首页 > 最新文献

FEMS microbiology reviews最新文献

英文 中文
Bacteriophage-host interactions in Streptococcus thermophilus and their impact on co-evolutionary processes. 嗜热链球菌中噬菌体-宿主相互作用及其对共同进化过程的影响。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad032
Katherine Lavelle, Brian McDonnell, Gerald Fitzgerald, Douwe van Sinderen, Jennifer Mahony

Bacteriophages (or phages) represent a persistent threat to the success and reliability of food fermentation processes. Recent reports of phages that infect Streptococcus thermophilus have highlighted the diversification of phages of this species. Phages of S. thermophilus typically exhibit a narrow range, a feature that is suggestive of diverse receptor moieties being presented on the cell surface of the host. Cell wall polysaccharides, including rhamnose-glucose polysaccharides and exopolysaccharides have been implicated as being involved in the initial interactions with several phages of this species. Following internalization of the phage genome, the host presents several defences, including CRISPR-Cas and restriction and modification systems to limit phage proliferation. This review provides a current and holistic view of the interactions of phages and their S. thermophilus host cells and how this has influenced the diversity and evolution of both entities.

噬菌体(或噬菌体)对食品发酵过程的成功和可靠性构成持续威胁。最近关于感染嗜热链球菌的噬菌体的报道强调了该物种噬菌体的多样化。嗜热葡萄球菌的噬菌体通常表现出狭窄的范围,这一特征表明宿主细胞表面存在多种受体。细胞壁多糖,包括鼠李糖-葡萄糖多糖和胞外多糖被认为参与了与该物种的几种噬菌体的初始相互作用。在噬菌体基因组内化之后,宿主呈现出几种防御措施,包括CRISPR-Cas和限制和修饰系统,以限制噬菌体的增殖。本文综述了噬菌体与嗜热葡萄球菌宿主细胞相互作用的现状和整体观点,以及这种相互作用如何影响这两个实体的多样性和进化。
{"title":"Bacteriophage-host interactions in Streptococcus thermophilus and their impact on co-evolutionary processes.","authors":"Katherine Lavelle,&nbsp;Brian McDonnell,&nbsp;Gerald Fitzgerald,&nbsp;Douwe van Sinderen,&nbsp;Jennifer Mahony","doi":"10.1093/femsre/fuad032","DOIUrl":"https://doi.org/10.1093/femsre/fuad032","url":null,"abstract":"<p><p>Bacteriophages (or phages) represent a persistent threat to the success and reliability of food fermentation processes. Recent reports of phages that infect Streptococcus thermophilus have highlighted the diversification of phages of this species. Phages of S. thermophilus typically exhibit a narrow range, a feature that is suggestive of diverse receptor moieties being presented on the cell surface of the host. Cell wall polysaccharides, including rhamnose-glucose polysaccharides and exopolysaccharides have been implicated as being involved in the initial interactions with several phages of this species. Following internalization of the phage genome, the host presents several defences, including CRISPR-Cas and restriction and modification systems to limit phage proliferation. This review provides a current and holistic view of the interactions of phages and their S. thermophilus host cells and how this has influenced the diversity and evolution of both entities.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9854827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The never-ending battle between lactic acid bacteria and their phages. 乳酸菌和噬菌体之间永无休止的战斗。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad035
Cécile Philippe, Jeffrey K Cornuault, Alessandra G de Melo, Rachel Morin-Pelchat, Alice P Jolicoeur, Sylvain Moineau

Over the past few decades, the interest in lactic acid bacteria (LAB) has been steadily growing. This is mainly due to their industrial use, their health benefits as probiotic bacteria and their ecological importance in host-related microbiota. Phage infection represents a significant risk for the production and industrial use of LAB. This created the need to study the various means of defense put in place by LAB to resist their viral enemies, as well as the countermeasures evolved by phages to overcome these defenses. In this review, we discuss defense systems that LAB employ to resist phage infections. We also describe how phages counter these mechanisms through diverse and sophisticated strategies. Furthermore, we discuss the way phage-host interactions shape each other's evolution. The recent discovery of numerous novel defense systems in other bacteria promises a new dawn for phage research in LAB.

在过去的几十年里,人们对乳酸菌(LAB)的兴趣一直在稳步增长。这主要是由于它们的工业用途,它们作为益生菌的健康益处以及它们在宿主相关微生物群中的生态重要性。噬菌体感染对乳酸菌的生产和工业使用具有重大风险。这就需要研究LAB用来抵抗病毒敌人的各种防御手段,以及噬菌体进化出来的克服这些防御的对策。在这篇综述中,我们讨论了LAB用来抵抗噬菌体感染的防御系统。我们还描述了噬菌体如何通过各种复杂的策略来对抗这些机制。此外,我们还讨论了噬菌体-宿主相互作用影响彼此进化的方式。最近在其他细菌中发现了许多新的防御系统,为噬菌体研究带来了新的曙光。
{"title":"The never-ending battle between lactic acid bacteria and their phages.","authors":"Cécile Philippe,&nbsp;Jeffrey K Cornuault,&nbsp;Alessandra G de Melo,&nbsp;Rachel Morin-Pelchat,&nbsp;Alice P Jolicoeur,&nbsp;Sylvain Moineau","doi":"10.1093/femsre/fuad035","DOIUrl":"https://doi.org/10.1093/femsre/fuad035","url":null,"abstract":"<p><p>Over the past few decades, the interest in lactic acid bacteria (LAB) has been steadily growing. This is mainly due to their industrial use, their health benefits as probiotic bacteria and their ecological importance in host-related microbiota. Phage infection represents a significant risk for the production and industrial use of LAB. This created the need to study the various means of defense put in place by LAB to resist their viral enemies, as well as the countermeasures evolved by phages to overcome these defenses. In this review, we discuss defense systems that LAB employ to resist phage infections. We also describe how phages counter these mechanisms through diverse and sophisticated strategies. Furthermore, we discuss the way phage-host interactions shape each other's evolution. The recent discovery of numerous novel defense systems in other bacteria promises a new dawn for phage research in LAB.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9855521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Anti-infective activities of long-chain fatty acids against foodborne pathogens. 长链脂肪酸对食源性致病菌的抗感染活性。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad037
Caroline Borreby, Eva Maria Sternkopf Lillebæk, Birgitte H Kallipolitis

Free fatty acids (FFAs) have long been acknowledged for their antimicrobial activity. More recently, long-chain FFAs (>12 carbon atoms) are receiving increased attention for their potent antivirulence activity against pathogenic bacteria. In the gastrointestinal tract, foodborne pathogens encounter a variety of long-chain FFAs derived from the diet, metabolic activities of the gut microbiota, or the host. This review highlights the role of long-chain FFAs as signaling molecules acting to inhibit the infectious potential of important foodborne pathogens, including Salmonella and Listeria monocytogenes. Various long-chain FFAs interact with sensory proteins and transcriptional regulators controlling the expression of infection-relevant genes. Consequently, long-chain FFAs may act to disarm bacterial pathogens of their virulence factors. Understanding how foodborne pathogens sense and respond to long-chain FFAs may enable the design of new anti-infective approaches.

游离脂肪酸(FFAs)的抗菌活性早已得到公认。最近,长链FFAs(>12个碳原子)因其对致病菌的有效抗毒活性而受到越来越多的关注。在胃肠道中,食源性病原体会遇到来自饮食、肠道微生物群的代谢活动或宿主的各种长链游离脂肪酸。这篇综述强调了长链FFAs作为信号分子的作用,可以抑制重要食源性病原体的感染潜力,包括沙门氏菌和单核增生李斯特菌。各种长链FFAs与控制感染相关基因表达的感觉蛋白和转录调节因子相互作用。因此,长链FFAs可以解除细菌病原体的毒力因子。了解食源性病原体如何感知和响应长链游离脂肪酸可能有助于设计新的抗感染方法。
{"title":"Anti-infective activities of long-chain fatty acids against foodborne pathogens.","authors":"Caroline Borreby,&nbsp;Eva Maria Sternkopf Lillebæk,&nbsp;Birgitte H Kallipolitis","doi":"10.1093/femsre/fuad037","DOIUrl":"https://doi.org/10.1093/femsre/fuad037","url":null,"abstract":"<p><p>Free fatty acids (FFAs) have long been acknowledged for their antimicrobial activity. More recently, long-chain FFAs (>12 carbon atoms) are receiving increased attention for their potent antivirulence activity against pathogenic bacteria. In the gastrointestinal tract, foodborne pathogens encounter a variety of long-chain FFAs derived from the diet, metabolic activities of the gut microbiota, or the host. This review highlights the role of long-chain FFAs as signaling molecules acting to inhibit the infectious potential of important foodborne pathogens, including Salmonella and Listeria monocytogenes. Various long-chain FFAs interact with sensory proteins and transcriptional regulators controlling the expression of infection-relevant genes. Consequently, long-chain FFAs may act to disarm bacterial pathogens of their virulence factors. Understanding how foodborne pathogens sense and respond to long-chain FFAs may enable the design of new anti-infective approaches.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9871257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crosstalk between gut microbiota and RNA N6-methyladenosine modification in cancer. 癌症中肠道微生物群与RNA n6 -甲基腺苷修饰之间的串扰。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad036
Hao Su, Henley Cheung, Harry Cheuk-Hay Lau, Hongyan Chen, Xiaoting Zhang, Na Qin, Yifei Wang, Matthew Tak Vai Chan, William Ka Kei Wu, Huarong Chen

The gut microbiota plays a crucial role in regulating various host metabolic, immune, and neuroendocrine functions, and has a significant impact on human health. Several lines of evidence suggest that gut dysbiosis is associated with a variety of diseases, including cancer. The gut microbiota can impact the development and progression of cancer through a range of mechanisms, such as regulating cell proliferation and death, modulating the host immune response, and altering the host metabolic state. Gene regulatory programs are considered critical mediators between the gut microbiota and host phenotype, of which RNA N6-methyladenosine (m6A) modifications have attracted much attention recently. Aberrant m6A modifications have been shown to play a crucial role in cancer development. This review aims to provide an overview of the diverse roles of gut microbiota and RNA m6A modifications in cancer and highlight their potential interactions in cancer development.

肠道菌群在调节宿主各种代谢、免疫和神经内分泌功能中起着至关重要的作用,对人体健康具有重要影响。一些证据表明,肠道生态失调与包括癌症在内的多种疾病有关。肠道菌群可以通过一系列机制影响癌症的发生和发展,如调节细胞增殖和死亡,调节宿主免疫反应,改变宿主代谢状态。基因调控程序被认为是肠道微生物群与宿主表型之间的重要媒介,其中RNA n6 -甲基腺苷(m6A)修饰近年来受到广泛关注。异常的m6A修饰已被证明在癌症发展中起着至关重要的作用。本文旨在概述肠道微生物群和RNA m6A修饰在癌症中的不同作用,并强调它们在癌症发展中的潜在相互作用。
{"title":"Crosstalk between gut microbiota and RNA N6-methyladenosine modification in cancer.","authors":"Hao Su,&nbsp;Henley Cheung,&nbsp;Harry Cheuk-Hay Lau,&nbsp;Hongyan Chen,&nbsp;Xiaoting Zhang,&nbsp;Na Qin,&nbsp;Yifei Wang,&nbsp;Matthew Tak Vai Chan,&nbsp;William Ka Kei Wu,&nbsp;Huarong Chen","doi":"10.1093/femsre/fuad036","DOIUrl":"https://doi.org/10.1093/femsre/fuad036","url":null,"abstract":"<p><p>The gut microbiota plays a crucial role in regulating various host metabolic, immune, and neuroendocrine functions, and has a significant impact on human health. Several lines of evidence suggest that gut dysbiosis is associated with a variety of diseases, including cancer. The gut microbiota can impact the development and progression of cancer through a range of mechanisms, such as regulating cell proliferation and death, modulating the host immune response, and altering the host metabolic state. Gene regulatory programs are considered critical mediators between the gut microbiota and host phenotype, of which RNA N6-methyladenosine (m6A) modifications have attracted much attention recently. Aberrant m6A modifications have been shown to play a crucial role in cancer development. This review aims to provide an overview of the diverse roles of gut microbiota and RNA m6A modifications in cancer and highlight their potential interactions in cancer development.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9864492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quorum sensing architecture network in Escherichia coli virulence and pathogenesis. 群体感应结构网络在大肠杆菌毒力和发病机制中的作用。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad031
Celia Mayer, Anabela Borges, Saskia-Camille Flament-Simon, Manuel Simões

Escherichia coli is a Gram-negative commensal bacterium of the normal microbiota of humans and animals. However, several E. coli strains are opportunistic pathogens responsible for severe bacterial infections, including gastrointestinal and urinary tract infections. Due to the emergence of multidrug-resistant serotypes that can cause a wide spectrum of diseases, E. coli is considered one of the most troublesome human pathogens worldwide. Therefore, a more thorough understanding of its virulence control mechanisms is essential for the development of new anti-pathogenic strategies. Numerous bacteria rely on a cell density-dependent communication system known as quorum sensing (QS) to regulate several bacterial functions, including the expression of virulence factors. The QS systems described for E. coli include the orphan SdiA regulator, an autoinducer-2 (AI-2), an autoinducer-3 (AI-3) system, and indole, which allow E. coli to establish different communication processes to sense and respond to the surrounding environment. This review aims to summarise the current knowledge of the global QS network in E. coli and its influence on virulence and pathogenesis. This understanding will help to improve anti-virulence strategies with the E. coli QS network in focus.

大肠杆菌是人类和动物正常菌群中的一种革兰氏阴性共生菌。然而,一些大肠杆菌菌株是导致严重细菌感染的机会性病原体,包括胃肠道和尿路感染。由于多药耐药血清型的出现可引起广泛的疾病,大肠杆菌被认为是世界上最麻烦的人类病原体之一。因此,更深入地了解其毒力控制机制对于开发新的抗致病性策略至关重要。许多细菌依靠一种被称为群体感应(QS)的细胞密度依赖的通信系统来调节几种细菌功能,包括毒力因子的表达。描述的大肠杆菌QS系统包括孤儿SdiA调节剂、自诱导剂2 (AI-2)、自诱导剂3 (AI-3)系统和吲哚,它们允许大肠杆菌建立不同的通信过程来感知和响应周围环境。本文综述了大肠杆菌全球QS网络及其对毒力和发病机制的影响。这一认识将有助于改进以大肠杆菌QS网络为重点的抗毒策略。
{"title":"Quorum sensing architecture network in Escherichia coli virulence and pathogenesis.","authors":"Celia Mayer,&nbsp;Anabela Borges,&nbsp;Saskia-Camille Flament-Simon,&nbsp;Manuel Simões","doi":"10.1093/femsre/fuad031","DOIUrl":"https://doi.org/10.1093/femsre/fuad031","url":null,"abstract":"<p><p>Escherichia coli is a Gram-negative commensal bacterium of the normal microbiota of humans and animals. However, several E. coli strains are opportunistic pathogens responsible for severe bacterial infections, including gastrointestinal and urinary tract infections. Due to the emergence of multidrug-resistant serotypes that can cause a wide spectrum of diseases, E. coli is considered one of the most troublesome human pathogens worldwide. Therefore, a more thorough understanding of its virulence control mechanisms is essential for the development of new anti-pathogenic strategies. Numerous bacteria rely on a cell density-dependent communication system known as quorum sensing (QS) to regulate several bacterial functions, including the expression of virulence factors. The QS systems described for E. coli include the orphan SdiA regulator, an autoinducer-2 (AI-2), an autoinducer-3 (AI-3) system, and indole, which allow E. coli to establish different communication processes to sense and respond to the surrounding environment. This review aims to summarise the current knowledge of the global QS network in E. coli and its influence on virulence and pathogenesis. This understanding will help to improve anti-virulence strategies with the E. coli QS network in focus.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9800219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Correction to: four billion years of microbial terpenome evolution. 修正为:40亿年的微生物萜烯素进化。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad027
{"title":"Correction to: four billion years of microbial terpenome evolution.","authors":"","doi":"10.1093/femsre/fuad027","DOIUrl":"https://doi.org/10.1093/femsre/fuad027","url":null,"abstract":"","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial 14th international symposium on lactic acid bacteria (LAB14). 第十四届乳酸菌国际学术研讨会(LAB14)。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad043
Eddy J Smid, Sarah Lebeer, Egon B Hansen
{"title":"Editorial 14th international symposium on lactic acid bacteria (LAB14).","authors":"Eddy J Smid,&nbsp;Sarah Lebeer,&nbsp;Egon B Hansen","doi":"10.1093/femsre/fuad043","DOIUrl":"https://doi.org/10.1093/femsre/fuad043","url":null,"abstract":"","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10175872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry. 从基因型到表型:推断与食品工业相关的微生物特征的计算方法。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad030
Signe T Karlsen, Martin H Rau, Benjamín J Sánchez, Kristian Jensen, Ahmad A Zeidan

When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.

在选择生产发酵食品的微生物菌株时,需要考虑各种微生物表型,以实现目标产品的特性,如生物安全、风味、质地和促进健康的效果。通过测序技术的不断进步,现在可以更便宜、更快地获得质量不断提高的微生物全基因组序列,这增加了基于基因组的微生物表型表征的相关性。通过基因组序列预测微生物表型,可以在计算机上快速筛选大型菌株集,以确定具有理想性状的候选者。利用我们对这些表型背后的遗传和分子机制的现有理解,可以使用基于知识的方法预测与发酵食品生产相关的几种微生物表型。在缺乏这些知识的情况下,数据驱动的方法可以应用于基于大型实验数据集估计基因型-表型关系。在这里,我们回顾了实现知识和数据驱动的表型预测方法的计算方法,以及将这两种方法的元素结合在一起的方法。此外,我们还提供了这些方法如何应用于工业生物技术的例子,特别关注发酵食品行业。
{"title":"From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry.","authors":"Signe T Karlsen,&nbsp;Martin H Rau,&nbsp;Benjamín J Sánchez,&nbsp;Kristian Jensen,&nbsp;Ahmad A Zeidan","doi":"10.1093/femsre/fuad030","DOIUrl":"10.1093/femsre/fuad030","url":null,"abstract":"<p><p>When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/bd/fuad030.PMC10337747.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9799218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Have genetic targets for faecal pollution diagnostics and source tracking revolutionized water quality analysis yet? 用于粪便污染诊断和污染源追踪的基因靶标是否已经彻底改变了水质分析?
IF 10.1 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad028
Katalin Demeter, Rita Linke, Elisenda Ballesté, Georg Reischer, René E Mayer, Julia Vierheilig, Claudia Kolm, Margaret E Stevenson, Julia Derx, Alexander K T Kirschner, Regina Sommer, Orin C Shanks, Anicet R Blanch, Joan B Rose, Warish Ahmed, Andreas H Farnleitner

The impacts of nucleic acid-based methods - such as PCR and sequencing - to detect and analyze indicators, genetic markers or molecular signatures of microbial faecal pollution in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionized faecal pollution detection (i.e., traditional or alternative general faecal indicator/marker analysis) and microbial source tracking (i.e., host-associated faecal indicator/marker analysis), the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardized faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discusses the benefits and challenges of nucleic acid-based analysis in GFPD.

通过严格的文献分析,评估了基于核酸的方法(如 PCR 和测序)对检测和分析与健康相关的水质研究中的微生物粪便污染指标、遗传标记或分子特征的影响。自 30 多年前首次应用(超过 1100 篇出版物)以来,已确定了广泛的应用领域和研究设计。鉴于方法和评估类型的一致性,我们建议将这一新兴科学部分定义为一门新学科:与健康相关的微生物水质分析中的遗传粪便污染诊断(GFPD)。毫无疑问,基因粪便污染诊断已经彻底改变了粪便污染检测(即传统或替代性一般粪便指标/标记物分析)和微生物源追踪(即宿主相关粪便指标/标记物分析)这两个当前的核心应用领域。GFPD 还扩展到许多其他研究领域,包括感染和健康风险评估、微生物水处理评估以及支持废水监测。此外,DNA 提取物的存储还可用于生物银行,从而开辟了新的前景。GFPD 工具可与基于培养的标准化粪便指标计数、病原体检测和各种环境数据类型相结合,形成一种综合数据分析方法。本综合荟萃分析报告提供了该领域的科学现状,包括趋势分析和文献统计,概述了已确定的应用领域,并讨论了基于核酸的分析在 GFPD 中的优势和挑战。
{"title":"Have genetic targets for faecal pollution diagnostics and source tracking revolutionized water quality analysis yet?","authors":"Katalin Demeter, Rita Linke, Elisenda Ballesté, Georg Reischer, René E Mayer, Julia Vierheilig, Claudia Kolm, Margaret E Stevenson, Julia Derx, Alexander K T Kirschner, Regina Sommer, Orin C Shanks, Anicet R Blanch, Joan B Rose, Warish Ahmed, Andreas H Farnleitner","doi":"10.1093/femsre/fuad028","DOIUrl":"10.1093/femsre/fuad028","url":null,"abstract":"<p><p>The impacts of nucleic acid-based methods - such as PCR and sequencing - to detect and analyze indicators, genetic markers or molecular signatures of microbial faecal pollution in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionized faecal pollution detection (i.e., traditional or alternative general faecal indicator/marker analysis) and microbial source tracking (i.e., host-associated faecal indicator/marker analysis), the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardized faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discusses the benefits and challenges of nucleic acid-based analysis in GFPD.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":10.1,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9864034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: RTX proteins: A highly diverse family secreted by a common mechanism. 修正:RTX蛋白:一个由共同机制分泌的高度多样化的家族。
IF 11.3 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2023-07-05 DOI: 10.1093/femsre/fuad024
{"title":"Correction to: RTX proteins: A highly diverse family secreted by a common mechanism.","authors":"","doi":"10.1093/femsre/fuad024","DOIUrl":"https://doi.org/10.1093/femsre/fuad024","url":null,"abstract":"","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9812966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FEMS microbiology reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1