首页 > 最新文献

Expert Opinion on Drug Discovery最新文献

英文 中文
Stroke genetics and how it Informs novel drug discovery 中风遗传学及其对新药研发的启示
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-04 DOI: 10.1080/17460441.2024.2324916
Julija Valančienė, Kazimieras Melaika, Aleksandra Šliachtenko, Kamilė Šiaurytė-Jurgelėnė, Aleksandra Ekkert, Dalius Jatužis
Stroke is one of the main causes of death and disability worldwide. Nevertheless, despite the global burden of this disease, our understanding is limited and there is still a lack of highly efficie...
中风是导致全球死亡和残疾的主要原因之一。然而,尽管这种疾病给全球带来了沉重负担,但我们对它的了解仍然有限,而且仍然缺乏高效的治疗方法。
{"title":"Stroke genetics and how it Informs novel drug discovery","authors":"Julija Valančienė, Kazimieras Melaika, Aleksandra Šliachtenko, Kamilė Šiaurytė-Jurgelėnė, Aleksandra Ekkert, Dalius Jatužis","doi":"10.1080/17460441.2024.2324916","DOIUrl":"https://doi.org/10.1080/17460441.2024.2324916","url":null,"abstract":"Stroke is one of the main causes of death and disability worldwide. Nevertheless, despite the global burden of this disease, our understanding is limited and there is still a lack of highly efficie...","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":"144 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-high-throughput mass spectrometry in drug discovery: fundamentals and recent advances. 药物发现中的超高通量质谱法:基本原理和最新进展。
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2023-12-19 DOI: 10.1080/17460441.2023.2293153
Jon D Williams, Fan Pu, James W Sawicki, Nathaniel L Elsen

Introduction: Ultra-high-throughput mass spectrometry, uHT-MS, is a technology that utilizes ionization and sample delivery technologies optimized to enable sampling from well plates at > 1 sample per second. These technologies do not need a chromatographic separation step and can be utilized in a wide variety of assays to detect a broad range of analytes including small molecules, lipids, and proteins.

Areas covered: This manuscript provides a brief historical review of high-throughput mass spectrometry and the recently developed technologies that have enabled uHT-MS. The report also provides examples and references on how uHT-MS has been used in biochemical and chemical assays, nuisance compound profiling, protein analysis and high throughput experimentation for chemical synthesis.

Expert opinion: The fast analysis time provided by uHT-MS is transforming how biochemical and chemical assays are performed in drug discovery. The potential to associate phenotypic responses produced by 1000's of compound treatments with changes in endogenous metabolite and lipid signals is becoming feasible. With the augmentation of simple, fast, high-throughput sample preparation, the scope of uHT-MS usage will increase. However, it likely will not supplant LC-MS for analyses that require low detection limits from complex matrices or characterization of complex biotherapeutics such as antibody-drug conjugates.

简介超高通量质谱(uHT-MS)是一种利用电离和样品传输技术的技术,该技术经过优化,能够以大于每秒 1 个样品的速度从孔板取样。这些技术不需要色谱分离步骤,可用于多种检测方法,检测包括小分子、脂类和蛋白质在内的多种分析物:本手稿简要回顾了高通量质谱法的历史以及最近开发的 uHT-MS 技术。报告还提供了有关 uHT-MS 如何用于生化和化学分析、有害化合物分析、蛋白质分析和化学合成高通量实验的实例和参考文献:uHT-MS提供的快速分析时间正在改变药物发现中生化和化学分析的方式。将 1000 种化合物处理所产生的表型反应与内源性代谢物和脂质信号的变化联系起来的可能性正在变得可行。随着简单、快速、高通量样品制备技术的发展,uHT-MS 的应用范围将会扩大。不过,对于需要从复杂基质中获得低检测限的分析或复杂生物治疗药物(如抗体-药物共轭物)的表征,uHT-MS 可能无法取代 LC-MS。
{"title":"Ultra-high-throughput mass spectrometry in drug discovery: fundamentals and recent advances.","authors":"Jon D Williams, Fan Pu, James W Sawicki, Nathaniel L Elsen","doi":"10.1080/17460441.2023.2293153","DOIUrl":"10.1080/17460441.2023.2293153","url":null,"abstract":"<p><strong>Introduction: </strong>Ultra-high-throughput mass spectrometry, uHT-MS, is a technology that utilizes ionization and sample delivery technologies optimized to enable sampling from well plates at > 1 sample per second. These technologies do not need a chromatographic separation step and can be utilized in a wide variety of assays to detect a broad range of analytes including small molecules, lipids, and proteins.</p><p><strong>Areas covered: </strong>This manuscript provides a brief historical review of high-throughput mass spectrometry and the recently developed technologies that have enabled uHT-MS. The report also provides examples and references on how uHT-MS has been used in biochemical and chemical assays, nuisance compound profiling, protein analysis and high throughput experimentation for chemical synthesis.</p><p><strong>Expert opinion: </strong>The fast analysis time provided by uHT-MS is transforming how biochemical and chemical assays are performed in drug discovery. The potential to associate phenotypic responses produced by 1000's of compound treatments with changes in endogenous metabolite and lipid signals is becoming feasible. With the augmentation of simple, fast, high-throughput sample preparation, the scope of uHT-MS usage will increase. However, it likely will not supplant LC-MS for analyses that require low detection limits from complex matrices or characterization of complex biotherapeutics such as antibody-drug conjugates.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"291-301"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in ion channel high throughput screening: where are we in 2023? 离子通道高通量筛选的进展:2023 年我们在哪里?
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2023-12-18 DOI: 10.1080/17460441.2023.2294948
Mark L Dallas, Damian Bell

Introduction: Automated Patch Clamp (APC) technology has become an integral element in ion channel research, drug discovery and development pipelines to overcome the use of the highly time-consuming manual patch clamp (MPC) procedures. This automated technology offers increased throughput and promises a new model in obtaining ion channel recordings, which has significant relevance to the development of novel therapies and safety profiling of candidate therapeutic compounds.

Areas covered: This article reviews the recent innovations in APC technology, including platforms, and highlights how they have facilitated usage in both industry and academia. The review also provides an overview of the ion channel research endeavors and how APC platforms have contributed to the understanding of ion channel research, pharmacological tools and therapeutics. Furthermore, the authors provide their opinion on the challenges and goals for APC technology going forward to accelerate academic research and drug discovery across a host of therapeutic areas.

Expert opinion: It is clear that APC technology has progressed drug discovery programs, specifically in the field of neuroscience and cardiovascular research. The challenge for the future is to keep pace with fundamental research and improve translation of the large datasets obtained.

简介自动膜片钳(APC)技术已成为离子通道研究、药物发现和开发管道中不可或缺的元素,可克服使用非常耗时的手动膜片钳(MPC)程序的问题。这种自动化技术提高了通量,有望成为获取离子通道记录的新模式,对新型疗法的开发和候选治疗化合物的安全性分析具有重要意义:本文回顾了 APC 技术(包括平台)的最新创新,并重点介绍了这些技术如何促进工业界和学术界的应用。文章还概述了离子通道研究工作,以及 APC 平台如何促进了对离子通道研究、药理学工具和疗法的理解。此外,作者还就 APC 技术在加速众多治疗领域的学术研究和药物发现方面所面临的挑战和未来目标提出了自己的看法:显然,APC 技术已经推动了药物发现项目,特别是在神经科学和心血管研究领域。未来的挑战是如何跟上基础研究的步伐,并更好地转化所获得的大型数据集。
{"title":"Advances in ion channel high throughput screening: where are we in 2023?","authors":"Mark L Dallas, Damian Bell","doi":"10.1080/17460441.2023.2294948","DOIUrl":"10.1080/17460441.2023.2294948","url":null,"abstract":"<p><strong>Introduction: </strong>Automated Patch Clamp (APC) technology has become an integral element in ion channel research, drug discovery and development pipelines to overcome the use of the highly time-consuming manual patch clamp (MPC) procedures. This automated technology offers increased throughput and promises a new model in obtaining ion channel recordings, which has significant relevance to the development of novel therapies and safety profiling of candidate therapeutic compounds.</p><p><strong>Areas covered: </strong>This article reviews the recent innovations in APC technology, including platforms, and highlights how they have facilitated usage in both industry and academia. The review also provides an overview of the ion channel research endeavors and how APC platforms have contributed to the understanding of ion channel research, pharmacological tools and therapeutics. Furthermore, the authors provide their opinion on the challenges and goals for APC technology going forward to accelerate academic research and drug discovery across a host of therapeutic areas.</p><p><strong>Expert opinion: </strong>It is clear that APC technology has progressed drug discovery programs, specifically in the field of neuroscience and cardiovascular research. The challenge for the future is to keep pace with fundamental research and improve translation of the large datasets obtained.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"331-337"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SH-SY5Y cell line: a valuable tool for Parkinson's disease drug discovery. SH-SY5Y 细胞系:发现帕金森病药物的重要工具。
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2023-12-19 DOI: 10.1080/17460441.2023.2293158
Manisha Pandey, Varnita Karmakar, Ankit Majie, Monika Dwivedi, Shadab Md, Bapi Gorain

Introduction: Owing to limited efficient treatment strategies for highly prevalent and distressing Parkinson's disease (PD), an impending need emerged for deciphering new modes and mechanisms for effective management. SH-SY5Y-based in vitro neuronal models have emerged as a new possibility for the elucidation of cellular and molecular processes in the pathogenesis of PD. SH-SY5Y cells are of human origin, adhered to catecholaminergic neuronal attributes, which consequences in imparting wide acceptance and significance to this model over conventional in vitro PD models for high-throughput screening of therapeutics.

Areas covered: Herein, the authors review the SH-SY5Y cell line and its value to PD research. The authors also provide the reader with their expert perspectives on how these developments can lead to the development of new impactful therapeutics.

Expert opinion: Encouraged by recent research on SH-SY5Y cell lines, it was envisaged that this in vitro model can serve as a primary model for assessing efficacy and toxicity of new therapeutics as well as for nanocarriers' capacity in delivering therapeutic agents across BBB. Considering the proximity with human neuronal environment as in pathogenic PD conditions, SH-SY5Y cell lines vindicated consistency and reproducibility in experimental results. Accordingly, exploitation of this standardized SH-SY5Y cell line can fast-track the drug discovery and development path for novel therapeutics.

导言:由于帕金森病(Parkinson's disease,PD)发病率高且令人痛苦,但有效的治疗策略有限,因此迫切需要破译有效治疗的新模式和新机制。基于 SH-SY5Y 的体外神经元模型已成为阐明帕金森病发病机制中细胞和分子过程的一种新的可能性。SH-SY5Y细胞来源于人类,附着于儿茶酚胺能神经元属性,与传统的体外PD模型相比,该模型在高通量筛选治疗药物方面被广泛接受并具有重要意义:在本文中,作者回顾了 SH-SY5Y 细胞系及其在帕金森病研究中的价值。作者还以专家的视角向读者介绍了这些研究进展如何促进具有影响力的新疗法的开发:受到最近对SH-SY5Y细胞系研究的鼓舞,人们设想这种体外模型可以作为评估新疗法疗效和毒性以及纳米载体跨BBB递送治疗药物能力的主要模型。考虑到SH-SY5Y细胞系与致病性帕金森病条件下的人类神经元环境相似,它证明了实验结果的一致性和可重复性。因此,利用这种标准化的SH-SY5Y细胞系可以加快新型疗法的药物发现和开发进程。
{"title":"The SH-SY5Y cell line: a valuable tool for Parkinson's disease drug discovery.","authors":"Manisha Pandey, Varnita Karmakar, Ankit Majie, Monika Dwivedi, Shadab Md, Bapi Gorain","doi":"10.1080/17460441.2023.2293158","DOIUrl":"10.1080/17460441.2023.2293158","url":null,"abstract":"<p><strong>Introduction: </strong>Owing to limited efficient treatment strategies for highly prevalent and distressing Parkinson's disease (PD), an impending need emerged for deciphering new modes and mechanisms for effective management. SH-SY5Y-based <i>in vitro</i> neuronal models have emerged as a new possibility for the elucidation of cellular and molecular processes in the pathogenesis of PD. SH-SY5Y cells are of human origin, adhered to catecholaminergic neuronal attributes, which consequences in imparting wide acceptance and significance to this model over conventional <i>in vitro</i> PD models for high-throughput screening of therapeutics.</p><p><strong>Areas covered: </strong>Herein, the authors review the SH-SY5Y cell line and its value to PD research. The authors also provide the reader with their expert perspectives on how these developments can lead to the development of new impactful therapeutics.</p><p><strong>Expert opinion: </strong>Encouraged by recent research on SH-SY5Y cell lines, it was envisaged that this <i>in vitro</i> model can serve as a primary model for assessing efficacy and toxicity of new therapeutics as well as for nanocarriers' capacity in delivering therapeutic agents across BBB. Considering the proximity with human neuronal environment as in pathogenic PD conditions, SH-SY5Y cell lines vindicated consistency and reproducibility in experimental results. Accordingly, exploitation of this standardized SH-SY5Y cell line can fast-track the drug discovery and development path for novel therapeutics.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"303-316"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What is the future of click chemistry in drug discovery and development? 点击化学在药物研发中的前景如何?
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2024-01-12 DOI: 10.1080/17460441.2024.2302151
Ana C Amorim, Anthony J Burke

Introduction: The concept of click chemistry was introduced in 2001 as an effective, efficient, and sustainable approach to making functional groups harnessing the thermodynamic properties of a set of known chemical reactions that are based on nature. Some of the most common examples include reactions that produce 1,2,3-triazoles, which have been used with great success in drug discovery and development, and in chemical biology. The reactions unite two molecules quickly and irreversibly, and the reactions can be performed inside living cells, without harming the cell.

Areas covered: The main focus of this perspective is the future of click chemistry in drug discovery and development, exemplified by novel click chemistry approaches and other aspects of the drug development enterprise, like SPAAC and analogous techniques, PROTACs, as well as diversity-oriented click chemistry.

Expert opinion: Drug discovery and development has benefited enormously from the amazing advances that have been made in the field of click chemistry since 2001. The methods most likely to have the most future applications include metal-catalyzed azide-alkyne cycloadditions giving 1,2,3-triazoles, SPAAC for medical diagnostics and vaccine development, other congeners, Sulfur-Fluoride Exchange (SuFEx) and Diversity-Oriented Clicking (DOC), a concept with diverse molecular methodology with the potential for obtaining extensive molecular diversity.

简介点击化学的概念于 2001 年提出,它是一种有效、高效和可持续的方法,利用一系列基于自然界的已知化学反应的热力学特性来制造功能基团。一些最常见的例子包括生成 1,2,3-三唑的反应,这种反应在药物发现和开发以及化学生物学方面取得了巨大成功。这些反应能快速、不可逆地将两个分子结合在一起,而且反应可以在活细胞内进行,不会对细胞造成伤害:本视角主要关注药物发现和开发中点击化学的未来,以新型点击化学方法和药物开发企业的其他方面为例,如 SPAAC 和类似技术、PROTAC,以及以多样性为导向的点击化学:自 2001 年以来,点击化学领域取得了令人惊叹的进展,药物发现和开发从中受益匪浅。未来最有可能应用的方法包括金属催化叠氮-炔环化反应生成 1,2,3-三唑、用于医疗诊断和疫苗开发的 SPAAC、其他同系物、氟化硫交换(SuFEx)和以多样性为导向的点击化学(DOC),后者是一种具有多种分子方法的概念,具有获得广泛分子多样性的潜力。
{"title":"What is the future of click chemistry in drug discovery and development?","authors":"Ana C Amorim, Anthony J Burke","doi":"10.1080/17460441.2024.2302151","DOIUrl":"10.1080/17460441.2024.2302151","url":null,"abstract":"<p><strong>Introduction: </strong>The concept of click chemistry was introduced in 2001 as an effective, efficient, and sustainable approach to making functional groups harnessing the thermodynamic properties of a set of known chemical reactions that are based on nature. Some of the most common examples include reactions that produce 1,2,3-triazoles, which have been used with great success in drug discovery and development, and in chemical biology. The reactions unite two molecules quickly and irreversibly, and the reactions can be performed inside living cells, without harming the cell.</p><p><strong>Areas covered: </strong>The main focus of this perspective is the future of click chemistry in drug discovery and development, exemplified by novel click chemistry approaches and other aspects of the drug development enterprise, like SPAAC and analogous techniques, PROTACs, as well as diversity-oriented click chemistry.</p><p><strong>Expert opinion: </strong>Drug discovery and development has benefited enormously from the amazing advances that have been made in the field of click chemistry since 2001. The methods most likely to have the most future applications include metal-catalyzed azide-alkyne cycloadditions giving 1,2,3-triazoles, SPAAC for medical diagnostics and vaccine development, other congeners, Sulfur-Fluoride Exchange (SuFEx) and Diversity-Oriented Clicking (DOC), a concept with diverse molecular methodology with the potential for obtaining extensive molecular diversity.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"267-280"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing drugs optimized for both blood-brain barrier permeation and intra-cerebral partition. 设计同时具有血脑屏障渗透性和脑内分配性的最佳药物。
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2023-12-25 DOI: 10.1080/17460441.2023.2294118
Maria Dichiara, Giuseppe Cosentino, Giorgia Giordano, Lorella Pasquinucci, Agostino Marrazzo, Giuliana Costanzo, Emanuele Amata

Introduction: With the increasing incidence and prevalence of neurological disorders globally, there is a paramount need for new pharmacotherapies. BBB effectively protects the brain but raises a profound challenge to drug permeation, with less than 2% of most drugs reaching the CNS.

Areas covered: This article reviews aspects of the most recent design strategies, providing insights into ideas and concepts in CNS drug discovery. An overview of the products available on the market is given and why clinical trials are continuously failing is discussed.

Expert opinion: Among the available CNS drugs, small molecules account for most successful CNS therapeutics due to their ability to penetrate the BBB through passive or carrier-mediated mechanisms. The development of new CNS drugs is very difficult. To date, there is a lack of effective drugs for alleviating or even reversing the progression of brain diseases. Particularly, the use of artificial intelligence strategies, together with more appropriate animal models, may enable the design of molecules with appropriate permeation, to elicit a biological response from the neurotherapeutic target.

导言:随着全球神经系统疾病的发病率和流行率不断上升,人们迫切需要新的药物疗法。BBB能有效保护大脑,但也给药物渗透带来了巨大挑战,大多数药物只有不到2%能进入中枢神经系统:本文回顾了最新设计策略的各个方面,深入探讨了中枢神经系统药物发现的理念和概念。专家观点:在现有的中枢神经系统药物中,小分子药物和中枢神经系统药物的疗效最佳:在现有的中枢神经系统药物中,小分子药物是最成功的中枢神经系统治疗药物,因为它们能够通过被动或载体介导的机制穿透生物BB。开发新的中枢神经系统药物非常困难。迄今为止,还缺乏有效的药物来缓解甚至逆转脑部疾病的进展。尤其是人工智能策略的使用,再加上更合适的动物模型,可以设计出具有适当渗透性的分子,从而引起神经治疗靶点的生物反应。
{"title":"Designing drugs optimized for both blood-brain barrier permeation and intra-cerebral partition.","authors":"Maria Dichiara, Giuseppe Cosentino, Giorgia Giordano, Lorella Pasquinucci, Agostino Marrazzo, Giuliana Costanzo, Emanuele Amata","doi":"10.1080/17460441.2023.2294118","DOIUrl":"10.1080/17460441.2023.2294118","url":null,"abstract":"<p><strong>Introduction: </strong>With the increasing incidence and prevalence of neurological disorders globally, there is a paramount need for new pharmacotherapies. BBB effectively protects the brain but raises a profound challenge to drug permeation, with less than 2% of most drugs reaching the CNS.</p><p><strong>Areas covered: </strong>This article reviews aspects of the most recent design strategies, providing insights into ideas and concepts in CNS drug discovery. An overview of the products available on the market is given and why clinical trials are continuously failing is discussed.</p><p><strong>Expert opinion: </strong>Among the available CNS drugs, small molecules account for most successful CNS therapeutics due to their ability to penetrate the BBB through passive or carrier-mediated mechanisms. The development of new CNS drugs is very difficult. To date, there is a lack of effective drugs for alleviating or even reversing the progression of brain diseases. Particularly, the use of artificial intelligence strategies, together with more appropriate animal models, may enable the design of molecules with appropriate permeation, to elicit a biological response from the neurotherapeutic target.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"317-329"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in structure-activity relationships of HDAC inhibitors as HIV latency-reversing agents. 作为艾滋病潜伏期逆转剂的 HDAC 抑制剂的结构-活性关系研究进展。
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2024-01-23 DOI: 10.1080/17460441.2024.2305730
Samima Khatun, Sk Abdul Amin, Debasmita Choudhury, Boby Chowdhury, Tarun Jha, Shovanlal Gayen

Introduction: HIV-infected cells may rebound due to the existence of the silent HIV-infected memory CD4+ T cells (HIV latency). This HIV latency makes the disease almost incurable. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). Hence, inhibition of HDAC is considered a prime target for HIV latency reversal.

Areas covered: A brief biology and function of HDACs have been discussed to identify key points to design HDAC inhibitors (HDACis). This article summarizes recent achievements in the development of HDACis to achieve HIV latency reversal. Structure-activity relationships (SARs) of some series of compounds were also explored.

Expert opinion: Depletion of the HIV reservoir is the only way to end this deadly epidemic. HDACis are latency-reversing agents (LRA) that can be used to 'shock' the latently infected CD4+ T cells to induce them to produce viral proteins. It is interesting to note that HDAC3, which is extensively expressed in resting T cells, is specifically preferred by benzamide-containing HDACis for inhibition. Thus, the benzamide class of compounds should be explored. Nevertheless, more data on selective HDAC inhibition is needed for further development of HDACis in HIV latency reversal.

导言:由于存在沉默的艾滋病毒感染记忆 CD4+ T 细胞(艾滋病毒潜伏期),艾滋病毒感染细胞可能会反弹。这种艾滋病病毒潜伏期使这种疾病几乎无法治愈。在潜伏期,HIV 的整合前病毒 DNA 在转录上处于沉默状态,部分原因是组蛋白去乙酰化酶(HDAC)的活性。因此,抑制 HDAC 被认为是逆转 HIV 潜伏期的主要目标:本文简要讨论了 HDAC 的生物学特性和功能,以确定设计 HDAC 抑制剂(HDACis)的关键点。本文总结了最近在开发HDACis以逆转HIV潜伏期方面取得的成就。同时还探讨了一些系列化合物的结构-活性关系(SARs):耗尽艾滋病病毒库是结束这一致命流行病的唯一途径。HDACis 是一种潜伏逆转剂 (LRA),可用于 "冲击 "潜伏感染的 CD4+ T 细胞,诱导它们产生病毒蛋白。值得注意的是,静息 T 细胞中广泛表达的 HDAC3 特别容易被含苯甲酰胺的 HDACis 抑制。因此,应探索苯甲酰胺类化合物。不过,还需要更多关于选择性 HDAC 抑制的数据,以进一步开发用于逆转 HIV 潜伏期的 HDACis。
{"title":"Advances in structure-activity relationships of HDAC inhibitors as HIV latency-reversing agents.","authors":"Samima Khatun, Sk Abdul Amin, Debasmita Choudhury, Boby Chowdhury, Tarun Jha, Shovanlal Gayen","doi":"10.1080/17460441.2024.2305730","DOIUrl":"10.1080/17460441.2024.2305730","url":null,"abstract":"<p><strong>Introduction: </strong>HIV-infected cells may rebound due to the existence of the silent HIV-infected memory CD4+ T cells (HIV latency). This HIV latency makes the disease almost incurable. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). Hence, inhibition of HDAC is considered a prime target for HIV latency reversal.</p><p><strong>Areas covered: </strong>A brief biology and function of HDACs have been discussed to identify key points to design HDAC inhibitors (HDACis). This article summarizes recent achievements in the development of HDACis to achieve HIV latency reversal. Structure-activity relationships (SARs) of some series of compounds were also explored.</p><p><strong>Expert opinion: </strong>Depletion of the HIV reservoir is the only way to end this deadly epidemic. HDACis are latency-reversing agents (LRA) that can be used to 'shock' the latently infected CD4+ T cells to induce them to produce viral proteins. It is interesting to note that HDAC3, which is extensively expressed in resting T cells, is specifically preferred by benzamide-containing HDACis for inhibition. Thus, the benzamide class of compounds should be explored. Nevertheless, more data on selective HDAC inhibition is needed for further development of HDACis in HIV latency reversal.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"353-368"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139519981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vascular organs-on-chip made with patient-derived endothelial cells: technologies to transform drug discovery and disease modeling. 利用源自患者的内皮细胞制造芯片上的血管器官:改变药物发现和疾病建模的技术。
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2023-12-20 DOI: 10.1080/17460441.2023.2294947
Chloe P Whitworth, William J Polacheck

Introduction: Vascular diseases impart a tremendous burden on healthcare systems in the United States and across the world. Efforts to improve therapeutic interventions are hindered by limitations of current experimental models. The integration of patient-derived cells with organ-on-chip (OoC) technology is a promising avenue for preclinical drug screening that improves upon traditional cell culture and animal models.

Areas covered: The authors review induced pluripotent stem cells (iPSC) and blood outgrowth endothelial cells (BOEC) as two sources for patient-derived endothelial cells (EC). They summarize several studies that leverage patient-derived EC and OoC for precision disease modeling of the vasculature, with a focus on applications for drug discovery. They also highlight the utility of patient-derived EC in other translational endeavors, including ex vivo organogenesis and multi-organ-chip integration.

Expert opinion: Precision disease modeling continues to mature in the academic space, but end-use by pharmaceutical companies is currently limited. To fully realize their transformative potential, OoC systems must balance their complexity with their ability to integrate with the highly standardized and high-throughput experimentation required for drug discovery and development.

导言:血管疾病给美国和全世界的医疗保健系统带来了巨大负担。当前实验模型的局限性阻碍了改进治疗干预措施的努力。将患者来源细胞与芯片器官(OoC)技术相结合是临床前药物筛选的一个很有前景的途径,它改进了传统的细胞培养和动物模型:作者综述了诱导多能干细胞(iPSC)和血液生长内皮细胞(BOEC)这两种患者内皮细胞(EC)来源。他们总结了几项利用患者来源的内皮细胞和OoC进行血管精准疾病建模的研究,重点是药物发现方面的应用。他们还强调了患者来源的EC在其他转化工作中的实用性,包括体外器官生成和多器官芯片整合:精准疾病建模在学术领域不断走向成熟,但制药公司的终端应用目前还很有限。要充分发挥其变革潜力,OoC 系统必须在其复杂性与药物发现和开发所需的高度标准化和高通量实验整合能力之间取得平衡。
{"title":"Vascular organs-on-chip made with patient-derived endothelial cells: technologies to transform drug discovery and disease modeling.","authors":"Chloe P Whitworth, William J Polacheck","doi":"10.1080/17460441.2023.2294947","DOIUrl":"10.1080/17460441.2023.2294947","url":null,"abstract":"<p><strong>Introduction: </strong>Vascular diseases impart a tremendous burden on healthcare systems in the United States and across the world. Efforts to improve therapeutic interventions are hindered by limitations of current experimental models. The integration of patient-derived cells with organ-on-chip (OoC) technology is a promising avenue for preclinical drug screening that improves upon traditional cell culture and animal models.</p><p><strong>Areas covered: </strong>The authors review induced pluripotent stem cells (iPSC) and blood outgrowth endothelial cells (BOEC) as two sources for patient-derived endothelial cells (EC). They summarize several studies that leverage patient-derived EC and OoC for precision disease modeling of the vasculature, with a focus on applications for drug discovery. They also highlight the utility of patient-derived EC in other translational endeavors, including ex vivo organogenesis and multi-organ-chip integration.</p><p><strong>Expert opinion: </strong>Precision disease modeling continues to mature in the academic space, but end-use by pharmaceutical companies is currently limited. To fully realize their transformative potential, OoC systems must balance their complexity with their ability to integrate with the highly standardized and high-throughput experimentation required for drug discovery and development.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"339-351"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Will the hype of automated drug discovery finally be realized? 自动药物发现的热潮最终会实现吗?
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2023-12-11 DOI: 10.1080/17460441.2023.2293157
Wenqiang Cui, Shuguang Yuan
{"title":"Will the hype of automated drug discovery finally be realized?","authors":"Wenqiang Cui, Shuguang Yuan","doi":"10.1080/17460441.2023.2293157","DOIUrl":"10.1080/17460441.2023.2293157","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"259-262"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Have spirocyclic scaffolds been properly utilized in recent drug discovery efforts? 螺旋环支架在最近的药物发现工作中是否得到了适当利用?
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-03-01 Epub Date: 2024-01-18 DOI: 10.1080/17460441.2024.2305735
Erica Benedetti, Laurent Micouin
{"title":"Have spirocyclic scaffolds been properly utilized in recent drug discovery efforts?","authors":"Erica Benedetti, Laurent Micouin","doi":"10.1080/17460441.2024.2305735","DOIUrl":"10.1080/17460441.2024.2305735","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"263-266"},"PeriodicalIF":6.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Expert Opinion on Drug Discovery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1