首页 > 最新文献

FEMS microbiology ecology最新文献

英文 中文
Importance, structure, cultivability, and resilience of the bacterial microbiota during infection of laboratory-grown Haematococcus spp. by the blastocladialean pathogen Paraphysoderma sedebokerense: evidence for a domesticated microbiota and its potential for biocontrol. 细菌微生物群在实验室培养的红球菌被胚根纲病原体sedebokerense感染期间的重要性、结构、可培养性和恢复力:驯化微生物群及其生物防治潜力的证据。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf011
Jeanne Miebach, David Green, Martina Strittmatter, Claire Mallinger, Lucie Le Garrec, Qian Yi Zhang, Pierre Foucault, Caroline Kunz, Claire M M Gachon

Industrial production of the unicellular green alga Haematococcus lacustris is compromised by outbreaks of the fungal pathogen Paraphysoderma sedebokerense (Blastocladiomycota). Here, using axenic algal and fungal cultures and antibiotic treatments, we show that the bacterial microbiota of H. lacustris is necessary for the infection by P. sedebokerense and that its modulation affects the outcome of the interaction. We combined metagenomics and laboratory cultivation to investigate the diversity of the bacterial microbiota associated to three Haematococcus species and monitor its change upon P. sedebokerense infection. We unveil three types of distinct, reduced bacterial communities, which likely correspond to keystone taxa in the natural Haematococcus spp. microbiota. Remarkably, the taxonomic composition and functionality of these communities remained stable during infection. The major bacterial taxa identified in this study have been cultivated by us or others, paving the way to developing synthetic communities to experimentally explore interactions within this tripartite system. We discuss our results in the light of emerging evidence concerning the structuring and domestication of plant and animal microbiota, thus providing novel experimental tools and a new conceptual framework necessary to enable the engineering of Haematococcus spp. microbiota toward the biocontrol of P. sedebokerense.

单细胞绿藻湖红球菌的工业生产受到真菌病原体sedebokerense副葡萄皮病(芽枝菌科)暴发的影响。在这里,我们使用无菌藻类和真菌培养以及抗生素处理,我们表明湖芽孢杆菌的细菌微生物群是P. sedebokerense感染所必需的,并且它的调节影响相互作用的结果。我们将宏基因组学和实验室培养相结合,研究了三种红球菌相关细菌微生物群的多样性,并监测了其在sedebokerense感染后的变化。我们揭示了三种不同类型的细菌群落,它们可能对应于天然红球菌菌群中的关键分类群。值得注意的是,这些群落的分类组成和功能在感染期间保持稳定。本研究中发现的主要细菌分类群已经被我们或其他人培养,为开发合成群落以实验探索这三方系统中的相互作用铺平了道路。我们根据有关植物和动物微生物群结构和驯化的新证据讨论了我们的结果,从而提供了新的实验工具和新的概念框架,为实现红球菌菌群工程对sedebokerense的生物防治提供了必要的基础。
{"title":"Importance, structure, cultivability, and resilience of the bacterial microbiota during infection of laboratory-grown Haematococcus spp. by the blastocladialean pathogen Paraphysoderma sedebokerense: evidence for a domesticated microbiota and its potential for biocontrol.","authors":"Jeanne Miebach, David Green, Martina Strittmatter, Claire Mallinger, Lucie Le Garrec, Qian Yi Zhang, Pierre Foucault, Caroline Kunz, Claire M M Gachon","doi":"10.1093/femsec/fiaf011","DOIUrl":"10.1093/femsec/fiaf011","url":null,"abstract":"<p><p>Industrial production of the unicellular green alga Haematococcus lacustris is compromised by outbreaks of the fungal pathogen Paraphysoderma sedebokerense (Blastocladiomycota). Here, using axenic algal and fungal cultures and antibiotic treatments, we show that the bacterial microbiota of H. lacustris is necessary for the infection by P. sedebokerense and that its modulation affects the outcome of the interaction. We combined metagenomics and laboratory cultivation to investigate the diversity of the bacterial microbiota associated to three Haematococcus species and monitor its change upon P. sedebokerense infection. We unveil three types of distinct, reduced bacterial communities, which likely correspond to keystone taxa in the natural Haematococcus spp. microbiota. Remarkably, the taxonomic composition and functionality of these communities remained stable during infection. The major bacterial taxa identified in this study have been cultivated by us or others, paving the way to developing synthetic communities to experimentally explore interactions within this tripartite system. We discuss our results in the light of emerging evidence concerning the structuring and domestication of plant and animal microbiota, thus providing novel experimental tools and a new conceptual framework necessary to enable the engineering of Haematococcus spp. microbiota toward the biocontrol of P. sedebokerense.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: FEMSEC-thematic issue "Rhizosphere-a One Health concept".
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiae165
{"title":"Correction to: FEMSEC-thematic issue \"Rhizosphere-a One Health concept\".","authors":"","doi":"10.1093/femsec/fiae165","DOIUrl":"10.1093/femsec/fiae165","url":null,"abstract":"","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spinach seed microbiome characteristics linked to suppressiveness against Globisporangium ultimum damping-off. 菠菜种子微生物组特征与抑制全球大孢枯萎有关。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf004
Makrina Diakaki, Beatriz Andreo Jimenez, Ezra de Lange, Patrick Butterbach, Liesbeth van der Heijden, Jürgen Köhl, Wietse de Boer, Joeke Postma

Recently we demonstrated that the seed microbiome of certain spinach (Spinacia oleracea) seed lots can confer disease suppression against Globisporangium ultimum damping-off (previously known as Pythium ultimum). We hypothesized that differences in the microbial community composition of spinach seed lots correlate with the levels of damping-off suppressiveness of each seed lot. Here, we show that a large proportion of variance in seed-associated bacterial (16S) and fungal (Internal Transcribed Spacer 1) amplicon sequences was explained by seed lot identity, while 9.8% of bacterial and 7.1% of fungal community variance correlated with disease suppression. More specifically, a higher relative abundance of basidiomycetous dimorphic yeasts such as Vishniacozyma, Filobasidium, and Papiliotrema and of the bacterial genus Massilia was a key feature of suppressive seed microbiomes. We suggest that the abundance of these genera is indicative of seed lot suppressive potential. Seed processing and treatment can become more targeted with indicator taxa being used to evaluate the presence of beneficial seed-associated microbial functions. This process, in turn, could contribute to the sustainable management of seedling diseases. Finally, this study highlights the ubiquity of yeasts in spinach seed microbiota and their potential beneficial roles for seed health.

最近,我们证明了某些菠菜(Spinacia oleracea)种子群的种子微生物组可以抑制Globisporangium ultimum damdamoff(以前称为Pythium ultimum)的疾病。我们假设,菠菜种子批次微生物群落组成的差异与每个种子批次的阻尼抑制水平相关。在这里,我们发现种子相关细菌(16S)和真菌(ITS1)扩增子序列的很大一部分差异可以用种子批次的一致性来解释,而9.8%的细菌和7.1%的真菌群落差异与疾病抑制相关。更具体地说,较高的担子菌二态酵母(如Vishniacozyma, Filobasidium和Papiliotrema)和Massilia细菌属的相对丰度是抑制种子微生物群的关键特征。我们认为这些属的丰度反映了种子抑制潜力。种子加工和处理可以更有针对性地使用指示分类群来评估有益的种子相关微生物功能的存在。这一过程反过来又有助于幼苗病害的可持续管理。最后,本研究强调了酵母在菠菜种子微生物群中的普遍存在及其对种子健康的潜在有益作用。
{"title":"Spinach seed microbiome characteristics linked to suppressiveness against Globisporangium ultimum damping-off.","authors":"Makrina Diakaki, Beatriz Andreo Jimenez, Ezra de Lange, Patrick Butterbach, Liesbeth van der Heijden, Jürgen Köhl, Wietse de Boer, Joeke Postma","doi":"10.1093/femsec/fiaf004","DOIUrl":"10.1093/femsec/fiaf004","url":null,"abstract":"<p><p>Recently we demonstrated that the seed microbiome of certain spinach (Spinacia oleracea) seed lots can confer disease suppression against Globisporangium ultimum damping-off (previously known as Pythium ultimum). We hypothesized that differences in the microbial community composition of spinach seed lots correlate with the levels of damping-off suppressiveness of each seed lot. Here, we show that a large proportion of variance in seed-associated bacterial (16S) and fungal (Internal Transcribed Spacer 1) amplicon sequences was explained by seed lot identity, while 9.8% of bacterial and 7.1% of fungal community variance correlated with disease suppression. More specifically, a higher relative abundance of basidiomycetous dimorphic yeasts such as Vishniacozyma, Filobasidium, and Papiliotrema and of the bacterial genus Massilia was a key feature of suppressive seed microbiomes. We suggest that the abundance of these genera is indicative of seed lot suppressive potential. Seed processing and treatment can become more targeted with indicator taxa being used to evaluate the presence of beneficial seed-associated microbial functions. This process, in turn, could contribute to the sustainable management of seedling diseases. Finally, this study highlights the ubiquity of yeasts in spinach seed microbiota and their potential beneficial roles for seed health.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Community assembly of gut microbiomes in yolk sac fry of Atlantic salmon: host genetics, environmental microbiomes, and ecological processes. 大西洋鲑鱼卵黄囊苗肠道微生物群落组装:宿主遗传学、环境微生物群和生态过程。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf007
Amalie Johanne Horn Mathisen, Sol Gómez de la Torre Canny, Madeleine S Gundersen, Mari-Ann Østensen, Yngvar Olsen, Olav Vadstein, Ingrid Bakke

In this study, we investigated the influence of host genetics and environmental microbiomes on the early gut microbiome of Atlantic salmon. We aimed at rearing the fish in either r- or K-selected environments, where the r-selected environment would be expected to be dominated by fast-growing opportunistic bacteria and thus represent more detrimental microbial environment than the K-selected water. Eggs from both wild and aquaculture strains of Atlantic salmon were hatched under germ-free conditions. One week after hatching, rearing flasks were inoculated with either r- or K-selected water communities. Three weeks after hatching, no effect of host strain on the gut microbiomes were observed. r-selection was found to take place in the rearing water of all flasks, including in the flasks added K-selected water. Still, the water microbiomes differed significantly between the flasks that had been added r- and K-selected water (Add-r and Add-K flasks, respectively). Lower alpha diversity and higher abundances of Pseudomonas were observed for the Add-K flasks, indicating a potential unfavorable microbial environment. Selection in the host structured the gut microbiomes, but an extensive interindividual variation was explained by stochastic processes in community assembly. The gut microbiomes also differed significantly between the Add-r and Add-K flasks. In Add-K flasks, they had higher similarities to the rearing water microbiomes, and the assembly of gut communities was less influenced by stochastic processes. The fish in Add-K flasks had lower growth rates than in Add-r flasks, probably as a result of negative host-microbe interactions. These findings highlight the importance of, but also the challenges related to, managing the microbial environment when cultivating fish.

在本研究中,我们研究了宿主遗传和环境微生物组对大西洋鲑鱼早期肠道微生物组的影响。我们的目标是在r选择或k选择的环境中饲养鱼,其中r选择的环境预计将由快速生长的机会性细菌主导,因此代表比k选择的水更有害的微生物环境。野生和养殖大西洋鲑鱼的卵在无菌条件下孵化。孵卵1周后,饲养瓶分别接种r-或k -选择的水群落。3 wph时,未观察到宿主菌株对肠道微生物组的影响。发现所有烧瓶的饲养水都发生r选择,包括在添加k选择水的烧瓶中。尽管如此,在添加了r选择水和k选择水的烧瓶(分别为Add-r和Add-K烧瓶)之间,水中微生物组存在显著差异。在Add-K烧瓶中观察到较低的α多样性和较高的假单胞菌丰度,表明不利的微生物环境。宿主的选择构建了肠道微生物组,但广泛的个体内部差异可以用群落组装的随机过程来解释。肠道微生物组在Add-r和Add-K瓶之间也有显著差异。在Add-K瓶中,它们与饲养水中微生物组具有较高的相似性,肠道群落的组装受随机过程的影响较小。在Add-K瓶中的鱼比在Add-r瓶中的鱼生长速度低,可能是负宿主-微生物相互作用的结果。这些发现强调了在养鱼时管理微生物环境的重要性,但也强调了与之相关的挑战。
{"title":"Community assembly of gut microbiomes in yolk sac fry of Atlantic salmon: host genetics, environmental microbiomes, and ecological processes.","authors":"Amalie Johanne Horn Mathisen, Sol Gómez de la Torre Canny, Madeleine S Gundersen, Mari-Ann Østensen, Yngvar Olsen, Olav Vadstein, Ingrid Bakke","doi":"10.1093/femsec/fiaf007","DOIUrl":"10.1093/femsec/fiaf007","url":null,"abstract":"<p><p>In this study, we investigated the influence of host genetics and environmental microbiomes on the early gut microbiome of Atlantic salmon. We aimed at rearing the fish in either r- or K-selected environments, where the r-selected environment would be expected to be dominated by fast-growing opportunistic bacteria and thus represent more detrimental microbial environment than the K-selected water. Eggs from both wild and aquaculture strains of Atlantic salmon were hatched under germ-free conditions. One week after hatching, rearing flasks were inoculated with either r- or K-selected water communities. Three weeks after hatching, no effect of host strain on the gut microbiomes were observed. r-selection was found to take place in the rearing water of all flasks, including in the flasks added K-selected water. Still, the water microbiomes differed significantly between the flasks that had been added r- and K-selected water (Add-r and Add-K flasks, respectively). Lower alpha diversity and higher abundances of Pseudomonas were observed for the Add-K flasks, indicating a potential unfavorable microbial environment. Selection in the host structured the gut microbiomes, but an extensive interindividual variation was explained by stochastic processes in community assembly. The gut microbiomes also differed significantly between the Add-r and Add-K flasks. In Add-K flasks, they had higher similarities to the rearing water microbiomes, and the assembly of gut communities was less influenced by stochastic processes. The fish in Add-K flasks had lower growth rates than in Add-r flasks, probably as a result of negative host-microbe interactions. These findings highlight the importance of, but also the challenges related to, managing the microbial environment when cultivating fish.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial changing patterns across lateral and vertical horizons in recently formed permafrost after the outburst of Zonag Lake, Tibetan Plateau.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf001
Saifei Li, Yang Liu, Wenqiang Wang, Yongqin Liu, Mukan Ji

In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations. Dramatic changes in community structure were also observed, primarily influenced by the distance from the lake and then by sediment depth, with environmental filtering and dispersal limitations shaping the lateral and vertical distributions, respectively. Based on PICRUSt2 results, the relative abundance of genes related to carbon fixation increased along the lateral horizon, suggesting that microbial carbon fixers are counteracting the carbon loss during permafrost formation. In contrast, the genes related to denitrification also increased, which may lead to nitrogen loss and contribute to global warming by releasing nitric oxide gas. This study highlights the resilience of prokaryotic communities in drained lake basins and their ecological implications under global warming.

{"title":"Microbial changing patterns across lateral and vertical horizons in recently formed permafrost after the outburst of Zonag Lake, Tibetan Plateau.","authors":"Saifei Li, Yang Liu, Wenqiang Wang, Yongqin Liu, Mukan Ji","doi":"10.1093/femsec/fiaf001","DOIUrl":"10.1093/femsec/fiaf001","url":null,"abstract":"<p><p>In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations. Dramatic changes in community structure were also observed, primarily influenced by the distance from the lake and then by sediment depth, with environmental filtering and dispersal limitations shaping the lateral and vertical distributions, respectively. Based on PICRUSt2 results, the relative abundance of genes related to carbon fixation increased along the lateral horizon, suggesting that microbial carbon fixers are counteracting the carbon loss during permafrost formation. In contrast, the genes related to denitrification also increased, which may lead to nitrogen loss and contribute to global warming by releasing nitric oxide gas. This study highlights the resilience of prokaryotic communities in drained lake basins and their ecological implications under global warming.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The protist community of the oligotrophic waters of the Gulf of Mexico is distinctly shaped by depth-specific physicochemical conditions during the warm season.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf009
Karla Sidón-Ceseña, Miguel Angel Martínez-Mercado, Jennyfers Chong-Robles, Yamne Ortega-Saad, Victor Froylán Camacho-Ibar, Lorena Linacre, Asunción Lago-Lestón

Marine protists are key components of biogeochemical cycles and microbial food webs, which respond quickly to environmental factors. In the Gulf of Mexico (GoM), the Loop Current intensifies in summer and supplies the gulf with warm and oligotrophic waters. However, the cyclonic eddies within the GoM create favorable conditions for biological productivity by bringing nutrient-rich water to the subsurface layer. In this study, we investigated the response of the protist community to the regional physicochemical conditions, its spatial and temporal variability, the influence of mesoscale structures, and its ecological roles in the mixed layer (ML) and deep chlorophyll maximum (DCM). This is the first study to conduct a V9-18S rRNA gene survey for this community in the Mexican Exclusive Economic Zone of the GoM. The regional distribution, temporal changes, and mesoscale structures significantly affected the structure of the protist community in the ML. In contrast, only mesoscale structures significantly affected the protist community in the DCM. Different protist assemblages were also present between the ML and DCM, with the Alveolata representing ∼60% of the community in both layers, followed by haptophytes and MAST (Marine Stramenopiles) in the ML; pelagophytes and radiolarians were the more prevalent taxa in the DCM. Finally, co-occurrence analyses revealed that competition, parasitism, and predation were the potential interactions shaping these communities at both depths.

{"title":"The protist community of the oligotrophic waters of the Gulf of Mexico is distinctly shaped by depth-specific physicochemical conditions during the warm season.","authors":"Karla Sidón-Ceseña, Miguel Angel Martínez-Mercado, Jennyfers Chong-Robles, Yamne Ortega-Saad, Victor Froylán Camacho-Ibar, Lorena Linacre, Asunción Lago-Lestón","doi":"10.1093/femsec/fiaf009","DOIUrl":"10.1093/femsec/fiaf009","url":null,"abstract":"<p><p>Marine protists are key components of biogeochemical cycles and microbial food webs, which respond quickly to environmental factors. In the Gulf of Mexico (GoM), the Loop Current intensifies in summer and supplies the gulf with warm and oligotrophic waters. However, the cyclonic eddies within the GoM create favorable conditions for biological productivity by bringing nutrient-rich water to the subsurface layer. In this study, we investigated the response of the protist community to the regional physicochemical conditions, its spatial and temporal variability, the influence of mesoscale structures, and its ecological roles in the mixed layer (ML) and deep chlorophyll maximum (DCM). This is the first study to conduct a V9-18S rRNA gene survey for this community in the Mexican Exclusive Economic Zone of the GoM. The regional distribution, temporal changes, and mesoscale structures significantly affected the structure of the protist community in the ML. In contrast, only mesoscale structures significantly affected the protist community in the DCM. Different protist assemblages were also present between the ML and DCM, with the Alveolata representing ∼60% of the community in both layers, followed by haptophytes and MAST (Marine Stramenopiles) in the ML; pelagophytes and radiolarians were the more prevalent taxa in the DCM. Finally, co-occurrence analyses revealed that competition, parasitism, and predation were the potential interactions shaping these communities at both depths.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal communities in boreal soils are influenced by land use, agricultural soil management, and depth. 北方土壤真菌群落受土地利用、农业土壤管理和土壤深度的影响。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-28 DOI: 10.1093/femsec/fiaf002
Laura Häkkinen, Igor S Pessi, Anna-Reetta Salonen, Oona Uhlgren, Helena Soinne, Jenni Hultman, Jussi Heinonsalo

Land use and agricultural soil management affect soil fungal communities that ultimately influence soil health. Subsoils harbor nutrient reservoir for plants and can play a significant role in plant growth and soil carbon sequestration. Typically, microbial analyses are restricted to topsoil (0-30 cm) leaving subsoil fungal communities underexplored. To address this knowledge gap, we analyzed fungal communities in the vertical profile of four boreal soil treatments: long-term (24 years) organic and conventional crop rotation, meadow, and forest. Internal transcribed spacer (ITS2) amplicon sequencing revealed soil-layer-specific land use or agricultural soil management effects on fungal communities down to the deepest measured soil layer (40-80 cm). Compared to other treatments, higher proportion of symbiotrophs, saprotrophs, and pathotrophs + plant pathogens were found in forest, meadow and crop rotations, respectively. The proportion of arbuscular mycorrhizal fungi was higher in deeper (>20 cm) soil than in topsoil. Forest soil below 20 cm was dominated by fungal functional groups with proposed interactions with plants or other soil biota, whether symbiotrophic or pathotrophic. Ferrous oxide was an important factor shaping fungal communities throughout the vertical profile of meadow and cropping systems. Our results emphasize the importance of including subsoil in microbial community analyses in differently managed soils.

土地利用和农业土壤管理影响土壤真菌群落,最终影响土壤健康。地下土壤是植物的营养库,对植物生长和土壤固碳具有重要作用。通常,微生物分析仅限于表土(0-30厘米),而对底土真菌群落的探索不足。为了解决这一知识空白,我们分析了四种北方土壤处理的垂直剖面真菌群落:长期(24年)有机和传统轮作、草甸和森林。ITS2扩增子测序揭示了土壤层特异性土地利用或农业土壤管理对真菌群落的影响,直至测量的最深土层(40-80 cm)。与其他处理相比,森林处理的共生营养菌比例较高,草甸处理的腐殖营养菌比例较高,轮作的病菌和植物病原菌比例较高。丛枝菌根真菌在深层土壤中所占比例高于表层土壤(10 ~ 20 cm)。20 cm以下的森林土壤以真菌功能群为主,可能与植物或其他土壤生物群相互作用,无论是共生的还是病态的。氧化亚铁是影响草甸和种植系统垂直剖面真菌群落的重要因素。我们的研究结果强调了在不同管理土壤中将底土纳入微生物群落分析的重要性。
{"title":"Fungal communities in boreal soils are influenced by land use, agricultural soil management, and depth.","authors":"Laura Häkkinen, Igor S Pessi, Anna-Reetta Salonen, Oona Uhlgren, Helena Soinne, Jenni Hultman, Jussi Heinonsalo","doi":"10.1093/femsec/fiaf002","DOIUrl":"10.1093/femsec/fiaf002","url":null,"abstract":"<p><p>Land use and agricultural soil management affect soil fungal communities that ultimately influence soil health. Subsoils harbor nutrient reservoir for plants and can play a significant role in plant growth and soil carbon sequestration. Typically, microbial analyses are restricted to topsoil (0-30 cm) leaving subsoil fungal communities underexplored. To address this knowledge gap, we analyzed fungal communities in the vertical profile of four boreal soil treatments: long-term (24 years) organic and conventional crop rotation, meadow, and forest. Internal transcribed spacer (ITS2) amplicon sequencing revealed soil-layer-specific land use or agricultural soil management effects on fungal communities down to the deepest measured soil layer (40-80 cm). Compared to other treatments, higher proportion of symbiotrophs, saprotrophs, and pathotrophs + plant pathogens were found in forest, meadow and crop rotations, respectively. The proportion of arbuscular mycorrhizal fungi was higher in deeper (>20 cm) soil than in topsoil. Forest soil below 20 cm was dominated by fungal functional groups with proposed interactions with plants or other soil biota, whether symbiotrophic or pathotrophic. Ferrous oxide was an important factor shaping fungal communities throughout the vertical profile of meadow and cropping systems. Our results emphasize the importance of including subsoil in microbial community analyses in differently managed soils.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interplay between scion genotype, root microbiome, and Neonectria ditissima apple canker.
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-23 DOI: 10.1093/femsec/fiaf014
Hamish McLean, Alexey Mikaberidze, Greg Deakin, Xiangming Xu, Matevz Papp-Rupar

Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts. Seven scion cultivars grafted onto M9 rootstocks were inoculated with N. ditissima in the nursery and then planted in December 2018 or stored at 2 °C until planting in April 2019 at three sites in Kent, UK. We assessed canker lesions and collected root samples in June 2021. Quantitative PCR and 16S/ITS amplicon sequencing was used to analyse microbial communities. Site was the primary factor affecting microbiome size, diversity, and composition. Cold storage/planting season had small but significant effects, indicating that differences in the microbiome at planting can persist long-term. Scion genotype had a limited effect on diversity but did influence the abundance of specific root associated taxa. Bacterial α-diversity was associated with canker count in a site-dependent manner. Increased abundances of particular fungal (Rhizophagus irregularis and Epicoccum nigrum) and bacterial (Amycolatopsis and Bradyrhizobium) root associated taxa were associated with fewer cankers.

{"title":"The interplay between scion genotype, root microbiome, and Neonectria ditissima apple canker.","authors":"Hamish McLean, Alexey Mikaberidze, Greg Deakin, Xiangming Xu, Matevz Papp-Rupar","doi":"10.1093/femsec/fiaf014","DOIUrl":"https://doi.org/10.1093/femsec/fiaf014","url":null,"abstract":"<p><p>Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts. Seven scion cultivars grafted onto M9 rootstocks were inoculated with N. ditissima in the nursery and then planted in December 2018 or stored at 2 °C until planting in April 2019 at three sites in Kent, UK. We assessed canker lesions and collected root samples in June 2021. Quantitative PCR and 16S/ITS amplicon sequencing was used to analyse microbial communities. Site was the primary factor affecting microbiome size, diversity, and composition. Cold storage/planting season had small but significant effects, indicating that differences in the microbiome at planting can persist long-term. Scion genotype had a limited effect on diversity but did influence the abundance of specific root associated taxa. Bacterial α-diversity was associated with canker count in a site-dependent manner. Increased abundances of particular fungal (Rhizophagus irregularis and Epicoccum nigrum) and bacterial (Amycolatopsis and Bradyrhizobium) root associated taxa were associated with fewer cankers.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms. 气候引起的水文和热量变化对冰川溪流生物膜影响的实验证据。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-07 DOI: 10.1093/femsec/fiae163
David Touchette, Martina Gonzalez Mateu, Grégoire Michoud, Nicola Deluigi, Ramona Marasco, Daniele Daffonchio, Hannes Peter, Tom Battin

Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change. Treatments comprised four flow (natural, intermittent, stochastic, and constant) and two temperature (ambient streamwater and warming of +2°C) regimes. We monitored microbial biomass, diversity, community composition, and metabolic diversity in biofilms over 3 months. We found that community composition was largely influenced by successional dynamics independent of the treatments. While stochastic and constant flow regimes did not significantly affect community composition, droughts altered their composition in the intermittent regime, favouring drought-adapted bacteria and decreasing algal biomass. Concomitantly, warming decreased algal biomass and the abundance of some typical glacier-fed stream bacteria and eukaryotes, and stimulated heterotrophic metabolism overall. Our study provides experimental evidence towards potential and hitherto poorly considered impacts of climate change on benthic biofilms in glacier-fed streams.

预计气候变化将改变高山溪流的水文和热状态,特别是冰川河流。然而,对于这些环境变化如何影响冰川补给河流中的微生物群落,人们知之甚少。在这里,我们在瑞士阿尔卑斯山的河滨水槽中生态系统进行了操作,在模拟气候变化的处理下,底栖生物膜在那里生长。处理包括四种流量(自然、间歇、随机和恒定)和两种温度(环境水流和+2°C升温)。我们在三个月的时间里监测了生物膜中微生物的生物量、多样性、群落组成和代谢多样性。我们发现群落组成在很大程度上受独立于处理的演替动态的影响。虽然随机和恒定流量对群落组成没有显著影响,但干旱改变了它们在间歇状态下的组成,有利于适应干旱的细菌和减少藻类生物量。与此同时,变暖减少了藻类生物量和一些典型的冰川喂养溪流细菌和真核生物的丰度,并促进了整体的异养代谢。我们的研究为气候变化对冰川河流中底栖生物膜的潜在影响提供了实验证据。
{"title":"Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms.","authors":"David Touchette, Martina Gonzalez Mateu, Grégoire Michoud, Nicola Deluigi, Ramona Marasco, Daniele Daffonchio, Hannes Peter, Tom Battin","doi":"10.1093/femsec/fiae163","DOIUrl":"10.1093/femsec/fiae163","url":null,"abstract":"<p><p>Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change. Treatments comprised four flow (natural, intermittent, stochastic, and constant) and two temperature (ambient streamwater and warming of +2°C) regimes. We monitored microbial biomass, diversity, community composition, and metabolic diversity in biofilms over 3 months. We found that community composition was largely influenced by successional dynamics independent of the treatments. While stochastic and constant flow regimes did not significantly affect community composition, droughts altered their composition in the intermittent regime, favouring drought-adapted bacteria and decreasing algal biomass. Concomitantly, warming decreased algal biomass and the abundance of some typical glacier-fed stream bacteria and eukaryotes, and stimulated heterotrophic metabolism overall. Our study provides experimental evidence towards potential and hitherto poorly considered impacts of climate change on benthic biofilms in glacier-fed streams.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extensive environmental survey of free-living amoebae and their elusive association with Mycobacterium bovis or Mycobacterium avium subsp. paratuberculosis. 自由生活变形虫的广泛环境调查及其与牛分枝杆菌或鸟分枝杆菌亚种的难以捉摸的联系。副结核。
IF 3.5 3区 生物学 Q2 MICROBIOLOGY Pub Date : 2025-01-07 DOI: 10.1093/femsec/fiae164
Amélie Jessu, Thierry Cochard, Mélanie Burtin, Stéphanie Crapart, Vincent Delafont, Ascel Samba-Louaka, Franck Biet, Jean-Louis Moyen, Yann Héchard

Free-living amoebae (FLA) are described as environmental reservoirs for some bacteria able to resist their phagocytosis. In the environment, the fate of Mycobacterium bovis (Mbo) and Mycobacterium avium subsp. paratuberculosis (Map) responsible for bovine tuberculosis and paratuberculosis, respectively, remains poorly understood and is considered potentially problematic in the eradication and control of these diseases. We hypothesize that FLA may play a role in the persistence of Mbo and Map in the environment. In this study, 90 samples were collected from herds affected by one or both diseases to investigate the diversity of amoeba and their associated bacteria. Metabarcoding analyses revealed that Acanthamoeba, Copromyxa, Naegleria, and Vermamoeba were the most represented genera of FLA, with Pseudomonadota being the bacteria most commonly found associated with FLA. Although no Mbo and Map DNA were identified by sequencing, traces were detected by ddPCR (digital droplet PCR), specifically targeting these bacteria. In conclusion, we described a wide diversity of FLA and associated bacteria in this environment. It also suggests that Map and Mbo could be associated, even weakly, with FLA in the environment. However, this needs to be confirmed by detecting a highest amount of DNA and, if possible, cultivable Map and/or Mbo associated with these environmental FLA.

据描述,自由生活的变形虫(FLA)是一些能够抵抗其吞噬作用的细菌的环境贮藏库。牛分枝杆菌(Mbo)和副结核分枝杆菌(Map)分别是牛结核病和副结核病的罪魁祸首,但人们对它们在环境中的去向仍然知之甚少,并认为它们在根除和控制这些疾病方面可能存在问题。我们推测,FLA 可能在 Mbo 和 Map 在环境中的持续存在中发挥作用。在这项研究中,我们从受一种或两种疾病影响的牛群中收集了 90 份样本,以调查阿米巴及其相关细菌的多样性。元条码分析表明,阿米巴属(Acanthamoeba)、Copromyxa、Naegleria 和 Vermamoeba 是 FLA 中最具代表性的菌属,而假单胞菌属(Pseudomonadota)则是最常见的与 FLA 相关的细菌。虽然没有通过测序鉴定出 Mbo 和 Map DNA,但通过 ddPCR 检测到了专门针对这些细菌的痕迹。总之,我们描述了 FLA 及其相关细菌在这一环境中的广泛多样性。这也表明,Map 和 Mbo 可能与环境中的 FLA 有关联,即使是弱关联。不过,这还需要通过检测与这些环境中的 FLA 相关的最高 DNA 量以及(如果可能)可培养的 Map 和/或 Mbo 来证实。
{"title":"Extensive environmental survey of free-living amoebae and their elusive association with Mycobacterium bovis or Mycobacterium avium subsp. paratuberculosis.","authors":"Amélie Jessu, Thierry Cochard, Mélanie Burtin, Stéphanie Crapart, Vincent Delafont, Ascel Samba-Louaka, Franck Biet, Jean-Louis Moyen, Yann Héchard","doi":"10.1093/femsec/fiae164","DOIUrl":"10.1093/femsec/fiae164","url":null,"abstract":"<p><p>Free-living amoebae (FLA) are described as environmental reservoirs for some bacteria able to resist their phagocytosis. In the environment, the fate of Mycobacterium bovis (Mbo) and Mycobacterium avium subsp. paratuberculosis (Map) responsible for bovine tuberculosis and paratuberculosis, respectively, remains poorly understood and is considered potentially problematic in the eradication and control of these diseases. We hypothesize that FLA may play a role in the persistence of Mbo and Map in the environment. In this study, 90 samples were collected from herds affected by one or both diseases to investigate the diversity of amoeba and their associated bacteria. Metabarcoding analyses revealed that Acanthamoeba, Copromyxa, Naegleria, and Vermamoeba were the most represented genera of FLA, with Pseudomonadota being the bacteria most commonly found associated with FLA. Although no Mbo and Map DNA were identified by sequencing, traces were detected by ddPCR (digital droplet PCR), specifically targeting these bacteria. In conclusion, we described a wide diversity of FLA and associated bacteria in this environment. It also suggests that Map and Mbo could be associated, even weakly, with FLA in the environment. However, this needs to be confirmed by detecting a highest amount of DNA and, if possible, cultivable Map and/or Mbo associated with these environmental FLA.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
FEMS microbiology ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1