PeriodicalIF":3.2,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72570785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Evolving Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1