Celia Mayer, Anabela Borges, Saskia-Camille Flament-Simon, Manuel Simões
Escherichia coli is a Gram-negative commensal bacterium of the normal microbiota of humans and animals. However, several E. coli strains are opportunistic pathogens responsible for severe bacterial infections, including gastrointestinal and urinary tract infections. Due to the emergence of multidrug-resistant serotypes that can cause a wide spectrum of diseases, E. coli is considered one of the most troublesome human pathogens worldwide. Therefore, a more thorough understanding of its virulence control mechanisms is essential for the development of new anti-pathogenic strategies. Numerous bacteria rely on a cell density-dependent communication system known as quorum sensing (QS) to regulate several bacterial functions, including the expression of virulence factors. The QS systems described for E. coli include the orphan SdiA regulator, an autoinducer-2 (AI-2), an autoinducer-3 (AI-3) system, and indole, which allow E. coli to establish different communication processes to sense and respond to the surrounding environment. This review aims to summarise the current knowledge of the global QS network in E. coli and its influence on virulence and pathogenesis. This understanding will help to improve anti-virulence strategies with the E. coli QS network in focus.
{"title":"Quorum sensing architecture network in Escherichia coli virulence and pathogenesis.","authors":"Celia Mayer, Anabela Borges, Saskia-Camille Flament-Simon, Manuel Simões","doi":"10.1093/femsre/fuad031","DOIUrl":"https://doi.org/10.1093/femsre/fuad031","url":null,"abstract":"<p><p>Escherichia coli is a Gram-negative commensal bacterium of the normal microbiota of humans and animals. However, several E. coli strains are opportunistic pathogens responsible for severe bacterial infections, including gastrointestinal and urinary tract infections. Due to the emergence of multidrug-resistant serotypes that can cause a wide spectrum of diseases, E. coli is considered one of the most troublesome human pathogens worldwide. Therefore, a more thorough understanding of its virulence control mechanisms is essential for the development of new anti-pathogenic strategies. Numerous bacteria rely on a cell density-dependent communication system known as quorum sensing (QS) to regulate several bacterial functions, including the expression of virulence factors. The QS systems described for E. coli include the orphan SdiA regulator, an autoinducer-2 (AI-2), an autoinducer-3 (AI-3) system, and indole, which allow E. coli to establish different communication processes to sense and respond to the surrounding environment. This review aims to summarise the current knowledge of the global QS network in E. coli and its influence on virulence and pathogenesis. This understanding will help to improve anti-virulence strategies with the E. coli QS network in focus.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9800219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: four billion years of microbial terpenome evolution.","authors":"","doi":"10.1093/femsre/fuad027","DOIUrl":"https://doi.org/10.1093/femsre/fuad027","url":null,"abstract":"","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Signe T Karlsen, Martin H Rau, Benjamín J Sánchez, Kristian Jensen, Ahmad A Zeidan
When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.
{"title":"From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry.","authors":"Signe T Karlsen, Martin H Rau, Benjamín J Sánchez, Kristian Jensen, Ahmad A Zeidan","doi":"10.1093/femsre/fuad030","DOIUrl":"10.1093/femsre/fuad030","url":null,"abstract":"<p><p>When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/bd/fuad030.PMC10337747.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9799218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katalin Demeter, Rita Linke, Elisenda Ballesté, Georg Reischer, René E Mayer, Julia Vierheilig, Claudia Kolm, Margaret E Stevenson, Julia Derx, Alexander K T Kirschner, Regina Sommer, Orin C Shanks, Anicet R Blanch, Joan B Rose, Warish Ahmed, Andreas H Farnleitner
The impacts of nucleic acid-based methods - such as PCR and sequencing - to detect and analyze indicators, genetic markers or molecular signatures of microbial faecal pollution in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionized faecal pollution detection (i.e., traditional or alternative general faecal indicator/marker analysis) and microbial source tracking (i.e., host-associated faecal indicator/marker analysis), the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardized faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discusses the benefits and challenges of nucleic acid-based analysis in GFPD.
{"title":"Have genetic targets for faecal pollution diagnostics and source tracking revolutionized water quality analysis yet?","authors":"Katalin Demeter, Rita Linke, Elisenda Ballesté, Georg Reischer, René E Mayer, Julia Vierheilig, Claudia Kolm, Margaret E Stevenson, Julia Derx, Alexander K T Kirschner, Regina Sommer, Orin C Shanks, Anicet R Blanch, Joan B Rose, Warish Ahmed, Andreas H Farnleitner","doi":"10.1093/femsre/fuad028","DOIUrl":"10.1093/femsre/fuad028","url":null,"abstract":"<p><p>The impacts of nucleic acid-based methods - such as PCR and sequencing - to detect and analyze indicators, genetic markers or molecular signatures of microbial faecal pollution in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionized faecal pollution detection (i.e., traditional or alternative general faecal indicator/marker analysis) and microbial source tracking (i.e., host-associated faecal indicator/marker analysis), the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardized faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discusses the benefits and challenges of nucleic acid-based analysis in GFPD.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":10.1,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9864034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: RTX proteins: A highly diverse family secreted by a common mechanism.","authors":"","doi":"10.1093/femsre/fuad024","DOIUrl":"https://doi.org/10.1093/femsre/fuad024","url":null,"abstract":"","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9812966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geng Zou, Lijun He, Jing Rao, Zhiyong Song, Hu Du, Runze Li, Wenjing Wang, Yang Zhou, Lu Liang, Huanchun Chen, Jinquan Li
Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.
{"title":"Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions.","authors":"Geng Zou, Lijun He, Jing Rao, Zhiyong Song, Hu Du, Runze Li, Wenjing Wang, Yang Zhou, Lu Liang, Huanchun Chen, Jinquan Li","doi":"10.1093/femsre/fuad042","DOIUrl":"https://doi.org/10.1093/femsre/fuad042","url":null,"abstract":"<p><p>Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10025229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisca Vale, Cátia A Sousa, Henrique Sousa, Lúcia C Simões, Andrew J McBain, Manuel Simões
Phototrophic and heterotrophic microorganisms coexist in complex and dynamic structures called periphyton. These structures shape the biogeochemistry and biodiversity of aquatic ecosystems. In particular, microalgae-bacteria interactions are a prominent focus of study by microbial ecologists and can provide biotechnological opportunities for numerous applications (i.e. microalgal bloom control, aquaculture, biorefinery, and wastewater bioremediation). In this review, we analyze the species dynamics (i.e. periphyton formation and factors determining the prevalence of one species over another), coexisting communities, exchange of resources, and communication mechanisms of periphytic microalgae and bacteria. We extend periphyton mathematical modelling as a tool to comprehend complex interactions. This review is expected to boost the applicability of microalgae-bacteria consortia, by drawing out knowledge from natural periphyton.
{"title":"Bacteria and microalgae associations in periphyton-mechanisms and biotechnological opportunities.","authors":"Francisca Vale, Cátia A Sousa, Henrique Sousa, Lúcia C Simões, Andrew J McBain, Manuel Simões","doi":"10.1093/femsre/fuad047","DOIUrl":"https://doi.org/10.1093/femsre/fuad047","url":null,"abstract":"<p><p>Phototrophic and heterotrophic microorganisms coexist in complex and dynamic structures called periphyton. These structures shape the biogeochemistry and biodiversity of aquatic ecosystems. In particular, microalgae-bacteria interactions are a prominent focus of study by microbial ecologists and can provide biotechnological opportunities for numerous applications (i.e. microalgal bloom control, aquaculture, biorefinery, and wastewater bioremediation). In this review, we analyze the species dynamics (i.e. periphyton formation and factors determining the prevalence of one species over another), coexisting communities, exchange of resources, and communication mechanisms of periphytic microalgae and bacteria. We extend periphyton mathematical modelling as a tool to comprehend complex interactions. This review is expected to boost the applicability of microalgae-bacteria consortia, by drawing out knowledge from natural periphyton.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10226196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epithelial cells line mucosal surfaces such as in the gingival crevice and provide a barrier to the ingress of colonizing microorganisms. However, epithelial cells are more than a passive barrier to microbial intrusion, and rather constitute an interactive interface with colonizing organisms which senses the composition of the microbiome and communicates this information to the underlying cells of the innate immune system. Microorganisms, for their part, have devised means to manipulate host cell signal transduction pathways to favor their colonization and survival. Study of this field, which has become known as cellular microbiology, has revealed much about epithelial cell physiology, bacterial colonization and pathogenic strategies, and innate host responses.
{"title":"Illuminating the oral microbiome: cellular microbiology.","authors":"Richard J Lamont, Daniel P Miller, Juhi Bagaitkar","doi":"10.1093/femsre/fuad045","DOIUrl":"10.1093/femsre/fuad045","url":null,"abstract":"<p><p>Epithelial cells line mucosal surfaces such as in the gingival crevice and provide a barrier to the ingress of colonizing microorganisms. However, epithelial cells are more than a passive barrier to microbial intrusion, and rather constitute an interactive interface with colonizing organisms which senses the composition of the microbiome and communicates this information to the underlying cells of the innate immune system. Microorganisms, for their part, have devised means to manipulate host cell signal transduction pathways to favor their colonization and survival. Study of this field, which has become known as cellular microbiology, has revealed much about epithelial cell physiology, bacterial colonization and pathogenic strategies, and innate host responses.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10219539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In living cells, the biochemical processes such as energy provision, molecule synthesis, gene expression, and cell division take place in a confined space where the internal chemical and physical conditions are different from those in dilute solutions. The concentrations of specific molecules and the specific reactions and interactions vary for different types of cells, but a number of factors are universal and kept within limits, which we refer to as physicochemical homeostasis. For instance, the internal pH of many cell types is kept within the range of 7.0 to 7.5, the fraction of macromolecules occupies 15%-20% of the cell volume (also known as macromolecular crowding) and the ionic strength is kept within limits to prevent salting-in or salting-out effects. In this article we summarize the generic physicochemical properties of the cytoplasm of bacteria, how they are connected to the energy status of the cell, and how they affect biological processes (Fig. 1). We describe how the internal pH and proton motive force are regulated, how the internal ionic strength is kept within limits, what the impact of macromolecular crowding is on the function of enzymes and the interaction between molecules, how cells regulate their volume (and turgor), and how the cytoplasm is structured. Physicochemical homeostasis is best understood in Escherichia coli, but pioneering studies have also been performed in lactic acid bacteria.
{"title":"Physicochemical homeostasis in bacteria.","authors":"Bert Poolman","doi":"10.1093/femsre/fuad033","DOIUrl":"10.1093/femsre/fuad033","url":null,"abstract":"<p><p>In living cells, the biochemical processes such as energy provision, molecule synthesis, gene expression, and cell division take place in a confined space where the internal chemical and physical conditions are different from those in dilute solutions. The concentrations of specific molecules and the specific reactions and interactions vary for different types of cells, but a number of factors are universal and kept within limits, which we refer to as physicochemical homeostasis. For instance, the internal pH of many cell types is kept within the range of 7.0 to 7.5, the fraction of macromolecules occupies 15%-20% of the cell volume (also known as macromolecular crowding) and the ionic strength is kept within limits to prevent salting-in or salting-out effects. In this article we summarize the generic physicochemical properties of the cytoplasm of bacteria, how they are connected to the energy status of the cell, and how they affect biological processes (Fig. 1). We describe how the internal pH and proton motive force are regulated, how the internal ionic strength is kept within limits, what the impact of macromolecular crowding is on the function of enzymes and the interaction between molecules, how cells regulate their volume (and turgor), and how the cytoplasm is structured. Physicochemical homeostasis is best understood in Escherichia coli, but pioneering studies have also been performed in lactic acid bacteria.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":10.1,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/0b/fuad033.PMC10368375.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10231890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}