Jeanne Miebach, David Green, Martina Strittmatter, Claire Mallinger, Lucie Le Garrec, Qian Yi Zhang, Pierre Foucault, Caroline Kunz, Claire M M Gachon
Industrial production of the unicellular green alga Haematococcus lacustris is compromised by outbreaks of the fungal pathogen Paraphysoderma sedebokerense (Blastocladiomycota). Here, using axenic algal and fungal cultures and antibiotic treatments, we show that the bacterial microbiota of H. lacustris is necessary for the infection by P. sedebokerense and that its modulation affects the outcome of the interaction. We combined metagenomics and laboratory cultivation to investigate the diversity of the bacterial microbiota associated to three Haematococcus species and monitor its change upon P. sedebokerense infection. We unveil three types of distinct, reduced bacterial communities, which likely correspond to keystone taxa in the natural Haematococcus spp. microbiota. Remarkably, the taxonomic composition and functionality of these communities remained stable during infection. The major bacterial taxa identified in this study have been cultivated by us or others, paving the way to developing synthetic communities to experimentally explore interactions within this tripartite system. We discuss our results in the light of emerging evidence concerning the structuring and domestication of plant and animal microbiota, thus providing novel experimental tools and a new conceptual framework necessary to enable the engineering of Haematococcus spp. microbiota toward the biocontrol of P. sedebokerense.
{"title":"Importance, structure, cultivability, and resilience of the bacterial microbiota during infection of laboratory-grown Haematococcus spp. by the blastocladialean pathogen Paraphysoderma sedebokerense: evidence for a domesticated microbiota and its potential for biocontrol.","authors":"Jeanne Miebach, David Green, Martina Strittmatter, Claire Mallinger, Lucie Le Garrec, Qian Yi Zhang, Pierre Foucault, Caroline Kunz, Claire M M Gachon","doi":"10.1093/femsec/fiaf011","DOIUrl":"10.1093/femsec/fiaf011","url":null,"abstract":"<p><p>Industrial production of the unicellular green alga Haematococcus lacustris is compromised by outbreaks of the fungal pathogen Paraphysoderma sedebokerense (Blastocladiomycota). Here, using axenic algal and fungal cultures and antibiotic treatments, we show that the bacterial microbiota of H. lacustris is necessary for the infection by P. sedebokerense and that its modulation affects the outcome of the interaction. We combined metagenomics and laboratory cultivation to investigate the diversity of the bacterial microbiota associated to three Haematococcus species and monitor its change upon P. sedebokerense infection. We unveil three types of distinct, reduced bacterial communities, which likely correspond to keystone taxa in the natural Haematococcus spp. microbiota. Remarkably, the taxonomic composition and functionality of these communities remained stable during infection. The major bacterial taxa identified in this study have been cultivated by us or others, paving the way to developing synthetic communities to experimentally explore interactions within this tripartite system. We discuss our results in the light of emerging evidence concerning the structuring and domestication of plant and animal microbiota, thus providing novel experimental tools and a new conceptual framework necessary to enable the engineering of Haematococcus spp. microbiota toward the biocontrol of P. sedebokerense.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: FEMSEC-thematic issue \"Rhizosphere-a One Health concept\".","authors":"","doi":"10.1093/femsec/fiae165","DOIUrl":"10.1093/femsec/fiae165","url":null,"abstract":"","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 2","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Makrina Diakaki, Beatriz Andreo Jimenez, Ezra de Lange, Patrick Butterbach, Liesbeth van der Heijden, Jürgen Köhl, Wietse de Boer, Joeke Postma
Recently we demonstrated that the seed microbiome of certain spinach (Spinacia oleracea) seed lots can confer disease suppression against Globisporangium ultimum damping-off (previously known as Pythium ultimum). We hypothesized that differences in the microbial community composition of spinach seed lots correlate with the levels of damping-off suppressiveness of each seed lot. Here, we show that a large proportion of variance in seed-associated bacterial (16S) and fungal (Internal Transcribed Spacer 1) amplicon sequences was explained by seed lot identity, while 9.8% of bacterial and 7.1% of fungal community variance correlated with disease suppression. More specifically, a higher relative abundance of basidiomycetous dimorphic yeasts such as Vishniacozyma, Filobasidium, and Papiliotrema and of the bacterial genus Massilia was a key feature of suppressive seed microbiomes. We suggest that the abundance of these genera is indicative of seed lot suppressive potential. Seed processing and treatment can become more targeted with indicator taxa being used to evaluate the presence of beneficial seed-associated microbial functions. This process, in turn, could contribute to the sustainable management of seedling diseases. Finally, this study highlights the ubiquity of yeasts in spinach seed microbiota and their potential beneficial roles for seed health.
{"title":"Spinach seed microbiome characteristics linked to suppressiveness against Globisporangium ultimum damping-off.","authors":"Makrina Diakaki, Beatriz Andreo Jimenez, Ezra de Lange, Patrick Butterbach, Liesbeth van der Heijden, Jürgen Köhl, Wietse de Boer, Joeke Postma","doi":"10.1093/femsec/fiaf004","DOIUrl":"10.1093/femsec/fiaf004","url":null,"abstract":"<p><p>Recently we demonstrated that the seed microbiome of certain spinach (Spinacia oleracea) seed lots can confer disease suppression against Globisporangium ultimum damping-off (previously known as Pythium ultimum). We hypothesized that differences in the microbial community composition of spinach seed lots correlate with the levels of damping-off suppressiveness of each seed lot. Here, we show that a large proportion of variance in seed-associated bacterial (16S) and fungal (Internal Transcribed Spacer 1) amplicon sequences was explained by seed lot identity, while 9.8% of bacterial and 7.1% of fungal community variance correlated with disease suppression. More specifically, a higher relative abundance of basidiomycetous dimorphic yeasts such as Vishniacozyma, Filobasidium, and Papiliotrema and of the bacterial genus Massilia was a key feature of suppressive seed microbiomes. We suggest that the abundance of these genera is indicative of seed lot suppressive potential. Seed processing and treatment can become more targeted with indicator taxa being used to evaluate the presence of beneficial seed-associated microbial functions. This process, in turn, could contribute to the sustainable management of seedling diseases. Finally, this study highlights the ubiquity of yeasts in spinach seed microbiota and their potential beneficial roles for seed health.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amalie Johanne Horn Mathisen, Sol Gómez de la Torre Canny, Madeleine S Gundersen, Mari-Ann Østensen, Yngvar Olsen, Olav Vadstein, Ingrid Bakke
In this study, we investigated the influence of host genetics and environmental microbiomes on the early gut microbiome of Atlantic salmon. We aimed at rearing the fish in either r- or K-selected environments, where the r-selected environment would be expected to be dominated by fast-growing opportunistic bacteria and thus represent more detrimental microbial environment than the K-selected water. Eggs from both wild and aquaculture strains of Atlantic salmon were hatched under germ-free conditions. One week after hatching, rearing flasks were inoculated with either r- or K-selected water communities. Three weeks after hatching, no effect of host strain on the gut microbiomes were observed. r-selection was found to take place in the rearing water of all flasks, including in the flasks added K-selected water. Still, the water microbiomes differed significantly between the flasks that had been added r- and K-selected water (Add-r and Add-K flasks, respectively). Lower alpha diversity and higher abundances of Pseudomonas were observed for the Add-K flasks, indicating a potential unfavorable microbial environment. Selection in the host structured the gut microbiomes, but an extensive interindividual variation was explained by stochastic processes in community assembly. The gut microbiomes also differed significantly between the Add-r and Add-K flasks. In Add-K flasks, they had higher similarities to the rearing water microbiomes, and the assembly of gut communities was less influenced by stochastic processes. The fish in Add-K flasks had lower growth rates than in Add-r flasks, probably as a result of negative host-microbe interactions. These findings highlight the importance of, but also the challenges related to, managing the microbial environment when cultivating fish.
{"title":"Community assembly of gut microbiomes in yolk sac fry of Atlantic salmon: host genetics, environmental microbiomes, and ecological processes.","authors":"Amalie Johanne Horn Mathisen, Sol Gómez de la Torre Canny, Madeleine S Gundersen, Mari-Ann Østensen, Yngvar Olsen, Olav Vadstein, Ingrid Bakke","doi":"10.1093/femsec/fiaf007","DOIUrl":"10.1093/femsec/fiaf007","url":null,"abstract":"<p><p>In this study, we investigated the influence of host genetics and environmental microbiomes on the early gut microbiome of Atlantic salmon. We aimed at rearing the fish in either r- or K-selected environments, where the r-selected environment would be expected to be dominated by fast-growing opportunistic bacteria and thus represent more detrimental microbial environment than the K-selected water. Eggs from both wild and aquaculture strains of Atlantic salmon were hatched under germ-free conditions. One week after hatching, rearing flasks were inoculated with either r- or K-selected water communities. Three weeks after hatching, no effect of host strain on the gut microbiomes were observed. r-selection was found to take place in the rearing water of all flasks, including in the flasks added K-selected water. Still, the water microbiomes differed significantly between the flasks that had been added r- and K-selected water (Add-r and Add-K flasks, respectively). Lower alpha diversity and higher abundances of Pseudomonas were observed for the Add-K flasks, indicating a potential unfavorable microbial environment. Selection in the host structured the gut microbiomes, but an extensive interindividual variation was explained by stochastic processes in community assembly. The gut microbiomes also differed significantly between the Add-r and Add-K flasks. In Add-K flasks, they had higher similarities to the rearing water microbiomes, and the assembly of gut communities was less influenced by stochastic processes. The fish in Add-K flasks had lower growth rates than in Add-r flasks, probably as a result of negative host-microbe interactions. These findings highlight the importance of, but also the challenges related to, managing the microbial environment when cultivating fish.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saifei Li, Yang Liu, Wenqiang Wang, Yongqin Liu, Mukan Ji
In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations. Dramatic changes in community structure were also observed, primarily influenced by the distance from the lake and then by sediment depth, with environmental filtering and dispersal limitations shaping the lateral and vertical distributions, respectively. Based on PICRUSt2 results, the relative abundance of genes related to carbon fixation increased along the lateral horizon, suggesting that microbial carbon fixers are counteracting the carbon loss during permafrost formation. In contrast, the genes related to denitrification also increased, which may lead to nitrogen loss and contribute to global warming by releasing nitric oxide gas. This study highlights the resilience of prokaryotic communities in drained lake basins and their ecological implications under global warming.
{"title":"Microbial changing patterns across lateral and vertical horizons in recently formed permafrost after the outburst of Zonag Lake, Tibetan Plateau.","authors":"Saifei Li, Yang Liu, Wenqiang Wang, Yongqin Liu, Mukan Ji","doi":"10.1093/femsec/fiaf001","DOIUrl":"10.1093/femsec/fiaf001","url":null,"abstract":"<p><p>In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations. Dramatic changes in community structure were also observed, primarily influenced by the distance from the lake and then by sediment depth, with environmental filtering and dispersal limitations shaping the lateral and vertical distributions, respectively. Based on PICRUSt2 results, the relative abundance of genes related to carbon fixation increased along the lateral horizon, suggesting that microbial carbon fixers are counteracting the carbon loss during permafrost formation. In contrast, the genes related to denitrification also increased, which may lead to nitrogen loss and contribute to global warming by releasing nitric oxide gas. This study highlights the resilience of prokaryotic communities in drained lake basins and their ecological implications under global warming.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karla Sidón-Ceseña, Miguel Angel Martínez-Mercado, Jennyfers Chong-Robles, Yamne Ortega-Saad, Victor Froylán Camacho-Ibar, Lorena Linacre, Asunción Lago-Lestón
Marine protists are key components of biogeochemical cycles and microbial food webs, which respond quickly to environmental factors. In the Gulf of Mexico (GoM), the Loop Current intensifies in summer and supplies the gulf with warm and oligotrophic waters. However, the cyclonic eddies within the GoM create favorable conditions for biological productivity by bringing nutrient-rich water to the subsurface layer. In this study, we investigated the response of the protist community to the regional physicochemical conditions, its spatial and temporal variability, the influence of mesoscale structures, and its ecological roles in the mixed layer (ML) and deep chlorophyll maximum (DCM). This is the first study to conduct a V9-18S rRNA gene survey for this community in the Mexican Exclusive Economic Zone of the GoM. The regional distribution, temporal changes, and mesoscale structures significantly affected the structure of the protist community in the ML. In contrast, only mesoscale structures significantly affected the protist community in the DCM. Different protist assemblages were also present between the ML and DCM, with the Alveolata representing ∼60% of the community in both layers, followed by haptophytes and MAST (Marine Stramenopiles) in the ML; pelagophytes and radiolarians were the more prevalent taxa in the DCM. Finally, co-occurrence analyses revealed that competition, parasitism, and predation were the potential interactions shaping these communities at both depths.
{"title":"The protist community of the oligotrophic waters of the Gulf of Mexico is distinctly shaped by depth-specific physicochemical conditions during the warm season.","authors":"Karla Sidón-Ceseña, Miguel Angel Martínez-Mercado, Jennyfers Chong-Robles, Yamne Ortega-Saad, Victor Froylán Camacho-Ibar, Lorena Linacre, Asunción Lago-Lestón","doi":"10.1093/femsec/fiaf009","DOIUrl":"10.1093/femsec/fiaf009","url":null,"abstract":"<p><p>Marine protists are key components of biogeochemical cycles and microbial food webs, which respond quickly to environmental factors. In the Gulf of Mexico (GoM), the Loop Current intensifies in summer and supplies the gulf with warm and oligotrophic waters. However, the cyclonic eddies within the GoM create favorable conditions for biological productivity by bringing nutrient-rich water to the subsurface layer. In this study, we investigated the response of the protist community to the regional physicochemical conditions, its spatial and temporal variability, the influence of mesoscale structures, and its ecological roles in the mixed layer (ML) and deep chlorophyll maximum (DCM). This is the first study to conduct a V9-18S rRNA gene survey for this community in the Mexican Exclusive Economic Zone of the GoM. The regional distribution, temporal changes, and mesoscale structures significantly affected the structure of the protist community in the ML. In contrast, only mesoscale structures significantly affected the protist community in the DCM. Different protist assemblages were also present between the ML and DCM, with the Alveolata representing ∼60% of the community in both layers, followed by haptophytes and MAST (Marine Stramenopiles) in the ML; pelagophytes and radiolarians were the more prevalent taxa in the DCM. Finally, co-occurrence analyses revealed that competition, parasitism, and predation were the potential interactions shaping these communities at both depths.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Häkkinen, Igor S Pessi, Anna-Reetta Salonen, Oona Uhlgren, Helena Soinne, Jenni Hultman, Jussi Heinonsalo
Land use and agricultural soil management affect soil fungal communities that ultimately influence soil health. Subsoils harbor nutrient reservoir for plants and can play a significant role in plant growth and soil carbon sequestration. Typically, microbial analyses are restricted to topsoil (0-30 cm) leaving subsoil fungal communities underexplored. To address this knowledge gap, we analyzed fungal communities in the vertical profile of four boreal soil treatments: long-term (24 years) organic and conventional crop rotation, meadow, and forest. Internal transcribed spacer (ITS2) amplicon sequencing revealed soil-layer-specific land use or agricultural soil management effects on fungal communities down to the deepest measured soil layer (40-80 cm). Compared to other treatments, higher proportion of symbiotrophs, saprotrophs, and pathotrophs + plant pathogens were found in forest, meadow and crop rotations, respectively. The proportion of arbuscular mycorrhizal fungi was higher in deeper (>20 cm) soil than in topsoil. Forest soil below 20 cm was dominated by fungal functional groups with proposed interactions with plants or other soil biota, whether symbiotrophic or pathotrophic. Ferrous oxide was an important factor shaping fungal communities throughout the vertical profile of meadow and cropping systems. Our results emphasize the importance of including subsoil in microbial community analyses in differently managed soils.
{"title":"Fungal communities in boreal soils are influenced by land use, agricultural soil management, and depth.","authors":"Laura Häkkinen, Igor S Pessi, Anna-Reetta Salonen, Oona Uhlgren, Helena Soinne, Jenni Hultman, Jussi Heinonsalo","doi":"10.1093/femsec/fiaf002","DOIUrl":"10.1093/femsec/fiaf002","url":null,"abstract":"<p><p>Land use and agricultural soil management affect soil fungal communities that ultimately influence soil health. Subsoils harbor nutrient reservoir for plants and can play a significant role in plant growth and soil carbon sequestration. Typically, microbial analyses are restricted to topsoil (0-30 cm) leaving subsoil fungal communities underexplored. To address this knowledge gap, we analyzed fungal communities in the vertical profile of four boreal soil treatments: long-term (24 years) organic and conventional crop rotation, meadow, and forest. Internal transcribed spacer (ITS2) amplicon sequencing revealed soil-layer-specific land use or agricultural soil management effects on fungal communities down to the deepest measured soil layer (40-80 cm). Compared to other treatments, higher proportion of symbiotrophs, saprotrophs, and pathotrophs + plant pathogens were found in forest, meadow and crop rotations, respectively. The proportion of arbuscular mycorrhizal fungi was higher in deeper (>20 cm) soil than in topsoil. Forest soil below 20 cm was dominated by fungal functional groups with proposed interactions with plants or other soil biota, whether symbiotrophic or pathotrophic. Ferrous oxide was an important factor shaping fungal communities throughout the vertical profile of meadow and cropping systems. Our results emphasize the importance of including subsoil in microbial community analyses in differently managed soils.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts. Seven scion cultivars grafted onto M9 rootstocks were inoculated with N. ditissima in the nursery and then planted in December 2018 or stored at 2 °C until planting in April 2019 at three sites in Kent, UK. We assessed canker lesions and collected root samples in June 2021. Quantitative PCR and 16S/ITS amplicon sequencing was used to analyse microbial communities. Site was the primary factor affecting microbiome size, diversity, and composition. Cold storage/planting season had small but significant effects, indicating that differences in the microbiome at planting can persist long-term. Scion genotype had a limited effect on diversity but did influence the abundance of specific root associated taxa. Bacterial α-diversity was associated with canker count in a site-dependent manner. Increased abundances of particular fungal (Rhizophagus irregularis and Epicoccum nigrum) and bacterial (Amycolatopsis and Bradyrhizobium) root associated taxa were associated with fewer cankers.
{"title":"The interplay between scion genotype, root microbiome, and Neonectria ditissima apple canker.","authors":"Hamish McLean, Alexey Mikaberidze, Greg Deakin, Xiangming Xu, Matevz Papp-Rupar","doi":"10.1093/femsec/fiaf014","DOIUrl":"https://doi.org/10.1093/femsec/fiaf014","url":null,"abstract":"<p><p>Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts. Seven scion cultivars grafted onto M9 rootstocks were inoculated with N. ditissima in the nursery and then planted in December 2018 or stored at 2 °C until planting in April 2019 at three sites in Kent, UK. We assessed canker lesions and collected root samples in June 2021. Quantitative PCR and 16S/ITS amplicon sequencing was used to analyse microbial communities. Site was the primary factor affecting microbiome size, diversity, and composition. Cold storage/planting season had small but significant effects, indicating that differences in the microbiome at planting can persist long-term. Scion genotype had a limited effect on diversity but did influence the abundance of specific root associated taxa. Bacterial α-diversity was associated with canker count in a site-dependent manner. Increased abundances of particular fungal (Rhizophagus irregularis and Epicoccum nigrum) and bacterial (Amycolatopsis and Bradyrhizobium) root associated taxa were associated with fewer cankers.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Touchette, Martina Gonzalez Mateu, Grégoire Michoud, Nicola Deluigi, Ramona Marasco, Daniele Daffonchio, Hannes Peter, Tom Battin
Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change. Treatments comprised four flow (natural, intermittent, stochastic, and constant) and two temperature (ambient streamwater and warming of +2°C) regimes. We monitored microbial biomass, diversity, community composition, and metabolic diversity in biofilms over 3 months. We found that community composition was largely influenced by successional dynamics independent of the treatments. While stochastic and constant flow regimes did not significantly affect community composition, droughts altered their composition in the intermittent regime, favouring drought-adapted bacteria and decreasing algal biomass. Concomitantly, warming decreased algal biomass and the abundance of some typical glacier-fed stream bacteria and eukaryotes, and stimulated heterotrophic metabolism overall. Our study provides experimental evidence towards potential and hitherto poorly considered impacts of climate change on benthic biofilms in glacier-fed streams.
{"title":"Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms.","authors":"David Touchette, Martina Gonzalez Mateu, Grégoire Michoud, Nicola Deluigi, Ramona Marasco, Daniele Daffonchio, Hannes Peter, Tom Battin","doi":"10.1093/femsec/fiae163","DOIUrl":"10.1093/femsec/fiae163","url":null,"abstract":"<p><p>Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change. Treatments comprised four flow (natural, intermittent, stochastic, and constant) and two temperature (ambient streamwater and warming of +2°C) regimes. We monitored microbial biomass, diversity, community composition, and metabolic diversity in biofilms over 3 months. We found that community composition was largely influenced by successional dynamics independent of the treatments. While stochastic and constant flow regimes did not significantly affect community composition, droughts altered their composition in the intermittent regime, favouring drought-adapted bacteria and decreasing algal biomass. Concomitantly, warming decreased algal biomass and the abundance of some typical glacier-fed stream bacteria and eukaryotes, and stimulated heterotrophic metabolism overall. Our study provides experimental evidence towards potential and hitherto poorly considered impacts of climate change on benthic biofilms in glacier-fed streams.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Free-living amoebae (FLA) are described as environmental reservoirs for some bacteria able to resist their phagocytosis. In the environment, the fate of Mycobacterium bovis (Mbo) and Mycobacterium avium subsp. paratuberculosis (Map) responsible for bovine tuberculosis and paratuberculosis, respectively, remains poorly understood and is considered potentially problematic in the eradication and control of these diseases. We hypothesize that FLA may play a role in the persistence of Mbo and Map in the environment. In this study, 90 samples were collected from herds affected by one or both diseases to investigate the diversity of amoeba and their associated bacteria. Metabarcoding analyses revealed that Acanthamoeba, Copromyxa, Naegleria, and Vermamoeba were the most represented genera of FLA, with Pseudomonadota being the bacteria most commonly found associated with FLA. Although no Mbo and Map DNA were identified by sequencing, traces were detected by ddPCR (digital droplet PCR), specifically targeting these bacteria. In conclusion, we described a wide diversity of FLA and associated bacteria in this environment. It also suggests that Map and Mbo could be associated, even weakly, with FLA in the environment. However, this needs to be confirmed by detecting a highest amount of DNA and, if possible, cultivable Map and/or Mbo associated with these environmental FLA.
{"title":"Extensive environmental survey of free-living amoebae and their elusive association with Mycobacterium bovis or Mycobacterium avium subsp. paratuberculosis.","authors":"Amélie Jessu, Thierry Cochard, Mélanie Burtin, Stéphanie Crapart, Vincent Delafont, Ascel Samba-Louaka, Franck Biet, Jean-Louis Moyen, Yann Héchard","doi":"10.1093/femsec/fiae164","DOIUrl":"10.1093/femsec/fiae164","url":null,"abstract":"<p><p>Free-living amoebae (FLA) are described as environmental reservoirs for some bacteria able to resist their phagocytosis. In the environment, the fate of Mycobacterium bovis (Mbo) and Mycobacterium avium subsp. paratuberculosis (Map) responsible for bovine tuberculosis and paratuberculosis, respectively, remains poorly understood and is considered potentially problematic in the eradication and control of these diseases. We hypothesize that FLA may play a role in the persistence of Mbo and Map in the environment. In this study, 90 samples were collected from herds affected by one or both diseases to investigate the diversity of amoeba and their associated bacteria. Metabarcoding analyses revealed that Acanthamoeba, Copromyxa, Naegleria, and Vermamoeba were the most represented genera of FLA, with Pseudomonadota being the bacteria most commonly found associated with FLA. Although no Mbo and Map DNA were identified by sequencing, traces were detected by ddPCR (digital droplet PCR), specifically targeting these bacteria. In conclusion, we described a wide diversity of FLA and associated bacteria in this environment. It also suggests that Map and Mbo could be associated, even weakly, with FLA in the environment. However, this needs to be confirmed by detecting a highest amount of DNA and, if possible, cultivable Map and/or Mbo associated with these environmental FLA.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}