首页 > 最新文献

FEMS microbiology reviews最新文献

英文 中文
Host-bacteria interactions: ecological and evolutionary insights from ancient, professional endosymbionts. 宿主与细菌之间的相互作用:从古老的专业内共生菌中获得的生态学和进化论启示。
IF 10.1 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-06-20 DOI: 10.1093/femsre/fuae021
Zélia Bontemps, Kiran Paranjape, Lionel Guy

Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes. Here, we review these effects on one of the most ancient and diverse endosymbiotic groups, formed by-among others-Legionellales, Francisellaceae, and Piscirickettsiaceae. This group is referred to as Deep-branching Intracellular Gammaproteobacteria (DIG), whose last common ancestor presumably emerged about 2 Ga ago. We show that DIGs are globally distributed, but generally at very low abundance, and are mainly identified in aquatic biomes. Most DIGs harbour a type IVB secretion system, critical for host-adaptation, but its structure and composition vary. Finally, we review the different types of microbial interactions that can occur in diverse environments, with direct or indirect effects on DIG populations. The increased use of omics technologies on environmental samples will allow a better understanding of host-bacterial interactions and help unravel the definition of DIGs as a group from an ecological, molecular, and evolutionary perspective.

真核生物宿主与其细菌共生体之间的相互作用推动着从调节生态系统到复杂分子机器和过程的进化等关键的生态和进化过程。随着时间的推移,内共生菌通常会进化出更小的基因组,它们与宿主的关系也趋于稳定。然而,宿主与细菌的关系可能会受到环境变化的严重影响。在这里,我们回顾了这些影响对一个最古老、最多样化的内共生菌群的影响,该菌群由军团菌科、弗朗西斯菌科和鱼腥草菌科等组成。该菌群被称为深分支胞内伽马蛋白菌(DIG),其最后的共同祖先可能出现在大约 20 亿年前。我们的研究表明,DIG 在全球都有分布,但一般含量很低,主要在水生生物群落中发现。大多数 DIGs 都有一个 IVB 型分泌系统,这对宿主适应至关重要,但其结构和组成各不相同。最后,我们回顾了在不同环境中可能发生的不同类型的微生物相互作用,它们对 DIG 种群有着直接或间接的影响。在环境样本中越来越多地使用 omics 技术将有助于更好地了解宿主与细菌之间的相互作用,并有助于从生态、分子和进化的角度揭示 DIG 作为一个群体的定义。
{"title":"Host-bacteria interactions: ecological and evolutionary insights from ancient, professional endosymbionts.","authors":"Zélia Bontemps, Kiran Paranjape, Lionel Guy","doi":"10.1093/femsre/fuae021","DOIUrl":"10.1093/femsre/fuae021","url":null,"abstract":"<p><p>Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes. Here, we review these effects on one of the most ancient and diverse endosymbiotic groups, formed by-among others-Legionellales, Francisellaceae, and Piscirickettsiaceae. This group is referred to as Deep-branching Intracellular Gammaproteobacteria (DIG), whose last common ancestor presumably emerged about 2 Ga ago. We show that DIGs are globally distributed, but generally at very low abundance, and are mainly identified in aquatic biomes. Most DIGs harbour a type IVB secretion system, critical for host-adaptation, but its structure and composition vary. Finally, we review the different types of microbial interactions that can occur in diverse environments, with direct or indirect effects on DIG populations. The increased use of omics technologies on environmental samples will allow a better understanding of host-bacterial interactions and help unravel the definition of DIGs as a group from an ecological, molecular, and evolutionary perspective.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The vast landscape of carbohydrate fermentation in prokaryotes. 原核生物碳水化合物发酵的广阔前景
IF 10.1 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-06-20 DOI: 10.1093/femsre/fuae016
Timothy J Hackmann

Fermentation is a type of metabolism carried out by organisms in environments without oxygen. Despite being studied for over 185 years, the diversity and complexity of this metabolism are just now becoming clear. Our review starts with the definition of fermentation, which has evolved over the years and which we help further refine. We then examine the range of organisms that carry out fermentation and their traits. Over one-fourth of all prokaryotes are fermentative, use more than 40 substrates, and release more than 50 metabolic end products. These insights come from studies analyzing records of thousands of organisms. Next, our review examines the complexity of fermentation at the biochemical level. We map out pathways of glucose fermentation in unprecedented detail, covering over 120 biochemical reactions. We also review recent studies coupling genomics and enzymology to reveal new pathways and enzymes. Our review concludes with practical applications for agriculture, human health, and industry. All these areas depend on fermentation and could be improved through manipulating fermentative microbes and enzymes. We discuss potential approaches for manipulation, including genetic engineering, electrofermentation, probiotics, and enzyme inhibitors. We hope our review underscores the importance of fermentation research and stimulates the next 185 years of study.

发酵是生物在无氧环境中进行的一种新陈代谢。尽管对发酵的研究已经超过 185 年,但这种新陈代谢的多样性和复杂性现在才逐渐清晰起来。我们的综述从发酵的定义开始,该定义经过多年演变,我们将帮助进一步完善。然后,我们研究了进行发酵的生物种类及其特征。超过 1/4 的原核生物都具有发酵功能,使用 40 多种底物,并释放出 50 多种代谢终产物。这些见解来自对数千种生物记录的分析研究。接下来,我们将从生化层面探讨发酵的复杂性。我们以前所未有的细节描绘了葡萄糖发酵的途径,涵盖 120 多个生化反应。我们还回顾了最近将基因组学和酶学结合起来以揭示新途径和新酶的研究。最后,我们介绍了葡萄糖在农业、人类健康和工业中的实际应用。所有这些领域都依赖于发酵,可以通过操纵发酵微生物和酶来加以改进。我们讨论了潜在的操作方法,包括基因工程、电发酵、益生菌和酶抑制剂。我们希望我们的综述能强调发酵研究的重要性,并激励下一个 185 年的研究。
{"title":"The vast landscape of carbohydrate fermentation in prokaryotes.","authors":"Timothy J Hackmann","doi":"10.1093/femsre/fuae016","DOIUrl":"10.1093/femsre/fuae016","url":null,"abstract":"<p><p>Fermentation is a type of metabolism carried out by organisms in environments without oxygen. Despite being studied for over 185 years, the diversity and complexity of this metabolism are just now becoming clear. Our review starts with the definition of fermentation, which has evolved over the years and which we help further refine. We then examine the range of organisms that carry out fermentation and their traits. Over one-fourth of all prokaryotes are fermentative, use more than 40 substrates, and release more than 50 metabolic end products. These insights come from studies analyzing records of thousands of organisms. Next, our review examines the complexity of fermentation at the biochemical level. We map out pathways of glucose fermentation in unprecedented detail, covering over 120 biochemical reactions. We also review recent studies coupling genomics and enzymology to reveal new pathways and enzymes. Our review concludes with practical applications for agriculture, human health, and industry. All these areas depend on fermentation and could be improved through manipulating fermentative microbes and enzymes. We discuss potential approaches for manipulation, including genetic engineering, electrofermentation, probiotics, and enzyme inhibitors. We hope our review underscores the importance of fermentation research and stimulates the next 185 years of study.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187502/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Escherichia coli DNA replication: the old model organism still holds many surprises. 大肠杆菌的 DNA 复制:这一古老的模式生物仍有许多惊喜。
IF 10.1 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-06-20 DOI: 10.1093/femsre/fuae018
Krystian Łazowski, Roger Woodgate, Iwona J Fijalkowska

Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.

对大肠杆菌 DNA 复制的研究为许多突破性发现奠定了基础,这些发现对我们了解人类分子生物学具有重要意义,因为其中涉及的关键分子过程高度保持不变。时至今日,大肠杆菌仍备受关注,一方面是因为它是一种重要的模式生物,另一方面也是因为了解影响复制保真度的因素可能对抗生素耐药性的产生具有重要意义。重要的是,高分辨率单分子和活细胞成像、全基因组测序以及低温电子显微镜技术在过去十年中得到了广泛应用,这使我们能够重新审视关于复制体的某些假设,并对它们的工作原理有了非常详细的了解。对于复制体的许多部分,我们已经重建了其逐步运行的机制,并发现了一些新的参与者。本综述总结了这一领域的最新进展,重点关注:(a) 复制体的结构及其各组成部分的作用机制;(b) 复制体交易和修复的组织;(c) 复制体的动态;(d) 影响 DNA 合成的碱基和糖保真度的因素。
{"title":"Escherichia coli DNA replication: the old model organism still holds many surprises.","authors":"Krystian Łazowski, Roger Woodgate, Iwona J Fijalkowska","doi":"10.1093/femsre/fuae018","DOIUrl":"10.1093/femsre/fuae018","url":null,"abstract":"<p><p>Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determinants of bacterial survival and proliferation in blood. 细菌在血液中存活和增殖的决定因素。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-05-08 DOI: 10.1093/femsre/fuae013
Pierre Lê-Bury, Hebert Echenique-Rivera, Javier Pizarro-Cerdá, Olivier Dussurget

Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.

血流感染是一个重大的公共卫生问题,在全球造成高死亡率和高医疗成本。菌血症可引发致命的败血症,其预防、诊断和管理已被世界卫生组织视为全球健康的优先事项。此外,感染控制正日益受到抗菌素耐药性的威胁,这也是 "一个健康 "应对框架下全球行动计划的重点。要制定有效的预防和治疗措施,就必须深入了解感染过程。血流感染的发病机制是一个动态过程,由细菌入侵血管系统引起,细菌精细调节其代谢途径和毒力因子,以克服血液免疫防御系统并进行增殖。在这篇综述中,我们将重点介绍我们目前对细菌在血液中存活和增殖的决定因素的理解,并讨论它们与血液分子和细胞成分的相互作用。
{"title":"Determinants of bacterial survival and proliferation in blood.","authors":"Pierre Lê-Bury, Hebert Echenique-Rivera, Javier Pizarro-Cerdá, Olivier Dussurget","doi":"10.1093/femsre/fuae013","DOIUrl":"10.1093/femsre/fuae013","url":null,"abstract":"<p><p>Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift. 对抗原漂移至关重要的 H5 和 H7 禽流感病毒 HA 和 NA 表位。
IF 10.1 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-05-08 DOI: 10.1093/femsre/fuae014
Jasmina M Luczo, Erica Spackman

Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.

禽流感病毒通过抗原进化来逃避宿主免疫。两种甲型流感病毒表面糖蛋白--血凝素和神经氨酸酶--是宿主免疫的主要目标,并在宿主原有体液和细胞免疫反应的作用下发生抗原漂移。特定位点已被确定为 H5 和 H7 等主要亚型的重要表位,这些亚型具有泛滥和大流行的潜能,对动物和公共卫生具有重要意义。血凝素是免疫优势免疫原,已对其进行了广泛研究,并对抗原反应性进行了密切监测,以确保候选疫苗病毒具有保护性。最近,神经氨酸酶作为一种保护性免疫原受到越来越多的关注。与病毒表面的血凝素相比,神经氨酸酶的表达量较低,但却能引起强大的抗体反应。本综述旨在汇编有关 H5 和 H7 高致病性禽流感病毒血凝素和神经氨酸酶表位及免疫逃逸突变体的现有信息。了解免疫逃逸突变体的进化和表位的位置对于确定疫苗株和开发可用于人类和动物的广谱反应疫苗至关重要。
{"title":"Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift.","authors":"Jasmina M Luczo, Erica Spackman","doi":"10.1093/femsre/fuae014","DOIUrl":"10.1093/femsre/fuae014","url":null,"abstract":"<p><p>Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diving into drug-screening: Zebrafish Embryos as an in vivo Platform for Antimicrobial Drug Discovery and Assessment 潜入药物筛选:斑马鱼胚胎作为抗菌药物发现和评估的体内平台
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-04-30 DOI: 10.1093/femsre/fuae011
Eva Habjan, Gina K Schouten, Alexander Speer, Peter van Ulsen, Wilbert Bitter
The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid pre-clinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.
耐多药细菌的增多凸显了对创新疗法的需求,然而,尽管抗菌药物的发现层出不穷,新药的推出却停滞不前。一个主要障碍是,有前景的体外数据与动物模型体内疗效之间的相关性很差,而动物模型体内疗效对临床开发至关重要。现有动物模型的费用和复杂性阻碍了早期体内试验。因此,迫切需要具有高转化价值的经济、快速的临床前模型。为了克服这些挑战,斑马鱼胚胎已成为一种极具吸引力的传染病研究模型,它具有符合道德规范、开发迅速、易于维护和遗传可操作性强等优点。斑马鱼胚胎感染模型涉及病原体和潜在抗生素化合物的显微注射或浸泡,为早期药物筛选提供了一种前景广阔的解决方案。它为在整个生物体内评估化合物的药效、毒性和作用机制提供了一种经济、快速的方法。本综述讨论了这一模型的实验设计,以及它的优势和挑战。此外,它还重点介绍了最近在斑马鱼胚胎感染模型中发现的化合物,并讨论了该模型在预测化合物临床潜力方面的相关性。
{"title":"Diving into drug-screening: Zebrafish Embryos as an in vivo Platform for Antimicrobial Drug Discovery and Assessment","authors":"Eva Habjan, Gina K Schouten, Alexander Speer, Peter van Ulsen, Wilbert Bitter","doi":"10.1093/femsre/fuae011","DOIUrl":"https://doi.org/10.1093/femsre/fuae011","url":null,"abstract":"The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid pre-clinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"187 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An opportunistic pathogen under stress: how group B streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive 压力下的机会性病原体:B 组链球菌如何应对细胞毒性反应物和金属离子失衡条件以求生存
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-04-27 DOI: 10.1093/femsre/fuae009
Kelvin G K Goh, Devika Desai, Ruby Thapa, Darren Prince, Dhruba Acharya, Matthew J Sullivan, Glen C Ulett
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarises knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
B 群链球菌(GBS,又称无乳链球菌)是一种机会性细菌病原体,可导致新生儿、健康或免疫力低下的成年人发生败血症、脑膜炎、肺炎以及皮肤和软组织感染。由于具有大量的毒力机制,GBS 非常适合在人体内生存,这些机制提供了支持细菌在动态宿主环境中生存的反应。这些机制和反应包括抵御因暴露于过量金属离子而导致的细胞死亡(金属离子可导致误杀和细胞毒性),以及抵御活性氧和氮物种等分子的策略,这些分子是宿主先天防御的一部分。活性分子产生的细胞毒性可能源于对蛋白质、DNA 和膜脂的破坏,有可能导致细菌细胞在吞噬细胞内或宿主体内的细胞外空间死亡。破译 GBS 如何应对宿主体内细胞毒性反应分子的压力,将有助于开发新型治疗和预防策略,控制 GBS 疾病的负担。本综述总结了人类携带 GBS 的知识,以及细菌用于规避宿主免疫防御重要因素(氧化应激、亚硝酸应激和金属离子中毒/失活应激)杀灭的机制。
{"title":"An opportunistic pathogen under stress: how group B streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive","authors":"Kelvin G K Goh, Devika Desai, Ruby Thapa, Darren Prince, Dhruba Acharya, Matthew J Sullivan, Glen C Ulett","doi":"10.1093/femsre/fuae009","DOIUrl":"https://doi.org/10.1093/femsre/fuae009","url":null,"abstract":"Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarises knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"38 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Louis Pasteur, a child of the Jura, a man for the world 路易-巴斯德,一个汝拉的孩子,一个为世界而生的人
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-04-25 DOI: 10.1093/femsre/fuae010
Daniel Raichvarg, Tomasz Jagielski
How did Louis Pasteur, born in a small town in the Jura—Dole, still little known to the world today, become a man of global recognition and fame? The answer to this question is guided by two pivotal considerations. First is Pasteur's relationship to the representation of reality. This relationship was seeded and steadily developed since his juvenile years through practicing different forms of artistic expression, the most famous of which were subtle pastels portraying Pasteur's parents and neighbors. This genuine attraction towards art gradually became «scientificized» at the same time, when new means of reproducing the reality were invented, such as photography. The second consideration, critical to understand the phenomenon of Pasteur's celebrity, is a strong linkage of his research with nature-based agricultural production. Here again, deeply rooted in his youth and home environment, permeated with the taste of wine and the smell of tanned leather, Pasteur's interests necessitated the processes of communication, not only at the scientific level, but also on a daily life basis, with numerous «social actors» at play (ferments, silkworms etc.). Throughout his work, Pasteur had to provide himself with the means to set up these interdisciplinarity and communication. The final result was the Pasteur Institute, or rather the Pasteur Institutes and the global Pasteur network.
路易-巴斯德出生于汝拉-多勒的一个小镇,至今仍鲜为人知,他是如何成为一个享誉全球的人物的呢?这个问题的答案取决于两个关键因素。首先是巴斯德与现实表象的关系。这种关系从他少年时代就开始了,并通过不同形式的艺术表现实践稳步发展,其中最著名的是描绘巴斯德父母和邻居的细腻粉彩画。与此同时,随着摄影等再现现实的新手段的发明,这种对艺术的真正吸引力逐渐 "科学化"。第二点对于理解巴斯德的名人现象至关重要,那就是他的研究与以自然为基础的农业生产密切相关。同样,巴斯德的兴趣深深植根于他的青年时代和家庭环境,渗透着葡萄酒的味道和鞣革的气味,他的兴趣需要交流的过程,不仅在科学层面,而且在日常生活中,也有许多 "社会角色 "在发挥作用(发酵、养蚕等)。在巴斯德的整个工作过程中,他必须为自己提供建立这些跨学科和交流的手段。最终的成果就是巴斯德研究所,或者说是巴斯德研究所和全球巴斯德网络。
{"title":"Louis Pasteur, a child of the Jura, a man for the world","authors":"Daniel Raichvarg, Tomasz Jagielski","doi":"10.1093/femsre/fuae010","DOIUrl":"https://doi.org/10.1093/femsre/fuae010","url":null,"abstract":"How did Louis Pasteur, born in a small town in the Jura—Dole, still little known to the world today, become a man of global recognition and fame? The answer to this question is guided by two pivotal considerations. First is Pasteur's relationship to the representation of reality. This relationship was seeded and steadily developed since his juvenile years through practicing different forms of artistic expression, the most famous of which were subtle pastels portraying Pasteur's parents and neighbors. This genuine attraction towards art gradually became «scientificized» at the same time, when new means of reproducing the reality were invented, such as photography. The second consideration, critical to understand the phenomenon of Pasteur's celebrity, is a strong linkage of his research with nature-based agricultural production. Here again, deeply rooted in his youth and home environment, permeated with the taste of wine and the smell of tanned leather, Pasteur's interests necessitated the processes of communication, not only at the scientific level, but also on a daily life basis, with numerous «social actors» at play (ferments, silkworms etc.). Throughout his work, Pasteur had to provide himself with the means to set up these interdisciplinarity and communication. The final result was the Pasteur Institute, or rather the Pasteur Institutes and the global Pasteur network.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"32 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. 细菌性肺炎的体外模型:对广泛应用的复杂细胞培养模型的比较分析。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae007
Laure Mahieu, Laurence Van Moll, Linda De Vooght, Peter Delputte, Paul Cos

Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.

细菌性肺炎在各年龄段和各种风险特征的下呼吸道感染疾病负担和死亡率中占很大比例。因此,细菌性肺炎的实验室建模对于阐明复杂的宿主-病原体相互作用以及确定药物疗效和毒性仍然非常重要。体外细胞培养可以在严格控制的环境中建立高通量的特定疾病模型。特别是先进的人类细胞培养模型,可以弥补经典二维细胞模型和动物模型之间的研究差距。本综述概述了研究细菌性肺炎感染的复杂细胞体外模型的发展现状,重点介绍了气液界面模型、球形模型、类器官模型和芯片肺模型。在广泛的比较性文献检索中,我们选择了六种临床高度相关的细菌(铜绿假单胞菌、肺炎双球菌、流感嗜血杆菌、结核杆菌、肺炎双球菌和金黄色葡萄球菌)。我们回顾了常用的细胞系,以及从细胞感染参数到检测读数等方法的趋势和差异。我们还强调了模型验证和数据透明度对指导研究领域建立更复杂感染模型的重要性。
{"title":"In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models.","authors":"Laure Mahieu, Laurence Van Moll, Linda De Vooght, Peter Delputte, Paul Cos","doi":"10.1093/femsre/fuae007","DOIUrl":"10.1093/femsre/fuae007","url":null,"abstract":"<p><p>Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life at the borderlands: microbiomes of interfaces critical to One Health. 边境地区的生命:对 "一体健康 "至关重要的界面微生物组。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae008
Simon R Law, Falko Mathes, Amy M Paten, Pamela A Alexandre, Roshan Regmi, Cameron Reid, Azadeh Safarchi, Shaktivesh Shaktivesh, Yanan Wang, Annaleise Wilson, Scott A Rice, Vadakattu V S R Gupta

Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.

微生物群是环境的基础组成部分,为粮食安全、碳固存、人类健康和生态系统的整体福祉提供重要服务。微生物群主要通过与其植物、动物和人类宿主以及土壤环境之间复杂的相互作用来发挥其作用。本综述旨在探讨微生物群-宿主关系的建立和功能的生态、进化和分子过程,特别是在对 "一体健康 "至关重要的界面上。"一体健康 "是一个跨学科框架,它认为人、动物、植物和环境的健康结果是紧密相连的。在 "一体健康 "的背景下,将详细讨论微生物组组合的核心原则,包括生物膜形成、微生物招募策略、微生物附着机制、群落演替以及这些过程对宿主功能和健康的影响。最后,本综述将介绍微生物学和微生物生态学方法的最新进展,这些方法可用于剖析微生物界面,尤其关注多组学、高级成像和建模方法。这些技术对于确定微生物组组装和功能的一般和特定原则、绘制不同时空尺度的微生物相互联系图以及建立预测框架至关重要,这些框架将指导有针对性的微生物组干预措施的开发,从而实现 "一体健康 "的结果。
{"title":"Life at the borderlands: microbiomes of interfaces critical to One Health.","authors":"Simon R Law, Falko Mathes, Amy M Paten, Pamela A Alexandre, Roshan Regmi, Cameron Reid, Azadeh Safarchi, Shaktivesh Shaktivesh, Yanan Wang, Annaleise Wilson, Scott A Rice, Vadakattu V S R Gupta","doi":"10.1093/femsre/fuae008","DOIUrl":"10.1093/femsre/fuae008","url":null,"abstract":"<p><p>Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10977922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FEMS microbiology reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1