首页 > 最新文献

FEMS microbiology reviews最新文献

英文 中文
Evolution and emergence of Mycobacterium tuberculosis. 结核分枝杆菌的进化和出现。
IF 10.1 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae006
Mickael Orgeur, Camille Sous, Jan Madacki, Roland Brosch

Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.

结核病(TB)仍然是人类历史上最致命的传染病之一,甚至在 21 世纪仍在流行。结核病的致病菌是一组密切相关的细菌,属于结核分枝杆菌复合体(MTBC),可细分为几个适应人类和动物的菌株系,据认为它们的最后共同祖先是从卡奈特分枝杆菌类似结核杆菌的重组菌群中通过克隆扩增而出现的。更好地了解 MTBC 群体是如何从毒性较弱的分枝杆菌进化而来的,有助于发现更好的结核病控制策略和未来的流行趋势。在这篇综述中,我们重点介绍了在属一级对分枝杆菌进化的新认识,描述了分枝杆菌进化过程中的不同里程碑,重点关注可能促成 MTBC 出现并占据主导地位的基因组事件。我们还回顾了描述 MTBC 各系的最新文献,并着重介绍了它们的特性和差异,重点是宿主偏好和地理分布。最后,我们以分枝杆菌特异性分布式共轭传递为例,讨论了推动结核杆菌和分枝杆菌进化的可能机制。
{"title":"Evolution and emergence of Mycobacterium tuberculosis.","authors":"Mickael Orgeur, Camille Sous, Jan Madacki, Roland Brosch","doi":"10.1093/femsre/fuae006","DOIUrl":"10.1093/femsre/fuae006","url":null,"abstract":"<p><p>Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes. 启动子工程的合理方法:了解原核生物转录启动的复杂性。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae004
Cara Deal, Lien De Wannemaeker, Marjan De Mey

Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.

启动子序列是重要的基因控制元件。它们通过与 RNA 聚合酶的相互作用决定转录强度和特异性,从而调节基因表达的第一步。因此,启动子序列可以作为控制遗传回路可预测性和可调控性的目标元件,这在开发强大的微生物细胞工厂等应用中至关重要。本综述探讨了与转录启动三个阶段有关的启动子元件,详细介绍了其中涉及的序列特异性相互作用的复杂相互作用,并强调了核心启动子元件以外的 DNA 序列特征以组合方式决定转录强度。我们特别强调,除了启动子识别之外,转录启动还取决于开放复合物形成和启动子逸出的动力学,众所周知,这也具有高度的序列特异性。重要的是,我们将重点关注如何利用对这些相互作用的了解,为更合理的启动子工程学方法奠定基础。
{"title":"Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes.","authors":"Cara Deal, Lien De Wannemaeker, Marjan De Mey","doi":"10.1093/femsre/fuae004","DOIUrl":"10.1093/femsre/fuae004","url":null,"abstract":"<p><p>Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radioactive waste microbiology: predicting microbial survival and activity in changing extreme environments. 放射性废物微生物学:预测微生物在不断变化的极端环境中的生存和活动。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuae001
Simon P Gregory, Jessica R M Mackie, Megan J Barnett

The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.

放射性废物地质处置设施(GDF)的工程屏障系统(EBS)内可能会出现微生物活动,这一点已得到废物管理机构的认可,因为它有可能影响 GDF 安全功能的许多方面。EBS 中的微生物将暴露于不断变化的温度、pH 值、辐射、盐度、饱和度以及营养和能量来源的可用性,这些都可能限制微生物的生存和活动。出于安全考虑,一些限制条件被纳入了 GDF 设计,包括:水泥基储存库的高 pH 值、膨润土基储存库的有限孔隙空间或蒸发地质中 GDF 的高盐度。高发热废物(HHGW)的存在还会导致辐射、温度和干燥等其他环境条件的升高。在此,我们对 EBS 中的环境条件如何限制微生物活动进行了全面回顾,涵盖了一系列地质环境中的高发热量废物和低发热量废物 (LHGW)。我们介绍了文献中关于上述每种环境条件下目前公认的生命极限的数据,以及养分可用性,以确定这些环境中的生命潜力。通过对特定 GDF 的每个变量进行建模的例子,我们概述了该变量预计会限制微生物活动的时间和地点。最后,我们展示了如何利用这些有关多个变量的信息来提高我们对全球饵料发展基金 EBS 中微生物活动潜力的理解,以及更广泛地理解暴露于多种极端条件下的变化环境中的微生物生命。
{"title":"Radioactive waste microbiology: predicting microbial survival and activity in changing extreme environments.","authors":"Simon P Gregory, Jessica R M Mackie, Megan J Barnett","doi":"10.1093/femsre/fuae001","DOIUrl":"10.1093/femsre/fuae001","url":null,"abstract":"<p><p>The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139432373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. 免疫与行为之间的相互影响:昆虫病原真菌及其昆虫宿主的启示。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuae003
Wei Zhang, Xuanyu Chen, Ioannis Eleftherianos, Amr Mohamed, Ashley Bastin, Nemat O Keyhani

Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.

昆虫是自然界中最成功的动物之一,而昆虫病原真菌在许多生态系统中对昆虫种群的自然偶发控制中发挥着重要作用。昆虫与昆虫病原真菌之间的相互作用已经持续共同进化了数亿年。昆虫对真菌感染的先天性免疫反应的许多组成部分在不同门类之间是一致的。此外,包括回避、梳理和/或调节体温在内的行为反应也被认为是对抗真菌病原体的重要机制。为了研究这些基本生物过程之间可能存在的相互影响和中介机制,最近的研究对免疫反应和行为反应进行了整合和/或探索。目前的信息表明,在真菌感染的不同阶段,昆虫的一些行为和免疫反应会同时发生改变,这表明这两个系统之间存在重要联系。这篇综述综述了我们对影响行为反应和先天免疫抗真菌反应(包括化学感知和嗅觉途径)之间相互影响的生理和分子方面的最新理解进展。
{"title":"Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts.","authors":"Wei Zhang, Xuanyu Chen, Ioannis Eleftherianos, Amr Mohamed, Ashley Bastin, Nemat O Keyhani","doi":"10.1093/femsre/fuae003","DOIUrl":"10.1093/femsre/fuae003","url":null,"abstract":"<p><p>Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. 人类细胞外基质蛋白在确定金黄色葡萄球菌生物膜感染中的作用。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuae002
Mohini Bhattacharya, Alexander R Horswill

Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.

世界上有 20%-41% 的人口短暂或永久地定植于革兰氏阳性菌--金黄色葡萄球菌。2017 年,美国疾病预防控制中心(CDC)将耐甲氧西林金黄色葡萄球菌(MRSA)定为严重威胁,每年报告的 MRSA 相关住院病例达 30 万例,造成的死亡人数超过 1.9 万,在美国超过了艾滋病的死亡人数。金黄色葡萄球菌是一种善于形成生物膜的有机体,能迅速获得对抗生素的耐药性,其中最常见的是甲氧西林(MRSA)。本综述重点介绍一大类(超过 30 种)金黄色葡萄球菌粘附素,这些粘附素或为表面相关性粘附素,或为分泌性粘附素,可与构成人体细胞外基质(hECM)主要成分的 15 种或更多蛋白质特异性结合。重要的是,这包括对几乎所有组织环境(胶原蛋白(皮肤)、蛋白多糖(肺)、血红蛋白(血液)、弹性蛋白、层粘连蛋白、纤维蛋白原、纤连蛋白和纤维蛋白(多个器官))的平衡至关重要的细胞外基质蛋白。这些粘附素使金黄色葡萄球菌有可能在每个无菌组织中建立感染。这些感染往往经受反复的免疫攻击,发展成慢性生物膜相关病症,可耐受临床规定剂量的 1000 倍抗生素。根据感染和免疫反应的不同,金黄色葡萄球菌可以通过巧妙地操纵宿主来对抗自己,同时提供建立和维持生物膜所需的时间和隐蔽性,从而实现从定植菌到病原体的无缝过渡。本文全面论述了金黄色葡萄球菌生物膜与高致癌物质之间的相互作用。我们特别关注这些相互作用在致病过程中的作用,以及由此对预防和治疗金黄色葡萄球菌生物膜感染的临床意义。
{"title":"The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections.","authors":"Mohini Bhattacharya, Alexander R Horswill","doi":"10.1093/femsre/fuae002","DOIUrl":"10.1093/femsre/fuae002","url":null,"abstract":"<p><p>Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connecting the dots: key insights on ParB for chromosome segregation from single-molecule studies. 连点成线:从单分子研究中了解 ParB 在染色体分离中的关键作用。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuad067
Miloš Tišma, Jovana Kaljević, Stephan Gruber, Tung B K Le, Cees Dekker

Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle. Over the past decades, research has greatly advanced our knowledge of the ParABS system. However, many intricate details of the mechanism of ParB proteins were only recently uncovered using in vitro single-molecule techniques. These approaches allowed the exploration of ParB proteins in precisely controlled environments, free from the complexities of the cellular milieu. This review covers the early developments of this field but emphasizes recent advances in our knowledge of the mechanistic understanding of ParB proteins as revealed by in vitro single-molecule methods. Furthermore, we provide an outlook on future endeavors in investigating ParB, ParB-like proteins, and their interaction partners.

细菌细胞需要 DNA 分离机制,以便在分裂时将基因组正确分配给两个子细胞。细菌中最常见的染色体和质粒分离系统是 ParABS 系统。该系统的核心蛋白--分离蛋白 B(ParB)--在细菌细胞周期中调节染色体组织和染色体分离。在过去的几十年中,研究极大地促进了我们对 ParABS 系统的了解。然而,ParB 蛋白机理的许多复杂细节直到最近才通过体外单分子技术得以揭示。这些方法允许在精确控制的环境中探索 ParB 蛋白,摆脱了复杂的细胞环境。本综述涵盖了这一领域的早期发展,但强调了体外单分子方法揭示的 ParB 蛋白机理理解方面的最新进展。此外,我们还对研究 ParB、类 ParB 蛋白及其相互作用伙伴的未来努力进行了展望。
{"title":"Connecting the dots: key insights on ParB for chromosome segregation from single-molecule studies.","authors":"Miloš Tišma, Jovana Kaljević, Stephan Gruber, Tung B K Le, Cees Dekker","doi":"10.1093/femsre/fuad067","DOIUrl":"10.1093/femsre/fuad067","url":null,"abstract":"<p><p>Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle. Over the past decades, research has greatly advanced our knowledge of the ParABS system. However, many intricate details of the mechanism of ParB proteins were only recently uncovered using in vitro single-molecule techniques. These approaches allowed the exploration of ParB proteins in precisely controlled environments, free from the complexities of the cellular milieu. This review covers the early developments of this field but emphasizes recent advances in our knowledge of the mechanistic understanding of ParB proteins as revealed by in vitro single-molecule methods. Furthermore, we provide an outlook on future endeavors in investigating ParB, ParB-like proteins, and their interaction partners.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Processing of stalled replication forks in Bacillus subtilis. 枯草芽孢杆菌中停滞复制叉的处理。
IF 10.1 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuad065
Begoña Carrasco, Rubén Torres, María Moreno-Del Álamo, Cristina Ramos, Silvia Ayora, Juan C Alonso

Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.

准确的 DNA 复制和转录延伸对于防止未复制 DNA 的积累和基因组的不稳定性至关重要。细胞进化出了多种机制,以应对复制叉进展受阻的问题,这些机制同时受到内在和外在障碍的挑战。枯草杆菌采用多种分化和发育形式,是研究应对复制压力以保持基因组稳定性所需途径的极佳模式系统。这篇综述将重点介绍规避复制停滞、恢复 DNA 合成的蛋白质的遗传学、单分子编排和生化特性。其中包括 RecA 重组酶、其介导因子(RecO、RecR、RadA/Sms)和调节因子(RecF、RecX、RarA、RecU、RecD2、PcrA)、修复许可因子(DisA)、叉重塑因子(RuvAB、RecG、RecD2、RadA/Sms、PriA)、霍利迪连接分解酶(RecU)、核酸酶(RnhC、DinG)和转子合成 DNA 聚合酶(PolY1 和 PolY2)是克服复制应激所需的关键功能,前提是叉没有崩溃。
{"title":"Processing of stalled replication forks in Bacillus subtilis.","authors":"Begoña Carrasco, Rubén Torres, María Moreno-Del Álamo, Cristina Ramos, Silvia Ayora, Juan C Alonso","doi":"10.1093/femsre/fuad065","DOIUrl":"10.1093/femsre/fuad065","url":null,"abstract":"<p><p>Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138487032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploitation of microbial activities at low pH to enhance planetary health. 利用微生物在低pH下的活动来增强地球健康。
IF 10.1 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuad062
Merve Atasoy, Avelino Álvarez Ordóñez, Adam Cenian, Aleksandra Djukić-Vuković, Peter A Lund, Fatih Ozogul, Janja Trček, Carmit Ziv, Daniela De Biase

Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.

人们日益认识到,人类健康不能孤立地考虑,而是与我们生活的环境的健康密不可分。然而,人们没有认识到,人类活动的可持续性在很大程度上依赖于保持生活在我们体内/身上/周围的微生物群落的平衡。微生物代谢活动对食品的生产、功能化、加工和保存具有重要意义。对于循环经济,微生物代谢将被利用来为化学工业生产基础材料,以实现有效的作物保护、农业食品垃圾的再利用或生物燃料的生产,以及污染地区的生物修复和生物强化。低pH值无疑是开发强大的微生物代谢库需要考虑的关键物理化学参数。偏离最佳pH条件对形成负责执行基本过程的微生物群落具有深远的影响。此外,对抗病原体污染和感染的新策略依赖于微生物衍生的酸性分子来抑制/抑制它们的生长。在此,我们介绍了酸性pH值在许多应用领域影响的最新知识,以及这些知识如何指导我们利用微生物代谢活动的巨大武器库,从行星健康的角度对其进行更有效的开发。
{"title":"Exploitation of microbial activities at low pH to enhance planetary health.","authors":"Merve Atasoy, Avelino Álvarez Ordóñez, Adam Cenian, Aleksandra Djukić-Vuković, Peter A Lund, Fatih Ozogul, Janja Trček, Carmit Ziv, Daniela De Biase","doi":"10.1093/femsre/fuad062","DOIUrl":"10.1093/femsre/fuad062","url":null,"abstract":"<p><p>Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138176007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anelloviruses versus human immunity: how do we control these viruses? 阿奈洛韦病毒与人类免疫力:我们该如何控制这些病毒?
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuae005
Anne L Timmerman, Antonia L M Schönert, Lia van der Hoek

One continuous companion and one of the major players in the human blood virome are members of the Anelloviridae family. Anelloviruses are probably found in all humans, infection occurs early in life and the composition (anellome) is thought to remain stable and personal during adulthood. The stable anellome implies a great balance between the host immune system and the virus. However, the lack of a robust culturing system hampers direct investigation of interactions between virus and host cells. Other techniques, however, including next generation sequencing, AnelloScan-antibody tests, evolution selection pressure analysis, and virus protein structures, do provide new insights into the interactions between anelloviruses and the host immune system. This review aims at providing an overview of the current knowledge on the immune mechanisms acting on anelloviruses and the countering viral mechanisms allowing immune evasion.

Anelloviridae 家族成员是人类血液病毒群中的一个持续伙伴和主要参与者。Anelloviruses 可能存在于所有人体内,感染发生在生命早期,其组成(anellome)被认为在成年期保持稳定和个性化。稳定的病毒体意味着宿主免疫系统和病毒之间保持着良好的平衡。然而,由于缺乏强大的培养系统,妨碍了对病毒与宿主细胞之间相互作用的直接研究。不过,其他技术,包括新一代测序、AnelloScan-抗体检测、进化选择压力分析和病毒蛋白质结构,确实为了解无肠道病毒与宿主免疫系统之间的相互作用提供了新的视角。本综述旨在概述目前有关作用于阿奈拉病毒的免疫机制以及允许免疫逃避的反病毒机制的知识。
{"title":"Anelloviruses versus human immunity: how do we control these viruses?","authors":"Anne L Timmerman, Antonia L M Schönert, Lia van der Hoek","doi":"10.1093/femsre/fuae005","DOIUrl":"10.1093/femsre/fuae005","url":null,"abstract":"<p><p>One continuous companion and one of the major players in the human blood virome are members of the Anelloviridae family. Anelloviruses are probably found in all humans, infection occurs early in life and the composition (anellome) is thought to remain stable and personal during adulthood. The stable anellome implies a great balance between the host immune system and the virus. However, the lack of a robust culturing system hampers direct investigation of interactions between virus and host cells. Other techniques, however, including next generation sequencing, AnelloScan-antibody tests, evolution selection pressure analysis, and virus protein structures, do provide new insights into the interactions between anelloviruses and the host immune system. This review aims at providing an overview of the current knowledge on the immune mechanisms acting on anelloviruses and the countering viral mechanisms allowing immune evasion.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root colonization by beneficial rhizobacteria 有益根瘤菌在根部定殖
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-12-14 DOI: 10.1093/femsre/fuad066
Yunpeng Liu, Zhihui Xu, Lin Chen, Weibing Xun, Xia Shu, Yu Chen, Xinli Sun, Zhengqi Wang, Yi Ren, Qirong Shen, Ruifu Zhang
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the non-symbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the non-symbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
根瘤微生物对植物的生长和健康起着至关重要的作用。其中,有益的根瘤菌有可能被开发成生物肥料或生物接种剂,以维持农业发展。这些根瘤菌在根瘤层的高效定殖是其发挥对植物有益功能的先决条件,但其定殖过程和内在机制尚未得到深入研究,尤其是非共生有益根瘤菌。本综述系统分析了非共生根瘤菌的定殖过程,并与共生细菌和病原菌的定殖过程进行了比较。本综述还强调了提高根定植效率的方法,并建议在更自然的条件下从根圈微生物组的整体角度研究根瘤菌的定植。
{"title":"Root colonization by beneficial rhizobacteria","authors":"Yunpeng Liu, Zhihui Xu, Lin Chen, Weibing Xun, Xia Shu, Yu Chen, Xinli Sun, Zhengqi Wang, Yi Ren, Qirong Shen, Ruifu Zhang","doi":"10.1093/femsre/fuad066","DOIUrl":"https://doi.org/10.1093/femsre/fuad066","url":null,"abstract":"Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the non-symbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the non-symbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"9 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138685184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FEMS microbiology reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1