首页 > 最新文献

Experimental Thermal and Fluid Science最新文献

英文 中文
Experimental investigation on aerodynamic noise and flow structures of a vibrissa-shaped cylinder 振动圆筒的气动噪声和流动结构实验研究
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-22 DOI: 10.1016/j.expthermflusci.2024.111300
Guanjiang Chen, Xiao Liu, Bin Zang, Mahdi Azarpeyvand

The noise mitigation effect of bio-inspired geometries has attracted growing attention from both research and industry, such as the vibrissa-shaped cylinder derived from the harbor seal. Experiments were conducted to investigate the far-field noise and the near-field wake of the flow past a vibrissa cylinder, a circular cylinder, and an elliptical cylinder at Re=3.6×104, in the subcritical flow regime. The frequency characteristic of the far-field acoustic pressure and the near-field velocities are analyzed. The mean and fluctuating velocities, dominant flow modes from proper orthogonal decomposition in both vertical and horizontal planes as well as the time-frequency behavior of the dominant flow structures from wavelet transform are also presented to better understand the wake dynamics and the direct relation of these flow structures with the far-field noise. The vibrissa cylinder reduces the overall sound pressure level by 13.2 dB and 8.3 dB compared with the circular and the elliptical cylinders, respectively, with a remarkable attenuation of the tonal peak associated with vortex shedding. From the detailed velocity measurements in multiple wake planes, it is clearly observed that vortex shedding of the vibrissa cylinder is weaker in strength and significantly less coherent in the spanwise direction than the other two cylinder cases, accompanied by more transient changes. The results also reveal the distinct flow behaviors behind the nodal and saddle planes of the vibrissa cylinder, further contributing to this three-dimensional vortex shedding. Consequently, the power spectral density of the tonal peaks associated with the vortex shedding in both near-field velocities and far-field acoustic pressure are attenuated, leading to a lower noise level. Understanding the detailed flow dynamics of the vibrissa cylinder will provide useful insights into more efficient bio-inspired cylinder designs in noise mitigation and wake control.

生物启发几何形状的降噪效果在研究和工业领域都引起了越来越多的关注,例如源自港海豹的振子形圆柱体。实验研究了在 Re=3.6×104 的次临界流动状态下,流经振动圆柱体、圆形圆柱体和椭圆形圆柱体的远场噪声和近场唤醒。分析了远场声压和近场速度的频率特性。为了更好地理解尾流动力学以及这些流动结构与远场噪声的直接关系,还介绍了垂直和水平面适当正交分解得到的平均速度和波动速度、主要流动模式,以及小波变换得到的主要流动结构的时频行为。与圆形和椭圆形圆筒相比,振弦圆筒的整体声压级分别降低了 13.2 分贝和 8.3 分贝,与涡流脱落相关的音调峰值也显著减弱。从多个尾流平面的详细速度测量结果可以清楚地看出,与其他两个圆筒相比,振弦圆筒的涡流脱落强度较弱,在跨度方向上的一致性也明显较差,同时伴随着更多的瞬态变化。结果还揭示了振动圆柱体节点平面和鞍形平面后的不同流动行为,进一步加剧了这种三维涡流脱落。因此,近场速度和远场声压中与涡流脱落相关的音调峰值的功率谱密度被减弱,从而降低了噪声水平。了解振膜气缸的详细流动动力学,将为在噪声减缓和尾流控制方面采用更有效的生物启发气缸设计提供有益的启示。
{"title":"Experimental investigation on aerodynamic noise and flow structures of a vibrissa-shaped cylinder","authors":"Guanjiang Chen,&nbsp;Xiao Liu,&nbsp;Bin Zang,&nbsp;Mahdi Azarpeyvand","doi":"10.1016/j.expthermflusci.2024.111300","DOIUrl":"10.1016/j.expthermflusci.2024.111300","url":null,"abstract":"<div><p>The noise mitigation effect of bio-inspired geometries has attracted growing attention from both research and industry, such as the vibrissa-shaped cylinder derived from the harbor seal. Experiments were conducted to investigate the far-field noise and the near-field wake of the flow past a vibrissa cylinder, a circular cylinder, and an elliptical cylinder at <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, in the subcritical flow regime. The frequency characteristic of the far-field acoustic pressure and the near-field velocities are analyzed. The mean and fluctuating velocities, dominant flow modes from proper orthogonal decomposition in both vertical and horizontal planes as well as the time-frequency behavior of the dominant flow structures from wavelet transform are also presented to better understand the wake dynamics and the direct relation of these flow structures with the far-field noise. The vibrissa cylinder reduces the overall sound pressure level by 13.2 dB and 8.3 dB compared with the circular and the elliptical cylinders, respectively, with a remarkable attenuation of the tonal peak associated with vortex shedding. From the detailed velocity measurements in multiple wake planes, it is clearly observed that vortex shedding of the vibrissa cylinder is weaker in strength and significantly less coherent in the spanwise direction than the other two cylinder cases, accompanied by more transient changes. The results also reveal the distinct flow behaviors behind the nodal and saddle planes of the vibrissa cylinder, further contributing to this three-dimensional vortex shedding. Consequently, the power spectral density of the tonal peaks associated with the vortex shedding in both near-field velocities and far-field acoustic pressure are attenuated, leading to a lower noise level. Understanding the detailed flow dynamics of the vibrissa cylinder will provide useful insights into more efficient bio-inspired cylinder designs in noise mitigation and wake control.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"160 ","pages":"Article 111300"},"PeriodicalIF":2.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0894177724001699/pdfft?md5=c48741bb2307725a50c07a375ef6738c&pid=1-s2.0-S0894177724001699-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Second order and transverse flow visualization through three-dimensional particle image velocimetry in millimetric ducts 通过毫米管道中的三维粒子图像测速仪实现二阶和横向流动可视化
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-20 DOI: 10.1016/j.expthermflusci.2024.111296
N.C. Harte , D. Obrist , M. Versluis , E. Groot Jebbink , M. Caversaccio , W. Wimmer , G. Lajoinie

Despite recent advances in 3D particle image velocimetry (PIV), challenges remain in measuring small-scale 3D flows, in particular flows with large dynamic range. This study presents a scanning 3D-PIV system tailored for oscillatory flows, capable of resolving transverse flows less than a percent of the axial flow amplitude. The system was applied to visualize transverse flows in millimetric straight, toroidal, and twisted ducts. Two PIV analysis techniques, stroboscopic and semi-Lagrangian PIV, enable the quantification of net motion as well as time-resolved axial and transverse velocities. The experimental results closely align with computational fluid dynamics (CFD) simulations performed in a digitized representation of the experimental model. The proposed method allows the examination of periodic flows in systems down to microscopic scale and is particularly well-suited for applications that cannot be scaled up due to their complex, multi-physics nature.

尽管三维粒子图像测速仪(PIV)取得了最新进展,但在测量小尺度三维流动,尤其是大动态范围流动方面仍存在挑战。本研究介绍了一种专为摆动流定制的扫描式三维粒子图像测速系统,该系统能够分辨小于轴向流振幅百分之一的横向流。该系统被用于观察毫米直管、环形管和扭曲管中的横向流动。通过频闪和半拉格朗日 PIV 两种 PIV 分析技术,可以量化净运动以及时间分辨的轴向和横向速度。实验结果与在实验模型的数字化表示中进行的计算流体动力学(CFD)模拟密切吻合。所提出的方法可以检查微观尺度下系统中的周期性流动,尤其适用于因其复杂性和多物理特性而无法放大的应用。
{"title":"Second order and transverse flow visualization through three-dimensional particle image velocimetry in millimetric ducts","authors":"N.C. Harte ,&nbsp;D. Obrist ,&nbsp;M. Versluis ,&nbsp;E. Groot Jebbink ,&nbsp;M. Caversaccio ,&nbsp;W. Wimmer ,&nbsp;G. Lajoinie","doi":"10.1016/j.expthermflusci.2024.111296","DOIUrl":"10.1016/j.expthermflusci.2024.111296","url":null,"abstract":"<div><p>Despite recent advances in 3D particle image velocimetry (PIV), challenges remain in measuring small-scale 3D flows, in particular flows with large dynamic range. This study presents a scanning 3D-PIV system tailored for oscillatory flows, capable of resolving transverse flows less than a percent of the axial flow amplitude. The system was applied to visualize transverse flows in millimetric straight, toroidal, and twisted ducts. Two PIV analysis techniques, stroboscopic and semi-Lagrangian PIV, enable the quantification of net motion as well as time-resolved axial and transverse velocities. The experimental results closely align with computational fluid dynamics (CFD) simulations performed in a digitized representation of the experimental model. The proposed method allows the examination of periodic flows in systems down to microscopic scale and is particularly well-suited for applications that cannot be scaled up due to their complex, multi-physics nature.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"159 ","pages":"Article 111296"},"PeriodicalIF":2.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0894177724001651/pdfft?md5=17274ce3749be2d96bb952e13bb9566d&pid=1-s2.0-S0894177724001651-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sizing-up effect on the flow pattern and mass transfer of gas–liquid-liquid three-phase flow in microchannels 微通道中气液液三相流的流动模式和传质的大小效应
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-18 DOI: 10.1016/j.expthermflusci.2024.111299
Weihang Huang, Xianggui Ren, Longzhen Xiao, Kunrong Zheng, Xue-hui Ge, Xiaoda Wang

One of the important strategies for the scale-up of microreactors is sizing-up, which is conducted by increasing the hydrodynamic diameter of microreactors. However, the interphase mass transfer deteriorates seriously in the sizing-up. This work aimed to probe the possibility of adding an inert gas phase to offset the adverse effect of microreactor sizing-up on the mass transfer between two immiscible liquid phases. Using a high-speed camera, four flow patterns were observed in three capillaries with their diameters ranging from 0.8 to 3.0 mm. Empirical equations were given to describe the flow-pattern transitions. The influencing mechanism of the capillary diameter on the liquid–liquid mass transfer was analyzed by taking the effect of adding the inert gas phase into account. Finally, the evaluation of the energy consumption suggested that adding an inert gas phase to agitate the flow could utilize the input energy more efficiently to intensify the liquid–liquid mass transfer in the microchannel with a larger hydrodynamic diameter. Therefore, the method of inert gas agitation is a meritorious assistive technology in the sizing-up of microreactors.

微反应器放大的重要策略之一是通过增大微反应器的流体力学直径来实现放大。然而,在放大过程中,相间传质会严重恶化。这项研究旨在探索加入惰性气体相的可能性,以抵消微反应器增大对两种不相溶液相之间传质的不利影响。使用高速照相机在三个直径为 0.8 至 3.0 毫米的毛细管中观察了四种流动模式。给出了描述流动模式转换的经验方程。考虑到添加惰性气体相的影响,分析了毛细管直径对液液传质的影响机制。最后,对能量消耗的评估表明,加入惰性气体相搅拌流动可以更有效地利用输入的能量,从而强化流体力学直径较大的微通道中的液-液传质。因此,惰性气体搅拌法是微反应器选型的一项有效辅助技术。
{"title":"Sizing-up effect on the flow pattern and mass transfer of gas–liquid-liquid three-phase flow in microchannels","authors":"Weihang Huang,&nbsp;Xianggui Ren,&nbsp;Longzhen Xiao,&nbsp;Kunrong Zheng,&nbsp;Xue-hui Ge,&nbsp;Xiaoda Wang","doi":"10.1016/j.expthermflusci.2024.111299","DOIUrl":"10.1016/j.expthermflusci.2024.111299","url":null,"abstract":"<div><p>One of the important strategies for the scale-up of microreactors is sizing-up, which is conducted by increasing the hydrodynamic diameter of microreactors. However, the interphase mass transfer deteriorates seriously in the sizing-up. This work aimed to probe the possibility of adding an inert gas phase to offset the adverse effect of microreactor sizing-up on the mass transfer between two immiscible liquid phases. Using a high-speed camera, four flow patterns were observed in three capillaries with their diameters ranging from 0.8 to 3.0 mm. Empirical equations were given to describe the flow-pattern transitions. The influencing mechanism of the capillary diameter on the liquid–liquid mass transfer was analyzed by taking the effect of adding the inert gas phase into account. Finally, the evaluation of the energy consumption suggested that adding an inert gas phase to agitate the flow could utilize the input energy more efficiently to intensify the liquid–liquid mass transfer in the microchannel with a larger hydrodynamic diameter. Therefore, the method of inert gas agitation is a meritorious assistive technology in the sizing-up of microreactors.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"159 ","pages":"Article 111299"},"PeriodicalIF":2.8,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of slit geometric parameters on spray characteristics of double-slit pintle injectors 狭缝几何参数对双狭缝喷射器喷雾特性的影响
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-17 DOI: 10.1016/j.expthermflusci.2024.111297
Inho Kim , Ingyu Lee , Daewoong Shim , Eunkwang Lee , Youngbin Yoon

Pintle injectors have garnered significant research attention in recent years, particularly for their applicability in reusable launch vehicles, owing to their wide thrust control range and excellent combustion stability. While research has explored the characteristics of pintle injectors in the context of developing these components for actual engine applications, studies focusing on the effects of design parameters on injector performance have been limited. This study investigated the effects of slit geometric parameters, specifically the blockage factor (BF) and slit area ratio (γ), on the spray characteristics of double-slit pintle injectors. Cold-flow tests were conducted using planar pintle injectors with water and ethanol as simulants. The spray angle and Sauter mean diameter (SMD) were measured using the shadowgraph technique, and the distribution of mass flow rate and mixture ratio was analyzed using a mechanical patternator. The experimental results revealed that two distinct streams were injected at different angles from each row of slits, resulting in a division of spray shape, SMD, and mass flow distribution into three regions based on the two streams. These spray angles, termed primary and secondary spray angles, were quantified as functions of the local momentum ratio, determined by BF and γ. To correlate the spray characteristics with combustion performance, mixing quality and a representative droplet size metric, the integral Sauter mean diameter (ID32), were presented. The study found that higher values of BF and γ corresponded to improved mixing quality.

凤尾喷射器因其宽广的推力控制范围和出色的燃烧稳定性,近年来引起了大量研究的关注,特别是其在可重复使用运载火箭中的应用。虽然研究人员在开发用于实际发动机应用的部件时探索了针形喷油器的特性,但侧重于设计参数对喷油器性能影响的研究却很有限。本研究调查了狭缝几何参数,特别是阻塞系数(BF)和狭缝面积比(γ)对双狭缝棘针喷油器喷雾特性的影响。以水和乙醇为模拟物的平面针形喷射器进行了冷流试验。使用阴影图技术测量了喷雾角度和萨特平均直径(SMD),并使用机械图形器分析了质量流量和混合比的分布。实验结果表明,两股不同的气流以不同的角度从每一排狭缝中喷射出来,从而根据这两股气流将喷雾形状、SMD 和质量流量分布划分为三个区域。为了将喷雾特性与燃烧性能、混合质量和具有代表性的液滴尺寸指标--积分萨特平均直径(ID32)联系起来,对这些喷雾角度(称为主喷雾角和次喷雾角)进行了量化,作为由 BF 和 γ 确定的局部动量比的函数。研究发现,BF 和 γ 值越高,混合质量越好。
{"title":"Effects of slit geometric parameters on spray characteristics of double-slit pintle injectors","authors":"Inho Kim ,&nbsp;Ingyu Lee ,&nbsp;Daewoong Shim ,&nbsp;Eunkwang Lee ,&nbsp;Youngbin Yoon","doi":"10.1016/j.expthermflusci.2024.111297","DOIUrl":"10.1016/j.expthermflusci.2024.111297","url":null,"abstract":"<div><p>Pintle injectors have garnered significant research attention in recent years, particularly for their applicability in reusable launch vehicles, owing to their wide thrust control range and excellent combustion stability. While research has explored the characteristics of pintle injectors in the context of developing these components for actual engine applications, studies focusing on the effects of design parameters on injector performance have been limited. This study investigated the effects of slit geometric parameters, specifically the blockage factor (<span><math><mi>B</mi><mi>F</mi></math></span>) and slit area ratio (<span><math><mi>γ</mi></math></span>), on the spray characteristics of double-slit pintle injectors. Cold-flow tests were conducted using planar pintle injectors with water and ethanol as simulants. The spray angle and Sauter mean diameter (SMD) were measured using the shadowgraph technique, and the distribution of mass flow rate and mixture ratio was analyzed using a mechanical patternator. The experimental results revealed that two distinct streams were injected at different angles from each row of slits, resulting in a division of spray shape, SMD, and mass flow distribution into three regions based on the two streams. These spray angles, termed primary and secondary spray angles, were quantified as functions of the local momentum ratio, determined by <span><math><mi>B</mi><mi>F</mi></math></span> and <span><math><mi>γ</mi></math></span>. To correlate the spray characteristics with combustion performance, mixing quality and a representative droplet size metric, the integral Sauter mean diameter (<span><math><mi>I</mi><msub><mi>D</mi><mn>32</mn></msub></math></span>), were presented. The study found that higher values of <span><math><mrow><mi>BF</mi></mrow></math></span> and <span><math><mi>γ</mi></math></span> corresponded to improved mixing quality.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"160 ","pages":"Article 111297"},"PeriodicalIF":2.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Condensation flow inside tubes: A review of heat transfer coefficient measurement techniques, experimental databases and prediction methods 管内冷凝流:传热系数测量技术、实验数据库和预测方法综述
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-16 DOI: 10.1016/j.expthermflusci.2024.111298
Daniel Borba Marchetto , Maurício Mani Marinheiro , Arlindo Theodoro de Souza Netto , Gabriel Furlan , Gherhardt Ribatski , John Richard Thome , Cristiano Bigonha Tibiriçá

Heat transfer coefficient (HTC) is one of the most important parameters for modeling forced flow condensation inside tubes. This manuscript presents an extensive review of HTC measurement techniques, experimental databases, and prediction methods for in-tube flow condensation to evidence the latest literature achievements and identify new research opportunities. HTC measurement techniques were reviewed, classified, and the most used techniques were identified along with their main characteristics. Experimental databases from the literature were grouped for analysis, totaling 15,021 data points for channel diameters ranging from 0.067 to 20.8 mm, 82 working fluids, horizontal and vertical flow directions, and 4 different tube wall materials for smooth tubes. The measurement techniques and uncertainties of individual databases were identified and discussed. Recently identified trends are the increasing interest in low GWP refrigerants, new fluid mixtures, and experiments for small-diameter channels. Many of these experimental conditions were not incorporated or tested on previous correlations, representing an extrapolation when doing so. A total of 34 prediction methods, proposed from 1958 to 2024, were evaluated and compared to this broad database to verify their prediction errors and physical fundamentals. The best predictions obtained a mean absolute percentage error of 23.4 %, showing that further work for minimizing the experimental uncertainties is still needed. In addition, HTC values higher than 10 kW/m2K are commonly observed in recent experiments. One of the challenges identified for new measuring techniques is the measurement of such high values of HTC while keeping low uncertainty levels. The experimental database collected in this work is available for download in the supplementary material.

传热系数(HTC)是管内强制流冷凝建模最重要的参数之一。本手稿对管内流动冷凝的 HTC 测量技术、实验数据库和预测方法进行了广泛综述,以证明最新的文献成果并确定新的研究机会。对 HTC 测量技术进行了回顾和分类,并确定了最常用的技术及其主要特点。对文献中的实验数据库进行了分组分析,共有 15,021 个数据点,涉及 0.067 至 20.8 毫米的通道直径、82 种工作流体、水平和垂直流动方向以及 4 种不同的光滑管壁材料。对各个数据库的测量技术和不确定性进行了确认和讨论。最近发现的趋势是对低全球升温潜能值制冷剂、新型混合流体以及小直径通道实验的兴趣日益浓厚。这些实验条件中有许多都没有纳入或测试以前的相关性,因此在这样做时代表了一种外推法。对从 1958 年到 2024 年提出的 34 种预测方法进行了评估,并与这个广泛的数据库进行了比较,以验证其预测误差和物理基本原理。最佳预测的平均绝对百分比误差为 23.4%,这表明仍需进一步努力将实验不确定性降至最低。此外,在最近的实验中普遍观察到 HTC 值高于 10 kW/m2K。新测量技术面临的挑战之一就是在测量如此高的 HTC 值的同时保持较低的不确定性水平。这项工作中收集的实验数据库可在补充材料中下载。
{"title":"Condensation flow inside tubes: A review of heat transfer coefficient measurement techniques, experimental databases and prediction methods","authors":"Daniel Borba Marchetto ,&nbsp;Maurício Mani Marinheiro ,&nbsp;Arlindo Theodoro de Souza Netto ,&nbsp;Gabriel Furlan ,&nbsp;Gherhardt Ribatski ,&nbsp;John Richard Thome ,&nbsp;Cristiano Bigonha Tibiriçá","doi":"10.1016/j.expthermflusci.2024.111298","DOIUrl":"10.1016/j.expthermflusci.2024.111298","url":null,"abstract":"<div><p>Heat transfer coefficient (HTC) is one of the most important parameters for modeling forced flow condensation inside tubes. This manuscript presents an extensive review of HTC measurement techniques, experimental databases, and prediction methods for in-tube flow condensation to evidence the latest literature achievements and identify new research opportunities. HTC measurement techniques were reviewed, classified, and the most used techniques were identified along with their main characteristics. Experimental databases from the literature were grouped for analysis, totaling 15,021 data points for channel diameters ranging from 0.067 to 20.8 mm, 82 working fluids, horizontal and vertical flow directions, and 4 different tube wall materials for smooth tubes. The measurement techniques and uncertainties of individual databases were identified and discussed. Recently identified trends are the increasing interest in low GWP refrigerants, new fluid mixtures, and experiments for small-diameter channels. Many of these experimental conditions were not incorporated or tested on previous correlations, representing an extrapolation when doing so. A total of 34 prediction methods, proposed from 1958 to 2024, were evaluated and compared to this broad database to verify their prediction errors and physical fundamentals. The best predictions obtained a mean absolute percentage error of 23.4 %, showing that further work for minimizing the experimental uncertainties is still needed. In addition, HTC values higher than 10 kW/m<sup>2</sup>K are commonly observed in recent experiments. One of the challenges identified for new measuring techniques is the measurement of such high values of HTC while keeping low uncertainty levels. The experimental database collected in this work is available for download in the <span><span>supplementary material</span></span>.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"160 ","pages":"Article 111298"},"PeriodicalIF":2.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation on the aerodynamics and flow patterns of a 5:1 rectangular cylinder with spoilers 带扰流板的 5:1 矩形气缸的空气动力学和流动模式实验研究
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-15 DOI: 10.1016/j.expthermflusci.2024.111284
Shuaihang Lin, Hao Meng, Wenhan Yang, Donglai Gao

The current study experimentally investigates a passive control method for the flow field by placing spoilers symmetrically on the leading edge of a 5:1 rectangular cylinder. The Reynolds number (Re) is based on the inflow velocity and the height of the model. The length of the spoiler is equal to the span length of the model, and the width and angle are defined as w and α. At Re = 1.07 2.50×104, the surface pressure distribution of the model is obtained to initially investigate the effects of α and w on the aerodynamic characteristics. Based on the aerodynamic results, some cases are selected to reveal the control mechanism using the particle image velocimetry (PIV) technique. The proper orthogonal decomposition (POD) is adopted to analyze the POD modes and instantaneous flow. The results show that the spoiler with a certain α can suppress the aerodynamic forces of the model. Spoilers with a relative angle of 247.5° significantly reduce CL by 75 % and slightly reduce CD¯ by 5.5 %. Also, its TKE and RSS values are reduced by 56 % and 57 %, respectively. The PIV visualization shows that the spoiler affects the flow separation at the leading edge. Then, the rolling and interactions of shear layers are suppressed, making them tend to be parallel. Besides, spoilers with a relative angle of 67.5° almost eliminate the flow separation.

本研究通过在 5:1 矩形气缸的前缘对称放置扰流器,对流场的被动控制方法进行了实验研究。雷诺数(Re)基于流入速度和模型高度。扰流板的长度等于模型的跨度,宽度和角度定义为 w 和 α。在 Re = 1.07 2.50×104 时,得到了模型的表面压力分布,以初步研究 α 和 w 对气动特性的影响。在气动结果的基础上,利用粒子图像测速(PIV)技术,选择一些情况来揭示控制机制。采用适当的正交分解(POD)来分析 POD 模式和瞬时流。结果表明,具有一定 α 的扰流板可以抑制模型的空气动力。相对角为 247.5°的扰流板可显著降低 75% 的 CL′,并略微降低 5.5% 的 CD¯。此外,其 TKE 和 RSS 值也分别降低了 56 % 和 57 %。PIV 可视化结果显示,扰流板影响了前缘的气流分离。然后,剪切层的滚动和相互作用被抑制,使其趋于平行。此外,相对角度为 67.5° 的扰流板几乎消除了流动分离。
{"title":"Experimental investigation on the aerodynamics and flow patterns of a 5:1 rectangular cylinder with spoilers","authors":"Shuaihang Lin,&nbsp;Hao Meng,&nbsp;Wenhan Yang,&nbsp;Donglai Gao","doi":"10.1016/j.expthermflusci.2024.111284","DOIUrl":"10.1016/j.expthermflusci.2024.111284","url":null,"abstract":"<div><p>The current study experimentally investigates a passive control method for the flow field by placing spoilers symmetrically on the leading edge of a 5:1 rectangular cylinder. The Reynolds number (Re) is based on the inflow velocity and the height of the model. The length of the spoiler is equal to the span length of the model, and the width and angle are defined as <em>w</em> and <em>α</em>. At <span><math><mrow><mtext>Re = 1.07 2.50</mtext><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mtext>4</mtext></msup></mrow></math></span>, the surface pressure distribution of the model is obtained to initially investigate the effects of <em>α</em> and <em>w</em> on the aerodynamic characteristics. Based on the aerodynamic results, some cases are selected to reveal the control mechanism using the particle image velocimetry (PIV) technique. The proper orthogonal decomposition (POD) is adopted to analyze the POD modes and instantaneous flow. The results show that the spoiler with a certain <em>α</em> can suppress the aerodynamic forces of the model. Spoilers with a relative angle of 247.5° significantly reduce <span><math><mrow><msubsup><mtext>C</mtext><mrow><mtext>L</mtext></mrow><mo>′</mo></msubsup></mrow></math></span> by 75 % and slightly reduce <span><math><mrow><mover><mrow><msub><mtext>C</mtext><mtext>D</mtext></msub></mrow><mrow><mo>¯</mo></mrow></mover></mrow></math></span> by 5.5 %. Also, its TKE and RSS values are reduced by 56 % and 57 %, respectively. The PIV visualization shows that the spoiler affects the flow separation at the leading edge. Then, the rolling and interactions of shear layers are suppressed, making them tend to be parallel. Besides, spoilers with a relative angle of 67.5° almost eliminate the flow separation.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"160 ","pages":"Article 111284"},"PeriodicalIF":2.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laminar flow and convective heat transfer of ferrofluid in a tube under oscillating magnetic fields: Effect of magnetic phase shift 摆动磁场下铁氟龙流体在管内的层流和对流传热:磁相移的影响
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-14 DOI: 10.1016/j.expthermflusci.2024.111293
Esra Yagci, Oguz Kaan Yagci, Tulin Bali, Orhan Aydin

In this study, laminar flow and forced convective heat transfer of water-based ferrofluids flowing through a uniformly heated pipe are experimentally investigated under the presence of phase-shifted oscillating magnetic fields. To investigate the effect of phase shift on heat transfer, electromagnets are positioned along the tube, and oscillating magnetic fields are applied with various phase shift angles between opposing magnetic poles. Experiments are conducted for different Reynolds numbers (400 to 1000), magnetic field frequencies (0 Hz, 1 Hz, and 5 Hz), phase shift angles (0°, 90°, and 180°), and nanoparticle volume fractions (0.5 % and 1 %). For each parameter set, local and average Nusselt numbers, as well as pressure drop values, are determined, and the effect of applied magnetic fields on the heat transfer rate is extensively discussed. Results showed that, applying an external magnetic field resulted in significant enhancements in the forced convective heat transfer of ferrofluid. Under an oscillating magnetic field with 0° phase shift, maximum of 40 % and 20.6 % enhancements were observed in local and average Nusselt numbers respectively under the investigated parameters. Furthermore, applying oscillating magnetic fields with a phase shift between opposing poles caused significant fluctuations in the fluid, led to remarkable improvements in convective heat transfer rates. For 90° and 180° phase shifts, enhancements in local and average Nusselt numbers were observed to increase up to 73 % and 36 %, respectively.

本研究对流经均匀加热管道的水基铁流体在相移振荡磁场作用下的层流和强制对流传热进行了实验研究。为研究相移对传热的影响,沿管道放置电磁铁,并在相对磁极之间施加不同相移角的振荡磁场。实验针对不同的雷诺数(400 至 1000)、磁场频率(0 Hz、1 Hz 和 5 Hz)、相移角度(0°、90° 和 180°)以及纳米粒子体积分数(0.5 % 和 1 %)进行。针对每组参数,确定了局部和平均努塞尔特数以及压降值,并广泛讨论了外加磁场对传热速率的影响。结果表明,外加磁场显著提高了铁流体的强制对流传热。在相移为 0° 的振荡磁场下,根据所研究的参数,局部努塞尔特数和平均努塞尔特数分别提高了 40% 和 20.6%。此外,在对立磁极之间施加相移的振荡磁场会在流体中引起显著波动,从而显著提高对流传热率。在相移 90° 和 180° 时,观察到局部和平均努塞尔特数分别增加了 73% 和 36%。
{"title":"Laminar flow and convective heat transfer of ferrofluid in a tube under oscillating magnetic fields: Effect of magnetic phase shift","authors":"Esra Yagci,&nbsp;Oguz Kaan Yagci,&nbsp;Tulin Bali,&nbsp;Orhan Aydin","doi":"10.1016/j.expthermflusci.2024.111293","DOIUrl":"10.1016/j.expthermflusci.2024.111293","url":null,"abstract":"<div><p>In this study, laminar flow and forced convective heat transfer of water-based ferrofluids flowing through a uniformly heated pipe are experimentally investigated under the presence of phase-shifted oscillating magnetic fields. To investigate the effect of phase shift on heat transfer, electromagnets are positioned along the tube, and oscillating magnetic fields are applied with various phase shift angles between opposing magnetic poles. Experiments are conducted for different Reynolds numbers (400 to 1000), magnetic field frequencies (0 Hz, 1 Hz, and 5 Hz), phase shift angles (0°, 90°, and 180°), and nanoparticle volume fractions (0.5 % and 1 %). For each parameter set, local and average Nusselt numbers, as well as pressure drop values, are determined, and the effect of applied magnetic fields on the heat transfer rate is extensively discussed. Results showed that, applying an external magnetic field resulted in significant enhancements in the forced convective heat transfer of ferrofluid. Under an oscillating magnetic field with 0° phase shift, maximum of 40 % and 20.6 % enhancements were observed in local and average Nusselt numbers respectively under the investigated parameters. Furthermore, applying oscillating magnetic fields with a phase shift between opposing poles caused significant fluctuations in the fluid, led to remarkable improvements in convective heat transfer rates. For 90° and 180° phase shifts, enhancements in local and average Nusselt numbers were observed to increase up to 73 % and 36 %, respectively.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"159 ","pages":"Article 111293"},"PeriodicalIF":2.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sub-regimes of horizontal gas–liquid intermittent flow: State-of-the-art and future challenges 水平气-液间歇流动的次制度:最新技术和未来挑战
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-14 DOI: 10.1016/j.expthermflusci.2024.111281
Abderraouf Arabi , Youcef Zenati , Jack Legrand , El-Khider Si-Ahmed

Based on the shape of the interface elongated bubble/liquid slugs and the liquid slugs’ aeration, the horizontal intermittent flow can be divided into three sub-regimes including plug (PG), Less Aerated Slug (LAS) and Highly Aerated Slug (HAS) flows. These flow sub-regimes were observed from experiments performed using air–water mixture and small pipe diameters. This paper presents an analysis of the results obtained with the aim of constituting the state-of-the-art of this sub-regimes classification.

The critical review, of the current state of knowledge, has led to the conclusion that the subdivision of intermittent flow into sub-regimes may provide a better means of apprehending, understanding and advancing in the modelling of slug parameters, Interfacial Area Concentration, Pipeline Integrity Management, intermittent flow behavior across singularities, as well as for the development of more realistic mechanistic models. The acquired knowledge can be beneficial for petroleum and gas, nuclear and chemical engineering industries among others.

Finally, based on the presented state-of-the art, some recommendations are given for future works using this approach. These reflection paths will allow improving our comprehension on intermittent flow, promoting the development of more robust models.

根据细长气泡/液态蛞蝓界面的形状和液态蛞蝓的曝气情况,水平间歇流可分为三种子形态,包括塞流(PG)、少曝气蛞蝓流(LAS)和高曝气蛞蝓流(HAS)。这些流动亚状态是在使用空气-水混合物和小管径进行的实验中观察到的。本文对所获得的结果进行了分析,目的是对这一子规程分类的最新进展进行总结。通过对当前知识水平的批判性回顾,我们得出结论:将间歇流细分为子规程,可以更好地理解、认识和推进弹头参数建模、界面区浓度、管道完整性管理、跨越奇点的间歇流行为,以及开发更逼真的力学模型。所获得的知识可用于石油和天然气、核能和化学工程等行业。最后,根据所介绍的最新技术,为今后使用这种方法开展工作提出了一些建议。这些反射路径将有助于提高我们对间歇流的理解,促进开发更强大的模型。
{"title":"Sub-regimes of horizontal gas–liquid intermittent flow: State-of-the-art and future challenges","authors":"Abderraouf Arabi ,&nbsp;Youcef Zenati ,&nbsp;Jack Legrand ,&nbsp;El-Khider Si-Ahmed","doi":"10.1016/j.expthermflusci.2024.111281","DOIUrl":"10.1016/j.expthermflusci.2024.111281","url":null,"abstract":"<div><p>Based on the shape of the interface elongated bubble/liquid slugs and the liquid slugs’ aeration, the horizontal intermittent flow can be divided into three sub-regimes including plug (PG), Less Aerated Slug (LAS) and Highly Aerated Slug (HAS) flows. These flow sub-regimes were observed from experiments performed using air–water mixture and small pipe diameters. This paper presents an analysis of the results obtained with the aim of constituting the state-of-the-art of this sub-regimes classification.</p><p>The critical review, of the current state of knowledge, has led to the conclusion that the subdivision of intermittent flow into sub-regimes may provide a better means of apprehending, understanding and advancing in the modelling of slug parameters, Interfacial Area Concentration, Pipeline Integrity Management, intermittent flow behavior across singularities, as well as for the development of more realistic mechanistic models. The acquired knowledge can be beneficial for petroleum and gas, nuclear and chemical engineering industries among others.</p><p>Finally, based on the presented state-of-the art, some recommendations are given for future works using this approach. These reflection paths will allow improving our comprehension on intermittent flow, promoting the development of more robust models.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"160 ","pages":"Article 111281"},"PeriodicalIF":2.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerodynamic performances and near wake of an Ahmed body under unsteady flow conditions 非稳定流条件下艾哈迈德体的气动性能和近尾流
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-13 DOI: 10.1016/j.expthermflusci.2024.111285
Giorgio Moscato, Giovanni Paolo Romano

This paper experimentally characterizes unsteady effects and flow fields around the Ahmed Body, by analyzing global forces and detailed wake effects. The results are compared to those obtained under steady conditions, with varying wind tunnel velocities and different yaw angles between the model and the free stream. Unsteady fields are generated by means of oscillating blades positioned at the inlet of the test section, whose amplitudes and frequencies can be easily controlled. Specifically, low frequencies, around a few Hertz, as those in the typical range generating load oscillations on vehicles, are considered. The results in terms of force coefficients, obtained by a dynamometric balance, and velocity fields, obtained by Particle Image Velocimetry, are processed in order to derive time-average statistics and also phase-average statistics, as related to forcing blade instantaneous positioning. This type of analysis can be performed thanks to the high temporal resolution of measurement systems, around 100 Hz for the force measurements and around 4000 Hz for the velocity measurements. Results in steady conditions well compare with previous results in references, both as functions of wind tunnel velocity and yaw angles. In unsteady conditions, whatever amplitude is considered, time-average drag and lift coefficients and their dependence on yaw angle are consistently lower compared to the steady case. Phase-averaged coefficients in unsteady conditions can oscillate by around 20 % in comparison to time-average values and these fluctuations are strongly dependent on yaw angle and amplitude of oscillations, thus suggesting that they both contribute to instantaneous loads. Present investigations are related to improvements in set-up of control systems in assisted-driving (self-driving) vehicles.

本文通过分析全局力和详细的尾流效应,对艾哈迈德体周围的非稳态效应和流场进行了实验描述。实验结果与稳定条件下获得的结果进行了比较,风洞速度不同,模型与自由流之间的偏航角也不同。非稳态场是通过位于试验段入口处的振荡叶片产生的,其振幅和频率很容易控制。具体来说,考虑的是低频,约为几赫兹,这是在车辆上产生负载振荡的典型范围。通过对测力平衡获得的力系数结果和粒子图像测速仪获得的速度场结果进行处理,以得出时间平均统计量和相位平均统计量,这与强制叶片的瞬时定位有关。由于测量系统的时间分辨率很高,力测量的时间分辨率约为 100 Hz,速度测量的时间分辨率约为 4000 Hz,因此可以进行此类分析。作为风洞速度和偏航角的函数,稳定条件下的结果与之前参考文献中的结果进行了很好的比较。在非稳态条件下,无论考虑何种振幅,时间平均阻力和升力系数及其与偏航角的关系都低于稳态情况。与时间平均值相比,非稳态条件下的相位平均系数可波动约 20%,这些波动与偏航角和振幅密切相关,因此表明它们都对瞬时载荷有影响。目前的研究与辅助驾驶(自动驾驶)车辆控制系统设置的改进有关。
{"title":"Aerodynamic performances and near wake of an Ahmed body under unsteady flow conditions","authors":"Giorgio Moscato,&nbsp;Giovanni Paolo Romano","doi":"10.1016/j.expthermflusci.2024.111285","DOIUrl":"10.1016/j.expthermflusci.2024.111285","url":null,"abstract":"<div><p>This paper experimentally characterizes unsteady effects and flow fields around the Ahmed Body, by analyzing global forces and detailed wake effects. The results are compared to those obtained under steady conditions, with varying wind tunnel velocities and different yaw angles between the model and the free stream. Unsteady fields are generated by means of oscillating blades positioned at the inlet of the test section, whose amplitudes and frequencies can be easily controlled. Specifically, low frequencies, around a few Hertz, as those in the typical range generating load oscillations on vehicles, are considered. The results in terms of force coefficients, obtained by a dynamometric balance, and velocity fields, obtained by Particle Image Velocimetry, are processed in order to derive time-average statistics and also phase-average statistics, as related to forcing blade instantaneous positioning. This type of analysis can be performed thanks to the high temporal resolution of measurement systems, around 100 Hz for the force measurements and around 4000 Hz for the velocity measurements. Results in steady conditions well compare with previous results in references, both as functions of wind tunnel velocity and yaw angles. In unsteady conditions, whatever amplitude is considered, time-average drag and lift coefficients and their dependence on yaw angle are consistently lower compared to the steady case. Phase-averaged coefficients in unsteady conditions can oscillate by around 20 % in comparison to time-average values and these fluctuations are strongly dependent on yaw angle and amplitude of oscillations, thus suggesting that they both contribute to instantaneous loads. Present investigations are related to improvements in set-up of control systems in assisted-driving (self-driving) vehicles.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"160 ","pages":"Article 111285"},"PeriodicalIF":2.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0894177724001547/pdfft?md5=46d44469ddd351e42049d159f1f4b056&pid=1-s2.0-S0894177724001547-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collision adhesion law of oil Droplets-Bubbles with different particle sizes in free floating 自由漂浮的不同粒径油滴-气泡的碰撞粘附定律
IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Pub Date : 2024-08-13 DOI: 10.1016/j.expthermflusci.2024.111292
Jiangyun Wang , Zhuang Wang , Xinfeng Zhai , Jiaqi Li , Lin Guo , Quan Xu

The treatment of oily wastewater has become a serious problem in the late stage of oilfield development. At the same time, it is of great significance to the improvement of ecological environment. As the key process of oil-bearing wastewater treatment, the study on the binding and adhesion law of oil droplets and bubbles in flotation and its related mechanism can provide reference for its application. Using a double high-speed camera acquisition system, the floating process and collision adhesion law of oil droplets and bubbles in a vertical transparent circular tube were experimentally studied, and the collision adhesion process of oil droplets (0.721 ∼ 3.759 mm) and bubbles (0.797 ∼ 2.886 mm) in different diameters were analysed. It is concluded that the oil droplet and the bubble collide with each other, and then the bubble slides along the surface of the oil droplet, and a neck shape appears at the end of the contact site, and then the neck increases with the diffusion of the oil droplet to form an oil-bubble adhesion body. And the process of elastic drags and contraction separation of the mixture is also demonstrated. It is found that the combination of oil droplets and bubbles with different diameters will have two types of collision adhesion modes, which oil droplet type and oil film type, respectively. Therefore, the diameter ratio of oil droplets and bubbles is a key factor, and when the diameter ratio is greater than 0.75, the adhesion mode of the adhesive body changes from unstable oil droplet type to more stable oil film type.

含油废水的处理已成为油田开发后期的一个严重问题。同时,对改善生态环境也具有重要意义。作为含油污水处理的关键工序,研究油滴和气泡在气浮过程中的结合、粘附规律及其相关机理,可为其应用提供参考。利用双高速摄像采集系统,实验研究了油滴和气泡在垂直透明圆管中的上浮过程和碰撞粘附规律,分析了不同直径油滴(0.721 ∼ 3.759 mm)和气泡(0.797 ∼ 2.886 mm)的碰撞粘附过程。结论是油滴与气泡碰撞后,气泡沿油滴表面滑动,在接触部位的末端出现颈部形状,然后颈部随着油滴的扩散而增大,形成油泡粘附体。同时还展示了混合物的弹性拖曳和收缩分离过程。研究发现,不同直径的油滴和气泡组合会产生两种碰撞粘附模式,分别是油滴型和油膜型。因此,油滴和气泡的直径比是一个关键因素,当直径比大于 0.75 时,粘合体的粘合模式将从不稳定的油滴型转变为更稳定的油膜型。
{"title":"Collision adhesion law of oil Droplets-Bubbles with different particle sizes in free floating","authors":"Jiangyun Wang ,&nbsp;Zhuang Wang ,&nbsp;Xinfeng Zhai ,&nbsp;Jiaqi Li ,&nbsp;Lin Guo ,&nbsp;Quan Xu","doi":"10.1016/j.expthermflusci.2024.111292","DOIUrl":"10.1016/j.expthermflusci.2024.111292","url":null,"abstract":"<div><p>The treatment of oily wastewater has become a serious problem in the late stage of oilfield development. At the same time, it is of great significance to the improvement of ecological environment. As the key process of oil-bearing wastewater treatment, the study on the binding and adhesion law of oil droplets and bubbles in flotation and its related mechanism can provide reference for its application. Using a double high-speed camera acquisition system, the floating process and collision adhesion law of oil droplets and bubbles in a vertical transparent circular tube were experimentally studied, and the collision adhesion process of oil droplets (0.721 ∼ 3.759 mm) and bubbles (0.797 ∼ 2.886 mm) in different diameters were analysed. It is concluded that the oil droplet and the bubble collide with each other, and then the bubble slides along the surface of the oil droplet, and a neck shape appears at the end of the contact site, and then the neck increases with the diffusion of the oil droplet to form an oil-bubble adhesion body. And the process of elastic drags and contraction separation of the mixture is also demonstrated. It is found that the combination of oil droplets and bubbles with different diameters will have two types of collision adhesion modes, which oil droplet type and oil film type, respectively. Therefore, the diameter ratio of oil droplets and bubbles is a key factor, and when the diameter ratio is greater than 0.75, the adhesion mode of the adhesive body changes from unstable oil droplet type to more stable oil film type.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"159 ","pages":"Article 111292"},"PeriodicalIF":2.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Experimental Thermal and Fluid Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1