The ever-growing repertoire of genomic techniques continues to expand our understanding of the true diversity and richness of prokaryotic genomes. Riboproteogenomics laid the foundation for dynamic studies of previously overlooked genomic elements. Most strikingly, bacterial genomes were revealed to harbor robust repertoires of small open reading frames (sORFs) encoding a diverse and broadly expressed range of small proteins, or sORF-encoded polypeptides (SEPs). In recent years, continuous efforts led to great improvements in the annotation and characterization of such proteins, yet many challenges remain to fully comprehend the pervasive nature of small proteins and their impact on bacterial biology. In this work, we review the recent developments in the dynamic field of bacterial genome reannotation, catalog the important biological roles carried out by small proteins and identify challenges obstructing the way to full understanding of these elusive proteins.
{"title":"Exposing the small protein load of bacterial life.","authors":"Laure Simoens, Igor Fijalkowski, Petra Van Damme","doi":"10.1093/femsre/fuad063","DOIUrl":"10.1093/femsre/fuad063","url":null,"abstract":"<p><p>The ever-growing repertoire of genomic techniques continues to expand our understanding of the true diversity and richness of prokaryotic genomes. Riboproteogenomics laid the foundation for dynamic studies of previously overlooked genomic elements. Most strikingly, bacterial genomes were revealed to harbor robust repertoires of small open reading frames (sORFs) encoding a diverse and broadly expressed range of small proteins, or sORF-encoded polypeptides (SEPs). In recent years, continuous efforts led to great improvements in the annotation and characterization of such proteins, yet many challenges remain to fully comprehend the pervasive nature of small proteins and their impact on bacterial biology. In this work, we review the recent developments in the dynamic field of bacterial genome reannotation, catalog the important biological roles carried out by small proteins and identify challenges obstructing the way to full understanding of these elusive proteins.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138444413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bdellovibrio bacteriovorus, an obligate predatory Gram-negative bacterium that proliferates inside and kills other Gram-negative bacteria, was discovered more than 60 years ago. However, we have only recently begun to understand the detailed cell biology of this proficient bacterial killer. Bdellovibrio bacteriovorus exhibits a peculiar life cycle and bimodal proliferation, and thus represents an attractive model for studying novel aspects of bacterial cell biology. The life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase and an intracellular reproductive phase. During the reproductive phase, B. bacteriovorus grows as an elongated cell and undergoes binary or nonbinary fission, depending on the prey size. In this review, we discuss: (1) how the chromosome structure of B. bacteriovorus is remodeled during its life cycle; (2) how its chromosome replication dynamics depends on the proliferation mode; (3) how the initiation of chromosome replication is controlled during the life cycle, and (4) how chromosome replication is spatiotemporally coordinated with the proliferation program.
{"title":"Chromosome structure and DNA replication dynamics during the life cycle of the predatory bacterium Bdellovibrio bacteriovorus.","authors":"Karolina Pląskowska, Jolanta Zakrzewska-Czerwińska","doi":"10.1093/femsre/fuad057","DOIUrl":"10.1093/femsre/fuad057","url":null,"abstract":"<p><p>Bdellovibrio bacteriovorus, an obligate predatory Gram-negative bacterium that proliferates inside and kills other Gram-negative bacteria, was discovered more than 60 years ago. However, we have only recently begun to understand the detailed cell biology of this proficient bacterial killer. Bdellovibrio bacteriovorus exhibits a peculiar life cycle and bimodal proliferation, and thus represents an attractive model for studying novel aspects of bacterial cell biology. The life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase and an intracellular reproductive phase. During the reproductive phase, B. bacteriovorus grows as an elongated cell and undergoes binary or nonbinary fission, depending on the prey size. In this review, we discuss: (1) how the chromosome structure of B. bacteriovorus is remodeled during its life cycle; (2) how its chromosome replication dynamics depends on the proliferation mode; (3) how the initiation of chromosome replication is controlled during the life cycle, and (4) how chromosome replication is spatiotemporally coordinated with the proliferation program.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41136318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clinical infection due to Candida species frequently involve growth in biofilm communities. Recalcitrance despite antifungal therapy leads to disease persistence associated with high morbidity and mortality. Candida possesses several tools allowing evasion of antifungal effects. Among these, protection of biofilm cells via encasement by the extracellular matrix is responsible for a majority drug resistance phenotype. The Candida matrix composition is complex and includes a mannan-glucan complex linked to antifungal drug sequestration. This mechanism of resistance is conserved across the Candida genus and impacts each of the available antifungal drug classes. The exosome pathway is responsible for delivery and assembly of much of the Candida extracellular matrix as functional vesicle protein and polysaccharide cargo. Investigations demonstrate the vesicle matrix delivery pathway is a useful fungal biofilm drug target. Further elucidation of the vesicle pathway, as well as understanding the roles of biofilm driven cargo may provide additional targets to aid the diagnosis, prevention, and treatment of Candida biofilms.
{"title":"Role of the extracellular matrix in Candida biofilm antifungal resistance.","authors":"Justin Massey, Robert Zarnowski, David Andes","doi":"10.1093/femsre/fuad059","DOIUrl":"10.1093/femsre/fuad059","url":null,"abstract":"<p><p>Clinical infection due to Candida species frequently involve growth in biofilm communities. Recalcitrance despite antifungal therapy leads to disease persistence associated with high morbidity and mortality. Candida possesses several tools allowing evasion of antifungal effects. Among these, protection of biofilm cells via encasement by the extracellular matrix is responsible for a majority drug resistance phenotype. The Candida matrix composition is complex and includes a mannan-glucan complex linked to antifungal drug sequestration. This mechanism of resistance is conserved across the Candida genus and impacts each of the available antifungal drug classes. The exosome pathway is responsible for delivery and assembly of much of the Candida extracellular matrix as functional vesicle protein and polysaccharide cargo. Investigations demonstrate the vesicle matrix delivery pathway is a useful fungal biofilm drug target. Further elucidation of the vesicle pathway, as well as understanding the roles of biofilm driven cargo may provide additional targets to aid the diagnosis, prevention, and treatment of Candida biofilms.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41195977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vic Norris, Clara Kayser, Georgi Muskhelishvili, Yoan Konto-Ghiorghi
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
如何适应不断变化的环境是细胞经常面临的一个基本问题。一种解决方案是,细胞将其成分组织成数量有限的空间延伸、功能相关的大分子集合体或超结构,然后将这些超结构不对称地分离到子细胞中。当某些超结构的分离仅与亲本 DNA 链中的一条有关,并且这种分离模式会持续到连续几代时,这种非对称分离就成为产生连贯表型多样性的一种特别有效的方法。原核生物中这种不对称分离的候选超结构包括那些含有核仁相关蛋白(NAP)和拓扑异构酶的超结构。另一种解决产生连贯表型多样性问题的方法是,沿着细菌染色体的复制原点至末端轴线,形成一种依赖于生长环境的超卷曲梯度。这种梯度受转录、NAPs 和拓扑异构酶的调节。在这里,我们主要关注大肠杆菌中的两种拓扑异构酶(TopoIV 和 DNA gyrase)、三种 NAP(H-NS、HU 和 IHF)以及单链结合蛋白 SSB。我们认为,依赖超螺旋梯度的拓扑异构酶活性和依赖链分离的拓扑异构酶活性的结合导致了子染色体超螺旋的显著差异,进而导致子细胞表型的显著差异。
{"title":"The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria.","authors":"Vic Norris, Clara Kayser, Georgi Muskhelishvili, Yoan Konto-Ghiorghi","doi":"10.1093/femsre/fuac049","DOIUrl":"10.1093/femsre/fuac049","url":null,"abstract":"<p><p>How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10411678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina L Wiesmann, Nicole R Wang, Yue Zhang, Zhexian Liu, Cara H Haney
Regardless of the outcome of symbiosis, whether it is pathogenic, mutualistic or commensal, bacteria must first colonize their hosts. Intriguingly, closely related bacteria that colonize diverse hosts with diverse outcomes of symbiosis have conserved host-association and virulence factors. This review describes commonalities in the process of becoming host associated amongst bacteria with diverse lifestyles. Whether a pathogen, commensal or mutualist, bacteria must sense the presence of and migrate towards a host, compete for space and nutrients with other microbes, evade the host immune system, and change their physiology to enable long-term host association. We primarily focus on well-studied taxa, such as Pseudomonas, that associate with diverse model plant and animal hosts, with far-ranging symbiotic outcomes. Given the importance of opportunistic pathogens and chronic infections in both human health and agriculture, understanding the mechanisms that facilitate symbiotic relationships between bacteria and their hosts will help inform the development of disease treatments for both humans, and the plants we eat.
{"title":"Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals.","authors":"Christina L Wiesmann, Nicole R Wang, Yue Zhang, Zhexian Liu, Cara H Haney","doi":"10.1093/femsre/fuac048","DOIUrl":"10.1093/femsre/fuac048","url":null,"abstract":"<p><p>Regardless of the outcome of symbiosis, whether it is pathogenic, mutualistic or commensal, bacteria must first colonize their hosts. Intriguingly, closely related bacteria that colonize diverse hosts with diverse outcomes of symbiosis have conserved host-association and virulence factors. This review describes commonalities in the process of becoming host associated amongst bacteria with diverse lifestyles. Whether a pathogen, commensal or mutualist, bacteria must sense the presence of and migrate towards a host, compete for space and nutrients with other microbes, evade the host immune system, and change their physiology to enable long-term host association. We primarily focus on well-studied taxa, such as Pseudomonas, that associate with diverse model plant and animal hosts, with far-ranging symbiotic outcomes. Given the importance of opportunistic pathogens and chronic infections in both human health and agriculture, understanding the mechanisms that facilitate symbiotic relationships between bacteria and their hosts will help inform the development of disease treatments for both humans, and the plants we eat.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10724260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mads Lichtenberg, Tom Coenye, Matthew R Parsek, Thomas Bjarnsholt, Tim Holm Jakobsen
In vitro biofilms are communities of microbes with unique features compared to individual cells. Biofilms are commonly characterized by physical traits like size, adhesion, and a matrix made of extracellular substances. They display distinct phenotypic features, such as metabolic activity and antibiotic tolerance. However, the relative importance of these traits depends on the environment and bacterial species. Various mechanisms enable biofilm-associated bacteria to withstand antibiotics, including physical barriers, physiological adaptations, and changes in gene expression. Gene expression profiles in biofilms differ from individual cells but, there is little consensus among studies and so far, a 'biofilm signature transcriptome' has not been recognized. Additionally, the spatial and temporal variability within biofilms varies greatly depending on the system or environment. Despite all these variable conditions, which produce very diverse structures, they are all noted as biofilms. We discuss that clinical biofilms may differ from those grown in laboratories and found in the environment and discuss whether the characteristics that are commonly used to define and characterize biofilms have been shown in infectious biofilms. We emphasize that there is a need for a comprehensive understanding of the specific traits that are used to define bacteria in infections as clinical biofilms.
{"title":"What's in a name? Characteristics of clinical biofilms.","authors":"Mads Lichtenberg, Tom Coenye, Matthew R Parsek, Thomas Bjarnsholt, Tim Holm Jakobsen","doi":"10.1093/femsre/fuad050","DOIUrl":"10.1093/femsre/fuad050","url":null,"abstract":"<p><p>In vitro biofilms are communities of microbes with unique features compared to individual cells. Biofilms are commonly characterized by physical traits like size, adhesion, and a matrix made of extracellular substances. They display distinct phenotypic features, such as metabolic activity and antibiotic tolerance. However, the relative importance of these traits depends on the environment and bacterial species. Various mechanisms enable biofilm-associated bacteria to withstand antibiotics, including physical barriers, physiological adaptations, and changes in gene expression. Gene expression profiles in biofilms differ from individual cells but, there is little consensus among studies and so far, a 'biofilm signature transcriptome' has not been recognized. Additionally, the spatial and temporal variability within biofilms varies greatly depending on the system or environment. Despite all these variable conditions, which produce very diverse structures, they are all noted as biofilms. We discuss that clinical biofilms may differ from those grown in laboratories and found in the environment and discuss whether the characteristics that are commonly used to define and characterize biofilms have been shown in infectious biofilms. We emphasize that there is a need for a comprehensive understanding of the specific traits that are used to define bacteria in infections as clinical biofilms.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 5","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10305362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review explores the functional importance and underlying mechanisms of probiotic components, their impact on gut–immune homeostasis, and their potential applications in promoting human health.
{"title":"Correction to: Exploring probiotic effector molecules and their mode of action in gut-immune interactions.","authors":"","doi":"10.1093/femsre/fuad055","DOIUrl":"https://doi.org/10.1093/femsre/fuad055","url":null,"abstract":"This review explores the functional importance and underlying mechanisms of probiotic components, their impact on gut–immune homeostasis, and their potential applications in promoting human health.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 5","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41182351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhe Diao, Stefan Dyksma, Elif Koeksoy, David Kamanda Ngugi, Karthik Anantharaman, Alexander Loy, Michael Pester
Sulfate/sulfite-reducing microorganisms (SRM) are ubiquitous in nature, driving the global sulfur cycle. A hallmark of SRM is the dissimilatory sulfite reductase encoded by the genes dsrAB. Based on analysis of 950 mainly metagenome-derived dsrAB-carrying genomes, we redefine the global diversity of microorganisms with the potential for dissimilatory sulfate/sulfite reduction and uncover genetic repertoires that challenge earlier generalizations regarding their mode of energy metabolism. We show: (i) 19 out of 23 bacterial and 2 out of 4 archaeal phyla harbor uncharacterized SRM, (ii) four phyla including the Desulfobacterota harbor microorganisms with the genetic potential to switch between sulfate/sulfite reduction and sulfur oxidation, and (iii) the combination as well as presence/absence of different dsrAB-types, dsrL-types and dsrD provides guidance on the inferred direction of dissimilatory sulfur metabolism. We further provide an updated dsrAB database including > 60% taxonomically resolved, uncultured family-level lineages and recommendations on existing dsrAB-targeted primers for environmental surveys. Our work summarizes insights into the inferred ecophysiology of newly discovered SRM, puts SRM diversity into context of the major recent changes in bacterial and archaeal taxonomy, and provides an up-to-date framework to study SRM in a global context.
{"title":"Global diversity and inferred ecophysiology of microorganisms with the potential for dissimilatory sulfate/sulfite reduction.","authors":"Muhe Diao, Stefan Dyksma, Elif Koeksoy, David Kamanda Ngugi, Karthik Anantharaman, Alexander Loy, Michael Pester","doi":"10.1093/femsre/fuad058","DOIUrl":"10.1093/femsre/fuad058","url":null,"abstract":"<p><p>Sulfate/sulfite-reducing microorganisms (SRM) are ubiquitous in nature, driving the global sulfur cycle. A hallmark of SRM is the dissimilatory sulfite reductase encoded by the genes dsrAB. Based on analysis of 950 mainly metagenome-derived dsrAB-carrying genomes, we redefine the global diversity of microorganisms with the potential for dissimilatory sulfate/sulfite reduction and uncover genetic repertoires that challenge earlier generalizations regarding their mode of energy metabolism. We show: (i) 19 out of 23 bacterial and 2 out of 4 archaeal phyla harbor uncharacterized SRM, (ii) four phyla including the Desulfobacterota harbor microorganisms with the genetic potential to switch between sulfate/sulfite reduction and sulfur oxidation, and (iii) the combination as well as presence/absence of different dsrAB-types, dsrL-types and dsrD provides guidance on the inferred direction of dissimilatory sulfur metabolism. We further provide an updated dsrAB database including > 60% taxonomically resolved, uncultured family-level lineages and recommendations on existing dsrAB-targeted primers for environmental surveys. Our work summarizes insights into the inferred ecophysiology of newly discovered SRM, puts SRM diversity into context of the major recent changes in bacterial and archaeal taxonomy, and provides an up-to-date framework to study SRM in a global context.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41114890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wai Ting Chan, Maria Pilar Garcillán-Barcia, Chew Chieng Yeo, Manuel Espinosa
Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
{"title":"Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system.","authors":"Wai Ting Chan, Maria Pilar Garcillán-Barcia, Chew Chieng Yeo, Manuel Espinosa","doi":"10.1093/femsre/fuad052","DOIUrl":"10.1093/femsre/fuad052","url":null,"abstract":"<p><p>Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/74/fuad052.PMC10532202.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10254229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Broglia, Anaïs Le Rhun, Emmanuelle Charpentier
Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.
{"title":"Methodologies for bacterial ribonuclease characterization using RNA-seq.","authors":"Laura Broglia, Anaïs Le Rhun, Emmanuelle Charpentier","doi":"10.1093/femsre/fuad049","DOIUrl":"10.1093/femsre/fuad049","url":null,"abstract":"<p><p>Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 5","pages":""},"PeriodicalIF":10.1,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10296906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}