Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (β-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of β-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.
要成功地将纤维素生物质转化为生物燃料,需要能够高效利用木糖以及细胞糊精和葡萄糖的生物。Ogataea (Hansenula) polymorpha 是天然的木糖代谢生物,也是已知的最耐高温的酵母菌之一,其最高生长温度超过 50°C。在这项工作中,通过引入编码细胞糊精转运体(CDTs)和水解纤维生物糖的胞内酶(β-葡萄糖苷酶或纤维生物糖磷酸化酶)的异源基因,构建了纤维生物糖发酵菌株,即木糖酵母 O. polymorpha BEP/cat8∆ 的改良乙醇生产菌株的衍生物。为此,β-葡萄糖苷酶基因 gh1-1、细胞糊精转运体的 CDT-1 m 和 CDT-2 m 以及 Saccharophagus degradans 中编码纤维生物糖磷酸化酶的 CBP 基因被成功地表达在 O. polymorpha 中。通过代谢工程和诱变,培育出了 BEP/cat8∆/gh1-1/CDT-1 m 和 BEP/cat8∆/CBP-1/CDT-2mAM 菌株,它们在高温酒精发酵纤维生物糖方面的参数得到了改善。该研究强调了进一步优化的必要性,以提高乙醇产量,并阐明 O. polymorpha 酵母菌中纤维生物糖代谢的复杂性。这是首次报道在 45°C 的高温酒精发酵条件下,成功培育出能够共同利用纤维生物糖、葡萄糖和木糖的稳定的多角体嗜甲耐热菌株。
{"title":"Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose.","authors":"Roksolana Vasylyshyn, Olena Dmytruk, Andriy Sybirnyy, Justyna Ruchała","doi":"10.1093/femsyr/foae007","DOIUrl":"10.1093/femsyr/foae007","url":null,"abstract":"<p><p>Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (β-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of β-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929770/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of non-Saccharomyces yeasts in winemaking is gaining traction due to their specific phenotypes of technological interest, including their unique profile of central carbon metabolites and volatile compounds. However, the lack of knowledge about their physiology hinders their industrial exploitation. The intracellular redox status, involving NAD/NADH and NADP/NADPH cofactors, is a key driver of yeast activity during fermentation, notably directing the formation of metabolites that contribute to the wine bouquet. The biosynthesis of these cofactors can be modulated by the availability of their precursors, nicotinic acid and tryptophan, and their ratio by that of thiamine. In this study, a multifactorial experiment was designed to assess the effects of these three nutrients and their interactions on the metabolic response of various wine yeast species. The data indicated that limiting concentrations of nicotinic acid led to a species-dependent decrease in intracellular NAD(H) concentrations, resulting in variations of fermentation performance and production of metabolic sinks. Thiamine limitation did not directly affect redox cofactor concentrations or balance, but influenced redox management and subsequently the production of metabolites. Overall, this study identified nicotinic acid and thiamine as key factors to consider for species-specific modulation of the metabolic footprint of wine yeasts.
{"title":"Exploring fermentative metabolic response to varying exogenous supplies of redox cofactor precursors in selected wine yeast species.","authors":"Viwe Tyibilika, Mathabatha E Setati, Audrey Bloem, Benoit Divol, Carole Camarasa","doi":"10.1093/femsyr/foae029","DOIUrl":"10.1093/femsyr/foae029","url":null,"abstract":"<p><p>The use of non-Saccharomyces yeasts in winemaking is gaining traction due to their specific phenotypes of technological interest, including their unique profile of central carbon metabolites and volatile compounds. However, the lack of knowledge about their physiology hinders their industrial exploitation. The intracellular redox status, involving NAD/NADH and NADP/NADPH cofactors, is a key driver of yeast activity during fermentation, notably directing the formation of metabolites that contribute to the wine bouquet. The biosynthesis of these cofactors can be modulated by the availability of their precursors, nicotinic acid and tryptophan, and their ratio by that of thiamine. In this study, a multifactorial experiment was designed to assess the effects of these three nutrients and their interactions on the metabolic response of various wine yeast species. The data indicated that limiting concentrations of nicotinic acid led to a species-dependent decrease in intracellular NAD(H) concentrations, resulting in variations of fermentation performance and production of metabolic sinks. Thiamine limitation did not directly affect redox cofactor concentrations or balance, but influenced redox management and subsequently the production of metabolites. Overall, this study identified nicotinic acid and thiamine as key factors to consider for species-specific modulation of the metabolic footprint of wine yeasts.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Candida tropicalis is a leading cause of nonalbicans candidemia in tropical/subtropical areas and a predominant genotype of azole-resistant C. tropicalis clinical isolates belongs to clade 4. The aim of this study was to reveal markers for rapidly identifying the predominant azole-resistant C. tropicalis genotype. We analysed XYR1, one of the six genes used in the multilocus sequence typing analysis, and SNQ2, an ATP-binding cassette transporter in 281 C. tropicalis, including 120 and 161 from Taiwan and global areas, respectively. Intriguingly, the first 4-mer of codon sequences ATRA of CTRG_05978 (96/119 versus 21/162, P < .001, at phi = 0. 679) and the SNQ2 A2977G resulting in amino acid I993V alternation (105/118 versus 12/163, P < .001, at phi = 0.81) was significantly associated with the clade 4 genotype. The sensitivity and specificity of the clade 4 genotype detection with a combination of SNPs of CTRG_05978 and SNQ2 were 0.812 and 0.994, respectively, at phi = 0.838. Furthermore, we successfully established a TaqMan SNP genotyping assay to identify the clade 4 genotype. Our findings suggest that to improve the management of C. tropicalis infections, rapidly identifying azole-resistant C. tropicalis by detecting SNPs of CTRG_05978 and SNQ2 is promising.
{"title":"Rapid identification of the predominant azole-resistant genotype in Candida tropicalis.","authors":"Kuo-Yun Tseng, Yu-Chieh Liao, Yin-Zhi Chen, Feng-Chi Chen, Feng-Jui Chen, Huey-Kang Sytwu, Li-Yun Hsieh, Chung-Yu Lan, Hsiu-Jung Lo","doi":"10.1093/femsyr/foae025","DOIUrl":"10.1093/femsyr/foae025","url":null,"abstract":"<p><p>Candida tropicalis is a leading cause of nonalbicans candidemia in tropical/subtropical areas and a predominant genotype of azole-resistant C. tropicalis clinical isolates belongs to clade 4. The aim of this study was to reveal markers for rapidly identifying the predominant azole-resistant C. tropicalis genotype. We analysed XYR1, one of the six genes used in the multilocus sequence typing analysis, and SNQ2, an ATP-binding cassette transporter in 281 C. tropicalis, including 120 and 161 from Taiwan and global areas, respectively. Intriguingly, the first 4-mer of codon sequences ATRA of CTRG_05978 (96/119 versus 21/162, P < .001, at phi = 0. 679) and the SNQ2 A2977G resulting in amino acid I993V alternation (105/118 versus 12/163, P < .001, at phi = 0.81) was significantly associated with the clade 4 genotype. The sensitivity and specificity of the clade 4 genotype detection with a combination of SNPs of CTRG_05978 and SNQ2 were 0.812 and 0.994, respectively, at phi = 0.838. Furthermore, we successfully established a TaqMan SNP genotyping assay to identify the clade 4 genotype. Our findings suggest that to improve the management of C. tropicalis infections, rapidly identifying azole-resistant C. tropicalis by detecting SNPs of CTRG_05978 and SNQ2 is promising.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Li, Wenxin Bai, Yuan Zhang, Zijian Zhang, Deguo Zhang, Naidong Shen, Jingwei Yuan, Guomiao Zhao, Xiaoyan Wang
Traditional industrial Saccharomyces cerevisiae could not metabolize xylose due to the lack of a specific enzyme system for the reaction from xylose to xylulose. This study aims to metabolically remould industrial S. cerevisiae for the purpose of utilizing both glucose and xylose with high efficiency. Heterologous gene xylA from Piromyces and homologous genes related to xylose utilization were selected to construct expression cassettes and integrated into genome. The engineered strain was domesticated with industrial material under optimizing conditions subsequently to further improve xylose utilization rates. The resulting S. cerevisiae strain ABX0928-0630 exhibits a rapid growth rate and possesses near 100% xylose utilization efficiency to produce ethanol with industrial material. Pilot-scale fermentation indicated the predominant feature of ABX0928-0630 for industrial application, with ethanol yield of 0.48 g/g sugars after 48 hours and volumetric xylose consumption rate of 0.87 g/l/h during the first 24 hours. Transcriptome analysis during the modification and domestication process revealed a significant increase in the expression level of pathways associated with sugar metabolism and sugar sensing. Meanwhile, genes related to glycerol lipid metabolism exhibited a pattern of initial increase followed by a subsequent decrease, providing a valuable reference for the construction of efficient xylose-fermenting strains.
{"title":"Construction of an economical xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation.","authors":"Fan Li, Wenxin Bai, Yuan Zhang, Zijian Zhang, Deguo Zhang, Naidong Shen, Jingwei Yuan, Guomiao Zhao, Xiaoyan Wang","doi":"10.1093/femsyr/foae001","DOIUrl":"10.1093/femsyr/foae001","url":null,"abstract":"<p><p>Traditional industrial Saccharomyces cerevisiae could not metabolize xylose due to the lack of a specific enzyme system for the reaction from xylose to xylulose. This study aims to metabolically remould industrial S. cerevisiae for the purpose of utilizing both glucose and xylose with high efficiency. Heterologous gene xylA from Piromyces and homologous genes related to xylose utilization were selected to construct expression cassettes and integrated into genome. The engineered strain was domesticated with industrial material under optimizing conditions subsequently to further improve xylose utilization rates. The resulting S. cerevisiae strain ABX0928-0630 exhibits a rapid growth rate and possesses near 100% xylose utilization efficiency to produce ethanol with industrial material. Pilot-scale fermentation indicated the predominant feature of ABX0928-0630 for industrial application, with ethanol yield of 0.48 g/g sugars after 48 hours and volumetric xylose consumption rate of 0.87 g/l/h during the first 24 hours. Transcriptome analysis during the modification and domestication process revealed a significant increase in the expression level of pathways associated with sugar metabolism and sugar sensing. Meanwhile, genes related to glycerol lipid metabolism exhibited a pattern of initial increase followed by a subsequent decrease, providing a valuable reference for the construction of efficient xylose-fermenting strains.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diethard Mattanovich, Martin Altvater, Özge Ata, Simone Bachleitner
In this article we explore the intersection of science and art through a collaboration between us scientists and the bioartists Anna Dimitriu and Alex May, focusing on the interface of yeast biotechnology and art. The collaboration, originally initiated in 2018, resulted in three major artworks: CULTURE, depicting the evolution of yeast and human societies; FERMENTING FUTURES, illustrating a synthetic autotrophic yeast and its link to lactic acid production; and WOOD SPIRIT-AMBER ACID, inspired by the VIVALDI project targeting CO2 reduction to methanol. We emphasize the reciprocal nature of the collaboration, detailing the scientific insights gained and the impact of artistic perspectives on us as researchers. We also highlight the historical connection between art and science, particularly in the Renaissance periods, and underscore the educational value of integrating art into science not only to support public engagement and science dissemination, but also to widen our own perceptions in our research.
{"title":"Fermenting the future - on the benefits of a bioart collaboration.","authors":"Diethard Mattanovich, Martin Altvater, Özge Ata, Simone Bachleitner","doi":"10.1093/femsyr/foae004","DOIUrl":"10.1093/femsyr/foae004","url":null,"abstract":"<p><p>In this article we explore the intersection of science and art through a collaboration between us scientists and the bioartists Anna Dimitriu and Alex May, focusing on the interface of yeast biotechnology and art. The collaboration, originally initiated in 2018, resulted in three major artworks: CULTURE, depicting the evolution of yeast and human societies; FERMENTING FUTURES, illustrating a synthetic autotrophic yeast and its link to lactic acid production; and WOOD SPIRIT-AMBER ACID, inspired by the VIVALDI project targeting CO2 reduction to methanol. We emphasize the reciprocal nature of the collaboration, detailing the scientific insights gained and the impact of artistic perspectives on us as researchers. We also highlight the historical connection between art and science, particularly in the Renaissance periods, and underscore the educational value of integrating art into science not only to support public engagement and science dissemination, but also to widen our own perceptions in our research.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10852986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ewelina Celińska, Paulina Korpys-Woźniak, Maria Gorczyca, Jean-Marc Nicaud
Controllable regulatory elements, like inducible, titratable promoters, are highly desired in synthetic biology toolboxes. A set of previously developed erythritol-inducible promoters along with an engineered Yarrowia lipolytica host strain were shown to be a very potent expression platform. In this study, we push the previously encountered limits of the synthetic promoters' titratability (by the number of upstream motifs) by using a compatible transcription factor, Euf1, as the promoter titrator. Overexpression of spliced EUF1 turned out to be very efficient in promoting expression from the compatible promoter, however, the erythritol-inducible character of the promoter was then lost. Analysis of the EUF1's splicing pattern suggests that the intron removal is promoted in the presence of erythritol, but is not dependent on it. The 3D structures of spliced versus unspliced Euf1 were modeled, and ligand-binding strength was calculated and compared. Furthermore, the EUF1-dependent expression profile under different chemical stimulants was investigated. Depletion of carbon source was identified as the significant factor upregulating the expression from the Euf1-dependent promoter (2-10-fold). Considering these findings and transcriptomics data, a new mechanism of the Euf1-regulated promoter action is proposed, involving a 'catabolite repression' transcription factor-Adr1, both acting on the same ERY-inducible promoter.
{"title":"Using Euf1 transcription factor as a titrator of erythritol-inducible promoters in Yarrowia lipolytica; insight into the structure, splicing, and regulation mechanism.","authors":"Ewelina Celińska, Paulina Korpys-Woźniak, Maria Gorczyca, Jean-Marc Nicaud","doi":"10.1093/femsyr/foae027","DOIUrl":"10.1093/femsyr/foae027","url":null,"abstract":"<p><p>Controllable regulatory elements, like inducible, titratable promoters, are highly desired in synthetic biology toolboxes. A set of previously developed erythritol-inducible promoters along with an engineered Yarrowia lipolytica host strain were shown to be a very potent expression platform. In this study, we push the previously encountered limits of the synthetic promoters' titratability (by the number of upstream motifs) by using a compatible transcription factor, Euf1, as the promoter titrator. Overexpression of spliced EUF1 turned out to be very efficient in promoting expression from the compatible promoter, however, the erythritol-inducible character of the promoter was then lost. Analysis of the EUF1's splicing pattern suggests that the intron removal is promoted in the presence of erythritol, but is not dependent on it. The 3D structures of spliced versus unspliced Euf1 were modeled, and ligand-binding strength was calculated and compared. Furthermore, the EUF1-dependent expression profile under different chemical stimulants was investigated. Depletion of carbon source was identified as the significant factor upregulating the expression from the Euf1-dependent promoter (2-10-fold). Considering these findings and transcriptomics data, a new mechanism of the Euf1-regulated promoter action is proposed, involving a 'catabolite repression' transcription factor-Adr1, both acting on the same ERY-inducible promoter.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marieke Warmerdam, Marcel A Vieira-Lara, Robert Mans, Jean Marc Daran, Jack T Pronk
Emerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.12 and 0.46 h-1. Seven strains were studied in aerobic, ethanol-limited chemostats (dilution rate 0.10 h-1). Saccharomyces cerevisiae and Kluyveromyces lactis, whose genomes do not encode Complex-I-type NADH dehydrogenases, showed biomass yields of 0.59 and 0.56 gbiomass gethanol-1, respectively. Different biomass yields were observed among species whose genomes do harbour Complex-I-encoding genes: Phaffomyces thermotolerans (0.58 g g-1), Pichia ethanolica (0.59 g g-1), Saturnispora dispora (0.66 g g-1), Ogataea parapolymorpha (0.67 g g-1), and Cyberlindnera jadinii (0.73 g g-1). Cyberlindnera jadinii biomass showed the highest protein content (59 ± 2%) of these yeasts. Its biomass yield corresponded to 88% of the theoretical maximum that is reached when growth is limited by assimilation rather than by energy availability. This study suggests that energy coupling of mitochondrial respiration and its regulation will become key factors for selecting and improving yeast strains for ethanol-based processes.
{"title":"Specific growth rates and growth stoichiometries of Saccharomycotina yeasts on ethanol as sole carbon and energy substrate.","authors":"Marieke Warmerdam, Marcel A Vieira-Lara, Robert Mans, Jean Marc Daran, Jack T Pronk","doi":"10.1093/femsyr/foae037","DOIUrl":"10.1093/femsyr/foae037","url":null,"abstract":"<p><p>Emerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.12 and 0.46 h-1. Seven strains were studied in aerobic, ethanol-limited chemostats (dilution rate 0.10 h-1). Saccharomyces cerevisiae and Kluyveromyces lactis, whose genomes do not encode Complex-I-type NADH dehydrogenases, showed biomass yields of 0.59 and 0.56 gbiomass gethanol-1, respectively. Different biomass yields were observed among species whose genomes do harbour Complex-I-encoding genes: Phaffomyces thermotolerans (0.58 g g-1), Pichia ethanolica (0.59 g g-1), Saturnispora dispora (0.66 g g-1), Ogataea parapolymorpha (0.67 g g-1), and Cyberlindnera jadinii (0.73 g g-1). Cyberlindnera jadinii biomass showed the highest protein content (59 ± 2%) of these yeasts. Its biomass yield corresponded to 88% of the theoretical maximum that is reached when growth is limited by assimilation rather than by energy availability. This study suggests that energy coupling of mitochondrial respiration and its regulation will become key factors for selecting and improving yeast strains for ethanol-based processes.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pexophagy is a type of autophagy that selectively degrades peroxisomes and can be classified as either macropexophagy or micropexophagy. During macropexophagy, individual peroxisomes are sequestered by pexophagosomes and transported to the vacuole for degradation, while in micropexophagy, peroxisomes are directly engulfed by the septated vacuole. To date, some autophagy-related genes (ATGs) required for pexophagy have been identified through plate-based assays performed primarily under micropexophagy-induced conditions. Here, we developed a novel high-throughput screening system using fluorescence-activated cell sorting (FACS) to identify genes required for macropexophagy. Using this system, we discovered KpATG14, a gene that could not be identified previously in the methylotrophic yeast Komagataella phaffii due to technical limitations. Microscopic and immunoblot analyses found that KpAtg14 was required for both macropexophagy and micropexophagy. We also revealed that KpAtg14 was necessary for recruitment of the downstream factor KpAtg5 at the preautophagosomal structure (PAS), and consequently, for bulk autophagy. We anticipate our assay to be used to identify novel genes that are exclusively required for macropexophagy, leading to better understanding of the physiological significance of the existing two types of autophagic degradation pathways for peroxisomes.
{"title":"A novel fluorescence-activated cell sorting (FACS)-based screening identified ATG14, the gene required for pexophagy in the methylotrophic yeast.","authors":"Kosuke Shiraishi, Yumi Arima, Motoharu Nakamura, Takumi Nakatsuji, Masahide Oku, Yasuyoshi Sakai","doi":"10.1093/femsyr/foae022","DOIUrl":"10.1093/femsyr/foae022","url":null,"abstract":"<p><p>Pexophagy is a type of autophagy that selectively degrades peroxisomes and can be classified as either macropexophagy or micropexophagy. During macropexophagy, individual peroxisomes are sequestered by pexophagosomes and transported to the vacuole for degradation, while in micropexophagy, peroxisomes are directly engulfed by the septated vacuole. To date, some autophagy-related genes (ATGs) required for pexophagy have been identified through plate-based assays performed primarily under micropexophagy-induced conditions. Here, we developed a novel high-throughput screening system using fluorescence-activated cell sorting (FACS) to identify genes required for macropexophagy. Using this system, we discovered KpATG14, a gene that could not be identified previously in the methylotrophic yeast Komagataella phaffii due to technical limitations. Microscopic and immunoblot analyses found that KpAtg14 was required for both macropexophagy and micropexophagy. We also revealed that KpAtg14 was necessary for recruitment of the downstream factor KpAtg5 at the preautophagosomal structure (PAS), and consequently, for bulk autophagy. We anticipate our assay to be used to identify novel genes that are exclusively required for macropexophagy, leading to better understanding of the physiological significance of the existing two types of autophagic degradation pathways for peroxisomes.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ljubov S Dzanaeva, Dominik Wojdyła, Dariya V Fedorovych, Justyna Ruchala, Kostyantyn V Dmytruk, Andriy A Sibirny
Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.
木质纤维素(干植物生物质)是农业和木材工业中大量廉价的不可食用残留物,具有作为生物技术工艺原料的巨大潜力。木质纤维素基质可作为发酵过程中的宝贵资源,生产出多种化学品、燃料和食品添加剂。将木质纤维素水解物转化为目标产品的成本效益的主要障碍是木质纤维素中仅次于葡萄糖的第二和第三大糖--主要戊糖木糖和 L-阿拉伯糖的代谢不良。我们研究了产黄酵母家庭念珠菌核黄素的过度合成,发现所有主要木质纤维素糖类,包括木糖和 L-阿拉伯糖,都能支持家庭念珠菌现有菌株的旺盛生长和核黄素合成。为了进一步提高木糖和木质纤维素水解物的核黄素产量,过量表达了编码木糖还原酶和木糖醇脱氢酶的基因 XYL1 和 XYL2。由此产生的菌株在使用稀释水解物的摇瓶和生物反应器中都表现出核黄素产量增加,达到 1.5 g L-1。
{"title":"Riboflavin overproduction on lignocellulose hydrolysate by the engineered yeast Candida famata.","authors":"Ljubov S Dzanaeva, Dominik Wojdyła, Dariya V Fedorovych, Justyna Ruchala, Kostyantyn V Dmytruk, Andriy A Sibirny","doi":"10.1093/femsyr/foae020","DOIUrl":"10.1093/femsyr/foae020","url":null,"abstract":"<p><p>Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Florian M Freimoser, Marina Mahler, Mark McCullough, Alexander O Brachmann, Lukas Nägeli, Maja Hilber-Bodmer, Jörn Piel, Stefan A Hoffmann, Yizhi Cai
Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.
{"title":"Heterologous pulcherrimin production in Saccharomyces cerevisiae confers inhibitory activity on Botrytis conidiation.","authors":"Florian M Freimoser, Marina Mahler, Mark McCullough, Alexander O Brachmann, Lukas Nägeli, Maja Hilber-Bodmer, Jörn Piel, Stefan A Hoffmann, Yizhi Cai","doi":"10.1093/femsyr/foad053","DOIUrl":"10.1093/femsyr/foad053","url":null,"abstract":"<p><p>Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138884786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}