首页 > 最新文献

FEMS microbiology ecology最新文献

英文 中文
Single-cell measurement of microbial growth rate with Raman microspectroscopy. 利用拉曼显微光谱技术单细胞测量微生物的生长速度。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1093/femsec/fiae110
Tristan A Caro, Srishti Kashyap, George Brown, Claudia Chen, Sebastian H Kopf, Alexis S Templeton

Rates of microbial growth are fundamental to understanding environmental geochemistry and ecology. However, measuring the heterogeneity of microbial activity at the single-cell level, especially within complex populations and environmental matrices, remains a forefront challenge. Stable isotope probing (SIP) is a method for assessing microbial growth and involves measuring the incorporation of an isotopic label into microbial biomass. Here, we assess Raman microspectroscopy as a SIP technique, specifically focusing on the measurement of deuterium (2H), a tracer of microbial biomass production. We correlatively measured cells grown in varying concentrations of deuterated water with both Raman spectroscopy and nanoscale secondary ion mass spectrometry (nanoSIMS), generating isotopic calibrations of microbial 2H. Relative to Raman, we find that nanoSIMS measurements of 2H are subject to substantial dilution due to rapid exchange of H during sample washing. We apply our Raman-derived calibration to a numerical model of microbial growth, explicitly parameterizing the factors controlling growth rate quantification and demonstrating that Raman-SIP can sensitively measure the growth of microorganisms with doubling times ranging from hours to years. The measurement of single-cell growth with Raman spectroscopy, a rapid, nondestructive technique, represents an important step toward application of single-cell analysis into complex sample matrices or cellular assemblages.

微生物的生长速率是了解环境地球化学和生态学的基础。然而,在单细胞水平上测量微生物活动的异质性,尤其是在复杂的种群和环境基质中测量微生物活动的异质性,仍然是一项前沿挑战。稳定同位素探测(SIP)是一种评估微生物生长的方法,涉及测量微生物生物量中同位素标签的结合情况。在这里,我们将拉曼微光谱技术作为一种 SIP 技术进行评估,特别是侧重于氘(2H)的测量,氘是微生物生物量产生的示踪剂。我们利用拉曼光谱和纳米级二次离子质谱(nanoSIMS)对生长在不同浓度氘化水中的细胞进行了相关测量,从而得出微生物 2H 的同位素定标。与拉曼光谱法相比,我们发现纳米级二次离子质谱法测量的 2H 会因样品洗涤过程中 H 的快速交换而被大量稀释。我们将源自拉曼的校准应用于微生物生长的数值模型,对控制生长率量化的因素进行了明确的参数化,并证明拉曼-SIP 可以灵敏地测量倍增时间从数小时到数年不等的微生物生长。拉曼光谱是一种快速、无损的技术,它对单细胞生长的测量是将单细胞分析应用于复杂样品基质或细胞组合的重要一步。
{"title":"Single-cell measurement of microbial growth rate with Raman microspectroscopy.","authors":"Tristan A Caro, Srishti Kashyap, George Brown, Claudia Chen, Sebastian H Kopf, Alexis S Templeton","doi":"10.1093/femsec/fiae110","DOIUrl":"10.1093/femsec/fiae110","url":null,"abstract":"<p><p>Rates of microbial growth are fundamental to understanding environmental geochemistry and ecology. However, measuring the heterogeneity of microbial activity at the single-cell level, especially within complex populations and environmental matrices, remains a forefront challenge. Stable isotope probing (SIP) is a method for assessing microbial growth and involves measuring the incorporation of an isotopic label into microbial biomass. Here, we assess Raman microspectroscopy as a SIP technique, specifically focusing on the measurement of deuterium (2H), a tracer of microbial biomass production. We correlatively measured cells grown in varying concentrations of deuterated water with both Raman spectroscopy and nanoscale secondary ion mass spectrometry (nanoSIMS), generating isotopic calibrations of microbial 2H. Relative to Raman, we find that nanoSIMS measurements of 2H are subject to substantial dilution due to rapid exchange of H during sample washing. We apply our Raman-derived calibration to a numerical model of microbial growth, explicitly parameterizing the factors controlling growth rate quantification and demonstrating that Raman-SIP can sensitively measure the growth of microorganisms with doubling times ranging from hours to years. The measurement of single-cell growth with Raman spectroscopy, a rapid, nondestructive technique, represents an important step toward application of single-cell analysis into complex sample matrices or cellular assemblages.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring modes of microbial interactions with implications for methane cycling. 探索微生物相互作用模式对甲烷循环的影响。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1093/femsec/fiae112
Kristof Brenzinger, Timo Glatter, Anna Hakobyan, Marion Meima-Franke, Hans Zweers, Werner Liesack, Paul L E Bodelier

Methanotrophs are the sole biological sink of methane. Volatile organic compounds (VOCs) produced by heterotrophic bacteria have been demonstrated to be a potential modulating factor of methane consumption. Here, we identify and disentangle the impact of the volatolome of heterotrophic bacteria on the methanotroph activity and proteome, using Methylomonas as model organism. Our study unambiguously shows how methanotrophy can be influenced by other organisms without direct physical contact. This influence is mediated by VOCs (e.g. dimethyl-polysulphides) or/and CO2 emitted during respiration, which can inhibit growth and methane uptake of the methanotroph, while other VOCs had a stimulating effect on methanotroph activity. Depending on whether the methanotroph was exposed to the volatolome of the heterotroph or to CO2, proteomics revealed differential protein expression patterns with the soluble methane monooxygenase being the most affected enzyme. The interaction between methanotrophs and heterotrophs can have strong positive or negative effects on methane consumption, depending on the species interacting with the methanotroph. We identified potential VOCs involved in the inhibition while positive effects may be triggered by CO2 released by heterotrophic respiration. Our experimental proof of methanotroph-heterotroph interactions clearly calls for detailed research into strategies on how to mitigate methane emissions.

养甲烷菌是甲烷的唯一生物汇。异养细菌产生的挥发性有机化合物(VOCs)已被证明是甲烷消耗的潜在调节因素。在这里,我们以甲基单胞菌为模式生物,识别并厘清了异养细菌的挥发性有机化合物对甲烷营养体活性和蛋白质组的影响。我们的研究明确显示了甲烷营养如何在没有直接物理接触的情况下受到其他生物的影响。这种影响由挥发性有机化合物(如二甲基多硫化物)或/和呼吸过程中排放的二氧化碳介导,它们可以抑制甲烷营养体的生长和甲烷吸收,而其他挥发性有机化合物则对甲烷营养体的活性有刺激作用。根据甲烷营养体暴露于异养生物的挥发物还是二氧化碳,蛋白质组学发现了不同的蛋白质表达模式,其中受影响最大的酶是可溶性甲烷单加氧酶。甲烷营养体与异养生物之间的相互作用会对甲烷消耗产生强烈的积极或消极影响,这取决于与甲烷营养体相互作用的物种。我们发现潜在的挥发性有机化合物参与了抑制作用,而正效应可能是由异养生物呼吸释放的二氧化碳引发的。我们对甲烷营养体与异养生物相互作用的实验证明,显然需要对如何减少甲烷排放的策略进行详细研究。
{"title":"Exploring modes of microbial interactions with implications for methane cycling.","authors":"Kristof Brenzinger, Timo Glatter, Anna Hakobyan, Marion Meima-Franke, Hans Zweers, Werner Liesack, Paul L E Bodelier","doi":"10.1093/femsec/fiae112","DOIUrl":"10.1093/femsec/fiae112","url":null,"abstract":"<p><p>Methanotrophs are the sole biological sink of methane. Volatile organic compounds (VOCs) produced by heterotrophic bacteria have been demonstrated to be a potential modulating factor of methane consumption. Here, we identify and disentangle the impact of the volatolome of heterotrophic bacteria on the methanotroph activity and proteome, using Methylomonas as model organism. Our study unambiguously shows how methanotrophy can be influenced by other organisms without direct physical contact. This influence is mediated by VOCs (e.g. dimethyl-polysulphides) or/and CO2 emitted during respiration, which can inhibit growth and methane uptake of the methanotroph, while other VOCs had a stimulating effect on methanotroph activity. Depending on whether the methanotroph was exposed to the volatolome of the heterotroph or to CO2, proteomics revealed differential protein expression patterns with the soluble methane monooxygenase being the most affected enzyme. The interaction between methanotrophs and heterotrophs can have strong positive or negative effects on methane consumption, depending on the species interacting with the methanotroph. We identified potential VOCs involved in the inhibition while positive effects may be triggered by CO2 released by heterotrophic respiration. Our experimental proof of methanotroph-heterotroph interactions clearly calls for detailed research into strategies on how to mitigate methane emissions.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation and characterization of novel acetogenic Moorella strains for employment as potential thermophilic biocatalysts. 分离和鉴定新型醋酸菌株,将其用作潜在的嗜热生物催化剂。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1093/femsec/fiae109
Tim Böer, Lisa Engelhardt, Alina Lüschen, Lena Eysell, Hiroki Yoshida, Dominik Schneider, Largus T Angenent, Mirko Basen, Rolf Daniel, Anja Poehlein

Thermophilic acetogenic bacteria have attracted attention as promising candidates for biotechnological applications such as syngas fermentation, microbial electrosynthesis, and methanol conversion. Here, we aimed to isolate and characterize novel thermophilic acetogens from diverse environments. Enrichment of heterotrophic and autotrophic acetogens was monitored by 16S rRNA gene-based bacterial community analysis. Seven novel Moorella strains were isolated and characterized by genomic and physiological analyses. Two Moorella humiferrea isolates showed considerable differences during autotrophic growth. The M. humiferrea LNE isolate (DSM 117358) fermented carbon monoxide (CO) to acetate, while the M. humiferrea OCP isolate (DSM 117359) transformed CO to hydrogen and carbon dioxide (H2 + CO2), employing the water-gas shift reaction. Another carboxydotrophic hydrogenogenic Moorella strain was isolated from the covering soil of an active charcoal burning pile and proposed as the type strain (ACPsT) of the novel species Moorella carbonis (DSM 116161T and CCOS 2103T). The remaining four novel strains were affiliated with Moorella thermoacetica and showed, together with the type strain DSM 2955T, the production of small amounts of ethanol from H2 + CO2 in addition to acetate. The physiological analyses of the novel Moorella strains revealed isolate-specific differences that considerably increase the knowledge base on thermophilic acetogens for future applications.

嗜热醋酸菌作为合成气发酵、微生物电合成和甲醇转化等生物技术应用的有前途的候选菌种,已经引起了人们的关注。在此,我们旨在从不同环境中分离和鉴定新型嗜热醋酸菌。通过基于 16S rRNA 基因的细菌群落分析,监测了异养和自养醋酸菌的富集情况。通过基因组和生理学分析,分离并鉴定了七株新的 Moorella 菌株。其中两株Moorella humiferrea分离株在自养生长过程中表现出相当大的差异。M. humiferrea LNE 分离物(DSM 117358)将一氧化碳(CO)发酵成醋酸盐,而 M. humiferrea OCP 分离物(DSM 117359)则利用水气转移反应将 CO 转化成氢气和二氧化碳(H2 + CO2)。从活性炭燃烧堆的覆盖土壤中分离出了另一株羧营养产氢 Moorella 菌株,并将其作为新物种 Moorella carbonis 的模式菌株(ACPsT)(DSM 116161T,CCOS 2103T)。其余四株新菌株隶属于热乙酸莫雷拉菌,与模式菌株 DSM 2955T 一样,除了乙酸之外,还能从 H2 + CO2 中产生少量乙醇。对新型莫雷拉菌株的生理学分析表明,这些菌株的分离特异性差异大大增加了嗜热醋酸菌的知识库,有利于今后的应用。
{"title":"Isolation and characterization of novel acetogenic Moorella strains for employment as potential thermophilic biocatalysts.","authors":"Tim Böer, Lisa Engelhardt, Alina Lüschen, Lena Eysell, Hiroki Yoshida, Dominik Schneider, Largus T Angenent, Mirko Basen, Rolf Daniel, Anja Poehlein","doi":"10.1093/femsec/fiae109","DOIUrl":"10.1093/femsec/fiae109","url":null,"abstract":"<p><p>Thermophilic acetogenic bacteria have attracted attention as promising candidates for biotechnological applications such as syngas fermentation, microbial electrosynthesis, and methanol conversion. Here, we aimed to isolate and characterize novel thermophilic acetogens from diverse environments. Enrichment of heterotrophic and autotrophic acetogens was monitored by 16S rRNA gene-based bacterial community analysis. Seven novel Moorella strains were isolated and characterized by genomic and physiological analyses. Two Moorella humiferrea isolates showed considerable differences during autotrophic growth. The M. humiferrea LNE isolate (DSM 117358) fermented carbon monoxide (CO) to acetate, while the M. humiferrea OCP isolate (DSM 117359) transformed CO to hydrogen and carbon dioxide (H2 + CO2), employing the water-gas shift reaction. Another carboxydotrophic hydrogenogenic Moorella strain was isolated from the covering soil of an active charcoal burning pile and proposed as the type strain (ACPsT) of the novel species Moorella carbonis (DSM 116161T and CCOS 2103T). The remaining four novel strains were affiliated with Moorella thermoacetica and showed, together with the type strain DSM 2955T, the production of small amounts of ethanol from H2 + CO2 in addition to acetate. The physiological analyses of the novel Moorella strains revealed isolate-specific differences that considerably increase the knowledge base on thermophilic acetogens for future applications.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Responses of attached bacterial communities to blooms of the swimming shelled pteropod creseis acicula in Daya Bay, southern China. 更正:附着细菌群落对中国南部大亚湾游壳翼足目creseis acicula繁殖的响应。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1093/femsec/fiae108
{"title":"Correction to: Responses of attached bacterial communities to blooms of the swimming shelled pteropod creseis acicula in Daya Bay, southern China.","authors":"","doi":"10.1093/femsec/fiae108","DOIUrl":"10.1093/femsec/fiae108","url":null,"abstract":"","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"100 9","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moderately thermostable GH1 β-glucosidases from hyperacidophilic archaeon Cuniculiplasma divulgatum S5. 来自超嗜酸性古菌 Cuniculiplasma divulgatum S5 的中等恒温 GH1 β-葡萄糖苷酶。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1093/femsec/fiae114
Anna N Khusnutdinova, Hai Tran, Saloni Devlekar, Marco A Distaso, Ilya V Kublanov, Tatiana Skarina, Peter Stogios, Alexei Savchenko, Manuel Ferrer, Olga V Golyshina, Alexander F Yakunin, Peter N Golyshin

Family GH1 glycosyl hydrolases are ubiquitous in prokaryotes and eukaryotes and are utilized in numerous industrial applications, including bioconversion of lignocelluloses. In this study, hyperacidophilic archaeon Cuniculiplasma divulgatum (S5T=JCM 30642T) was explored as a source of novel carbohydrate-active enzymes. The genome of C. divulgatum encodes three GH1 enzyme candidates, from which CIB12 and CIB13 were heterologously expressed and characterized. Phylogenetic analysis of CIB12 and CIB13 clustered them with β-glucosidases from genuinely thermophilic archaea including Thermoplasma acidophilum, Picrophilus torridus, Sulfolobus solfataricus, Pyrococcus furiosus, and Thermococcus kodakarensis. Purified enzymes showed maximal activities at pH 4.5-6.0 (CIB12) and 4.5-5.5 (CIB13) with optimal temperatures at 50°C, suggesting a high-temperature origin of Cuniculiplasma spp. ancestors. Crystal structures of both enzymes revealed a classical (α/β)8 TIM-barrel fold with the active site located inside the barrel close to the C-termini of β-strands including the catalytic residues Glu204 and Glu388 (CIB12), and Glu204 and Glu385 (CIB13). Both enzymes preferred cellobiose over lactose as substrates and were classified as cellobiohydrolases. Cellobiose addition increased the biomass yield of Cuniculiplasma cultures growing on peptides by 50%, suggesting that the cellobiohydrolases expand the carbon substrate range and hence environmental fitness of Cuniculiplasma.

GH1 糖基水解酶家族在原核生物和真核生物中无处不在,并被广泛应用于工业领域,包括木质纤维素的生物转化。本研究将超嗜酸古菌 Cuniculiplasma divulgatum(S5T=JCM 30642T)作为新型碳水化合物活性酶的来源进行了探索。C. divulgatum 的基因组编码了三种候选 GH1 酶,其中 CIB12 和 CIB13 已被异源表达和鉴定。CIB12 和 CIB13 的系统发育分析将它们与真正的嗜热古细菌(包括嗜酸热原体、嗜酸热微菌、溶血硫球菌、呋喃焦球菌和柯达卡伦热球菌)中的 β-葡萄糖苷酶进行了聚类。纯化的酶在 pH 值为 4.5-6.0 时(CIB12)和 4.5-5.5 时(CIB13)显示出最大活性,最佳温度为 50 °C,这表明 Cuniculiplasma 属祖先起源于高温。两种酶的晶体结构均显示出经典的(α/β)8 TIM桶状折叠,活性位点位于桶状结构内部,靠近包括催化残基Glu204和Glu388(CIB12)以及Glu204和Glu385(CIB13)在内的β-链的C端。这两种酶都喜欢以纤维生物糖而不是乳糖为底物,因此被归类为纤维生物水解酶。添加纤维素生物糖可使在肽上生长的 Cuniculiplasma 培养物的生物量增加 50%,这表明纤维素生物水解酶扩大了碳底物的范围,从而提高了 Cuniculiplasma 的环境适应性。
{"title":"Moderately thermostable GH1 β-glucosidases from hyperacidophilic archaeon Cuniculiplasma divulgatum S5.","authors":"Anna N Khusnutdinova, Hai Tran, Saloni Devlekar, Marco A Distaso, Ilya V Kublanov, Tatiana Skarina, Peter Stogios, Alexei Savchenko, Manuel Ferrer, Olga V Golyshina, Alexander F Yakunin, Peter N Golyshin","doi":"10.1093/femsec/fiae114","DOIUrl":"10.1093/femsec/fiae114","url":null,"abstract":"<p><p>Family GH1 glycosyl hydrolases are ubiquitous in prokaryotes and eukaryotes and are utilized in numerous industrial applications, including bioconversion of lignocelluloses. In this study, hyperacidophilic archaeon Cuniculiplasma divulgatum (S5T=JCM 30642T) was explored as a source of novel carbohydrate-active enzymes. The genome of C. divulgatum encodes three GH1 enzyme candidates, from which CIB12 and CIB13 were heterologously expressed and characterized. Phylogenetic analysis of CIB12 and CIB13 clustered them with β-glucosidases from genuinely thermophilic archaea including Thermoplasma acidophilum, Picrophilus torridus, Sulfolobus solfataricus, Pyrococcus furiosus, and Thermococcus kodakarensis. Purified enzymes showed maximal activities at pH 4.5-6.0 (CIB12) and 4.5-5.5 (CIB13) with optimal temperatures at 50°C, suggesting a high-temperature origin of Cuniculiplasma spp. ancestors. Crystal structures of both enzymes revealed a classical (α/β)8 TIM-barrel fold with the active site located inside the barrel close to the C-termini of β-strands including the catalytic residues Glu204 and Glu388 (CIB12), and Glu204 and Glu385 (CIB13). Both enzymes preferred cellobiose over lactose as substrates and were classified as cellobiohydrolases. Cellobiose addition increased the biomass yield of Cuniculiplasma cultures growing on peptides by 50%, suggesting that the cellobiohydrolases expand the carbon substrate range and hence environmental fitness of Cuniculiplasma.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epibiont communities on mussels in relation to parasitism and location in the rocky intertidal zone. 贻贝上的附生虫群落与寄生和潮间带岩石区位置的关系。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1093/femsec/fiae101
Katherine M Davis, Laura Wegener Parfrey, Christopher D G Harley, Keith Holmes, Olivia Schaefer, Alyssa-Lois Gehman

The factors shaping host-parasite interactions and epibiont communities in the variable rocky intertidal zone are poorly understood. California mussels, Mytilus californianus, are colonized by endolithic cyanobacterial parasites that erode the host shell. These cyanobacteria become mutualistic under certain abiotic conditions because shell erosion can protect mussels from thermal stress. How parasitic shell erosion affects or is affected by epibiotic microbial communities on mussel shells and the context dependency of these interactions is unknown. We used transplant experiments to characterize assemblages of epibiotic bacteria and endolithic parasites on mussel shells across intertidal elevation gradients. We hypothesized that living mussels, and associated epibacterial communities, could limit colonization and erosion by endolithic cyanobacteria compared with empty mussel shells. We hypothesized that shell erosion would be associated with compositional shifts in the epibacterial community and tidal elevation. We found that living mussels experienced less shell erosion than empty shells, demonstrating potential biotic regulation of endolithic parasites. Increased shell erosion was not associated with a distinct epibacterial community and was decoupled from the relative abundance of putatively endolithic taxa. Our findings suggest that epibacterial community structure is not directly impacted by the dynamic symbiosis between endolithic cyanobacteria and mussels throughout the rocky intertidal zone.

人们对多变的岩石潮间带中形成寄主-寄生虫相互作用和附生虫群落的因素知之甚少。加利福尼亚贻贝(Mytilus californianus)的内生蓝藻寄生虫会侵蚀宿主的贝壳。在特定的非生物条件下,这些蓝藻会相互影响,因为外壳侵蚀可以保护贻贝免受热应力的影响。寄生虫对贝壳的侵蚀如何影响贻贝贝壳上的表生微生物群落,以及这些相互作用的环境依赖性尚不清楚。我们利用移植实验来描述潮间带海拔梯度上贻贝壳上附生细菌和内生寄生虫群落的特征。我们假设,与空贻贝壳相比,活贻贝及相关附生细菌群落可限制内生蓝藻的定殖和侵蚀。我们假设贝壳的侵蚀与表生细菌群落的组成变化和潮汐高低有关。我们发现,与空贝壳相比,活贻贝受到的贝壳侵蚀较少,这表明内生寄生虫具有潜在的生物调节作用。贝壳侵蚀加剧与独特的表生细菌群落无关,而且与假定的内生寄生类群的相对丰度脱钩。我们的研究结果表明,在整个潮间带岩石区,表生细菌群落结构并不会受到内生蓝藻与贻贝之间动态共生关系的直接影响。
{"title":"Epibiont communities on mussels in relation to parasitism and location in the rocky intertidal zone.","authors":"Katherine M Davis, Laura Wegener Parfrey, Christopher D G Harley, Keith Holmes, Olivia Schaefer, Alyssa-Lois Gehman","doi":"10.1093/femsec/fiae101","DOIUrl":"10.1093/femsec/fiae101","url":null,"abstract":"<p><p>The factors shaping host-parasite interactions and epibiont communities in the variable rocky intertidal zone are poorly understood. California mussels, Mytilus californianus, are colonized by endolithic cyanobacterial parasites that erode the host shell. These cyanobacteria become mutualistic under certain abiotic conditions because shell erosion can protect mussels from thermal stress. How parasitic shell erosion affects or is affected by epibiotic microbial communities on mussel shells and the context dependency of these interactions is unknown. We used transplant experiments to characterize assemblages of epibiotic bacteria and endolithic parasites on mussel shells across intertidal elevation gradients. We hypothesized that living mussels, and associated epibacterial communities, could limit colonization and erosion by endolithic cyanobacteria compared with empty mussel shells. We hypothesized that shell erosion would be associated with compositional shifts in the epibacterial community and tidal elevation. We found that living mussels experienced less shell erosion than empty shells, demonstrating potential biotic regulation of endolithic parasites. Increased shell erosion was not associated with a distinct epibacterial community and was decoupled from the relative abundance of putatively endolithic taxa. Our findings suggest that epibacterial community structure is not directly impacted by the dynamic symbiosis between endolithic cyanobacteria and mussels throughout the rocky intertidal zone.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Total RNA analysis of the active microbiome on moving bed biofilm reactor carriers under incrementally increasing micropollutant concentrations. 在微污染物浓度逐渐增加的情况下,对移动床生物膜反应器载体上的活性微生物群进行总 RNA 分析。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1093/femsec/fiae098
Joseph Donald Martin, Selina Tisler, Maria Scheel, Sif Svendsen, Muhammad Zohaib Anwar, Athanasios Zervas, Flemming Ekelund, Kai Bester, Lars Hestbjerg Hansen, Carsten Suhr Jacobsen, Lea Ellegaard-Jensen

Micropollutants are increasingly prevalent in the aquatic environment. A major part of these originates from wastewater treatment plants since traditional treatment technologies do not remove micropollutants sufficiently. Moving bed biofilm reactors (MBBRs), however, have been shown to aid in micropollutant removal when applied to conventional wastewater treatment as a polishing step. Here, we used Total RNA sequencing to investigate both the active microbial community and functional dynamics of MBBR biofilms when these were exposed to increasing micropollutant concentrations over time. Concurrently, we conducted batch culture experiments using biofilm carriers from the MBBRs to assess micropollutant degradation potential. Our study showed that biofilm eukaryotes, in particular protozoa, were negatively influenced by micropollutant exposure, in contrast to prokaryotes that increased in relative abundance. Further, we found several functional genes that were differentially expressed between the MBBR with added micropollutants and the control. These include genes involved in aromatic and xenobiotic compound degradation. Moreover, the biofilm carrier batch experiment showed vastly different alterations in benzotriazole and diclofenac degradation following the increased micropollutant concentrations in the MBBR. Ultimately, this study provides essential insights into the microbial community and functional dynamics of MBBRs and how an increased load of micropollutants influences these dynamics.

微污染物在水生环境中越来越普遍。由于传统的处理技术无法充分去除微污染物,因此这些微污染物主要来自废水处理厂。然而,移动床生物膜反应器(MBBRs)作为一个抛光步骤应用于传统废水处理时,已被证明有助于去除微污染物。在此,我们利用总 RNA 测序技术研究了移动床生物膜反应器生物膜在微污染物浓度不断增加的情况下的活性微生物群落和功能动态。同时,我们使用 MBBR 生物膜载体进行了批量培养实验,以评估微污染物的降解潜力。我们的研究表明,生物膜真核生物,尤其是原生动物,受到微污染物暴露的负面影响,而相对丰度增加的原核生物则相反。此外,我们还发现,在添加了微污染物的 MBBR 和对照组之间,有几个功能基因的表达存在差异。其中包括参与芳香族和异生物化合物降解的基因。此外,生物膜载体批次实验表明,随着 MBBR 中微污染物浓度的增加,苯并三唑和双氯芬酸的降解发生了巨大的变化。最终,这项研究提供了有关 MBBR 微生物群落和功能动态以及微污染物负荷增加如何影响这些动态的重要见解。
{"title":"Total RNA analysis of the active microbiome on moving bed biofilm reactor carriers under incrementally increasing micropollutant concentrations.","authors":"Joseph Donald Martin, Selina Tisler, Maria Scheel, Sif Svendsen, Muhammad Zohaib Anwar, Athanasios Zervas, Flemming Ekelund, Kai Bester, Lars Hestbjerg Hansen, Carsten Suhr Jacobsen, Lea Ellegaard-Jensen","doi":"10.1093/femsec/fiae098","DOIUrl":"10.1093/femsec/fiae098","url":null,"abstract":"<p><p>Micropollutants are increasingly prevalent in the aquatic environment. A major part of these originates from wastewater treatment plants since traditional treatment technologies do not remove micropollutants sufficiently. Moving bed biofilm reactors (MBBRs), however, have been shown to aid in micropollutant removal when applied to conventional wastewater treatment as a polishing step. Here, we used Total RNA sequencing to investigate both the active microbial community and functional dynamics of MBBR biofilms when these were exposed to increasing micropollutant concentrations over time. Concurrently, we conducted batch culture experiments using biofilm carriers from the MBBRs to assess micropollutant degradation potential. Our study showed that biofilm eukaryotes, in particular protozoa, were negatively influenced by micropollutant exposure, in contrast to prokaryotes that increased in relative abundance. Further, we found several functional genes that were differentially expressed between the MBBR with added micropollutants and the control. These include genes involved in aromatic and xenobiotic compound degradation. Moreover, the biofilm carrier batch experiment showed vastly different alterations in benzotriazole and diclofenac degradation following the increased micropollutant concentrations in the MBBR. Ultimately, this study provides essential insights into the microbial community and functional dynamics of MBBRs and how an increased load of micropollutants influences these dynamics.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissolved organic phosphorus bond-class utilization by Synechococcus. Synechococcus 对溶解有机磷键类的利用。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-08-13 DOI: 10.1093/femsec/fiae099
Emily M Waggoner, Kahina Djaoudi, Julia M Diaz, Solange Duhamel

Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus-carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5'-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5'-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus-carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5'-triphosphate, and lastly adenosine 5'-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains' exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5'-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.

溶解有机磷(DOP)包含具有磷酯、磷酸酐和磷碳键的化合物。虽然 DOP 对海洋微生物具有重要的营养价值,但对于广泛分布的蓝藻球藻来说,每种键类的生物利用率在很大程度上仍是未知数。本研究评估了来自开阔海洋和近海的 Synechococcus 菌株对特定键类 DOP 的利用情况。当提供磷酸盐、磷酸酐(3-聚磷酸盐、45-聚磷酸盐)或同时具有磷酸酐和磷酯键的 DOP 化合物(5'-三磷酸腺苷)时,两种菌株的生长率相当。在磷酸酯(6-磷酸葡萄糖、5'-单磷酸腺苷、双(4-甲基伞形酮基)磷酸酯)上的生长率各不相同,两种菌株都不在选定的磷碳化合物上生长。两株菌株都先水解 3-聚磷酸盐,然后是 5'-三磷酸腺苷,最后是 5'-单磷酸腺苷,表现出优先水解磷酸酐键的酶解作用。这些菌株的外蛋白组含有磷水解酶,再加上在磷酸盐缺乏的情况下,3-聚磷酸盐和 5'-三磷酸腺苷的无细胞水解作用增强,表明这些外蛋白对磷酸酐键的矿化作用活跃。Synechococcus 碱性磷酸酶具有广泛的底物特异性,包括对磷酸酐 3-多聚磷酸的活性,不同菌株之间的亲和力不同。总之,这些发现强调了具有磷酸酐键的化合物在球藻磷营养中的潜在重要作用,并突出了对 DOP 键类分子多样性的不同生长和酶反应,从而扩大了我们对海洋生态系统中微生物介导的 DOP 循环的了解。
{"title":"Dissolved organic phosphorus bond-class utilization by Synechococcus.","authors":"Emily M Waggoner, Kahina Djaoudi, Julia M Diaz, Solange Duhamel","doi":"10.1093/femsec/fiae099","DOIUrl":"10.1093/femsec/fiae099","url":null,"abstract":"<p><p>Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus-carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5'-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5'-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus-carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5'-triphosphate, and lastly adenosine 5'-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains' exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5'-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial anabolic and catabolic utilization of hydrocarbons in deep subseafloor sediments of Guaymas Basin. 瓜伊马斯盆地深层海底沉积物中微生物对碳氢化合物的合成代谢和分解代谢利用。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-07-12 DOI: 10.1093/femsec/fiae093
Toshiki Nagakura, Yuki Morono, Motoo Ito, Kai Mangelsdorf, Stefanie Pötz, Ellen Schnabel, Jens Kallmeyer

Guaymas Basin, located in the Gulf of California, is a hydrothermally active marginal basin. Due to steep geothermal gradients and localized heating by sill intrusions, microbial substrates like short-chain fatty acids and hydrocarbons are abiotically produced from sedimentary organic matter at comparatively shallow depths. We analyzed the effect of hydrocarbons on uptake of hydrocarbons by microorganisms via nano-scale secondary ion mass spectrometry (NanoSIMS) and microbial sulfate reduction rates (SRR), using samples from two drill sites sampled by IODP Expedition 385 (U1545C and U1546D). These sites are in close proximity of each other (ca. 1 km) and have very similar sedimentology. Site U1546D experienced the intrusion of a sill that has since then thermally equilibrated with the surrounding sediment. Both sites currently have an identical geothermal gradient, despite their different thermal history. The localized heating by the sill led to thermal cracking of sedimentary organic matter and formation of potentially bioavailable organic substrates. There were low levels of hydrocarbon and nitrogen uptake in some samples from both sites, mostly in surficial samples. Hydrocarbon and methane additions stimulated SRR in near-seafloor samples from Site U1545C, while samples from Site U1546D reacted positively only on methane. Our data indicate the potential of microorganisms to metabolize hydrocarbons even in the deep subsurface of Guaymas Basin.

瓜伊马斯盆地位于加利福尼亚湾外海,是一个热液活跃的边缘盆地。由于陡峭的地热梯度和页岩侵入的局部加热,微生物基质(如短链脂肪酸和碳氢化合物)在相对较浅的深度从沉积有机物中产生。我们利用 IODP Exp. 385(U1545C 和 U1546D)取样的两个钻探地点的样本,通过纳米级二次离子质谱(NanoSIMS)和微生物硫酸盐还原率(SRR)分析了碳氢化合物对微生物吸收碳氢化合物的影响。这两个地点相距很近(约 1 公里),沉积学非常相似。U1546D 岩石经历了一个山体的侵入,此后与周围的沉积物发生了热平衡。尽管热历史不同,但这两个地点目前的地热梯度相同。山体的局部加热导致了沉积有机物的热裂解,并形成了潜在的生物有机基质。在这两个地点的一些样本中,碳氢化合物和氮的吸收水平较低,主要是在表层样本中。碳氢化合物和甲烷的添加刺激了 U1545C 站点近海底样本中的 SRR,而 U1546D 站点的样本只对甲烷产生了正反应。我们的数据表明,即使在瓜伊马斯盆地的深层地下,微生物也有代谢碳氢化合物的潜力。
{"title":"Microbial anabolic and catabolic utilization of hydrocarbons in deep subseafloor sediments of Guaymas Basin.","authors":"Toshiki Nagakura, Yuki Morono, Motoo Ito, Kai Mangelsdorf, Stefanie Pötz, Ellen Schnabel, Jens Kallmeyer","doi":"10.1093/femsec/fiae093","DOIUrl":"10.1093/femsec/fiae093","url":null,"abstract":"<p><p>Guaymas Basin, located in the Gulf of California, is a hydrothermally active marginal basin. Due to steep geothermal gradients and localized heating by sill intrusions, microbial substrates like short-chain fatty acids and hydrocarbons are abiotically produced from sedimentary organic matter at comparatively shallow depths. We analyzed the effect of hydrocarbons on uptake of hydrocarbons by microorganisms via nano-scale secondary ion mass spectrometry (NanoSIMS) and microbial sulfate reduction rates (SRR), using samples from two drill sites sampled by IODP Expedition 385 (U1545C and U1546D). These sites are in close proximity of each other (ca. 1 km) and have very similar sedimentology. Site U1546D experienced the intrusion of a sill that has since then thermally equilibrated with the surrounding sediment. Both sites currently have an identical geothermal gradient, despite their different thermal history. The localized heating by the sill led to thermal cracking of sedimentary organic matter and formation of potentially bioavailable organic substrates. There were low levels of hydrocarbon and nitrogen uptake in some samples from both sites, mostly in surficial samples. Hydrocarbon and methane additions stimulated SRR in near-seafloor samples from Site U1545C, while samples from Site U1546D reacted positively only on methane. Our data indicate the potential of microorganisms to metabolize hydrocarbons even in the deep subsurface of Guaymas Basin.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microeukaryote community coalescence strengthens community stability and elevates diversity. 微核生物群落的凝聚加强了群落的稳定性并提高了多样性。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-07-12 DOI: 10.1093/femsec/fiae100
Máté Vass, Anna J Székely, Ulla Carlsson-Graner, Johan Wikner, Agneta Andersson

Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.

整个微生物群落的混合是一种经常发生但研究不足的现象。在这里,我们在微观世界实验中模拟了河口条件,将淡水河群落与咸海群落混合,并评估了不同混合过程引起的环境和群落凝聚对微真核生物群落的影响。聚合群落的群落组成向海洋母群落转移的迹象表明,群落聚合的结果是不对称的,此外,环境聚合对海洋母群落的影响一般较小。从群落内聚力推断出的群落稳定性在河流和海洋母群落之间存在差异,并在群落凝聚处理后有所增加。一般来说,群落凝聚会增加α多样性,并促进引入(或出现)更多(或稀有)物种所带来的竞争。这些竞争性相互作用反过来又具有稳定群落的作用,负内聚力比例的增加就是证明。微真核细胞的命运受混合比例和频率(即一次性与重复凝聚)的影响。也就是说,硅藻受到凝聚的负面影响,而真菌、纤毛虫和纤毛虫则在不同程度上得到促进,这取决于母群落的混合比例。我们的研究表明,当海洋母群落在最终群落中占主导地位时,凝聚结果的可预测性更高;当群落反复碰撞时,这种可预测性进一步增强。
{"title":"Microeukaryote community coalescence strengthens community stability and elevates diversity.","authors":"Máté Vass, Anna J Székely, Ulla Carlsson-Graner, Johan Wikner, Agneta Andersson","doi":"10.1093/femsec/fiae100","DOIUrl":"10.1093/femsec/fiae100","url":null,"abstract":"<p><p>Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FEMS microbiology ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1