Anton Hartmann, Tatiana Binder, Michael Rothballer
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
{"title":"Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health.","authors":"Anton Hartmann, Tatiana Binder, Michael Rothballer","doi":"10.1093/femsec/fiae076","DOIUrl":"10.1093/femsec/fiae076","url":null,"abstract":"<p><p>Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Seedling microbiota engineering using bacterial synthetic community inoculation on seeds.","authors":"","doi":"10.1093/femsec/fiae065","DOIUrl":"10.1093/femsec/fiae065","url":null,"abstract":"","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"100 6","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The shelled pteropod Creseis acicula is a marine pelagic shellfish widely distributed from temperate to tropical seas around the world. From June to July 2020, a C. acicula bloom first happened in the Daya Bay, southern China, and its density reached the highest value (5600 ind. m-3) ever recorded around the world. However, few studies have investigated the responses of bacterial communities to the C. acicula bloom. In the present study, we examined the community profiles of three communities of bacteria including the free-living and particle-attached bacteria in the blooming and reference waters, and bacteria attached to the whole body and shell of C. acicula using a high-throughput sequencing method. The results indicated that the C. acicula bloom had a greater impact on particle-attached bacteria than free-living bacteria. Among the bloom-sensitive particle-attached bacteria, the predominant bacterial phyla were Pseudomonadota, Bacteroidota and Verrucomicrobiota in the blooming areas, whereas they were Actinomycetota and Planctomycetota in the reference areas. Specifically, fecal bacteria Haloferula and Halioglobus spp. were significantly enriched in the blooming waters and accumulated on C. acicula shells. Conversely, the significantly lower relative abundance of Nocardioides sp. in the blooming area and accumulated on the whole body of C. acicula indicated their attachment to particles consumed by C. acicula. Overall, our results suggested that the C. acicula bloom influenced marine bacteria, particularly particle-attached bacteria, by increasing (e.g. providing shells and feces) or decreasing (e.g. filter-feeding the suspended particles) the abundance of available substances.
{"title":"Responses of attached bacterial communities to blooms of the swimming shelled pteropod Creseis acicula in Daya Bay, southern China.","authors":"Rongjun Shi, Tingting Han, Zhanhui Qi, Honghui Huang","doi":"10.1093/femsec/fiae034","DOIUrl":"10.1093/femsec/fiae034","url":null,"abstract":"<p><p>The shelled pteropod Creseis acicula is a marine pelagic shellfish widely distributed from temperate to tropical seas around the world. From June to July 2020, a C. acicula bloom first happened in the Daya Bay, southern China, and its density reached the highest value (5600 ind. m-3) ever recorded around the world. However, few studies have investigated the responses of bacterial communities to the C. acicula bloom. In the present study, we examined the community profiles of three communities of bacteria including the free-living and particle-attached bacteria in the blooming and reference waters, and bacteria attached to the whole body and shell of C. acicula using a high-throughput sequencing method. The results indicated that the C. acicula bloom had a greater impact on particle-attached bacteria than free-living bacteria. Among the bloom-sensitive particle-attached bacteria, the predominant bacterial phyla were Pseudomonadota, Bacteroidota and Verrucomicrobiota in the blooming areas, whereas they were Actinomycetota and Planctomycetota in the reference areas. Specifically, fecal bacteria Haloferula and Halioglobus spp. were significantly enriched in the blooming waters and accumulated on C. acicula shells. Conversely, the significantly lower relative abundance of Nocardioides sp. in the blooming area and accumulated on the whole body of C. acicula indicated their attachment to particles consumed by C. acicula. Overall, our results suggested that the C. acicula bloom influenced marine bacteria, particularly particle-attached bacteria, by increasing (e.g. providing shells and feces) or decreasing (e.g. filter-feeding the suspended particles) the abundance of available substances.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140193588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: decomposition of fomes fomentarius fruiting bodies - transition of healthy living fungus into a decayed bacteria-rich habitat is primarily driven by Arthropoda.","authors":"","doi":"10.1093/femsec/fiae077","DOIUrl":"10.1093/femsec/fiae077","url":null,"abstract":"","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"100 6","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patricia Spoto Corrêa, Murilo Antonio Fernandes, Carolina Rodriguez Jimenez, Lucas William Mendes, Paulo de Mello Tavares Lima, Adibe Luiz Abdalla, Helder Louvandini
Complex cross-talk occurs between gastrointestinal nematodes and gut symbiotic microbiota, with consequences for animal metabolism. To investigate the connection between methane production and endoparasites, this study evaluated the effect of mixed infection with Haemonchus contortus and Trichostrongylus colubriformis on methanogenic and methanotrophic community in rumen microbiota of lambs using shotgun metagenomic and real-time quantitative PCR (qPCR). The rumen content was collected from six Santa Inês lambs, (7 months old) before and after 42 days infection by esophageal tube. The metagenomic analysis showed that the infection affected the microbial community structure leading to decreased abundance of methanotrophs bacteria, i.e. α-proteobacteria and β-proteobacteria, anaerobic methanotrophic archaea (ANME), protozoa, sulfate-reducing bacteria, syntrophic bacteria with methanogens, geobacter, and genes related to pyruvate, fatty acid, nitrogen, and sulfur metabolisms, ribulose monophosphate cycle, and Entner-Doudoroff Pathway. Additionally, the abundance of methanogenic archaea and the mcrA gene did not change. The co-occurrence networks enabled us to identify the interactions between each taxon in microbial communities and to determine the reshaping of rumen microbiome associations by gastrointestinal nematode infection. Besides, the correlation between ANMEs was lower in the animal's postinfection. Our findings suggest that gastrointestinal parasites potentially lead to decreased methanotrophic metabolism-related microorganisms and genes.
{"title":"Interaction between methanotrophy and gastrointestinal nematodes infection on the rumen microbiome of lambs.","authors":"Patricia Spoto Corrêa, Murilo Antonio Fernandes, Carolina Rodriguez Jimenez, Lucas William Mendes, Paulo de Mello Tavares Lima, Adibe Luiz Abdalla, Helder Louvandini","doi":"10.1093/femsec/fiae083","DOIUrl":"10.1093/femsec/fiae083","url":null,"abstract":"<p><p>Complex cross-talk occurs between gastrointestinal nematodes and gut symbiotic microbiota, with consequences for animal metabolism. To investigate the connection between methane production and endoparasites, this study evaluated the effect of mixed infection with Haemonchus contortus and Trichostrongylus colubriformis on methanogenic and methanotrophic community in rumen microbiota of lambs using shotgun metagenomic and real-time quantitative PCR (qPCR). The rumen content was collected from six Santa Inês lambs, (7 months old) before and after 42 days infection by esophageal tube. The metagenomic analysis showed that the infection affected the microbial community structure leading to decreased abundance of methanotrophs bacteria, i.e. α-proteobacteria and β-proteobacteria, anaerobic methanotrophic archaea (ANME), protozoa, sulfate-reducing bacteria, syntrophic bacteria with methanogens, geobacter, and genes related to pyruvate, fatty acid, nitrogen, and sulfur metabolisms, ribulose monophosphate cycle, and Entner-Doudoroff Pathway. Additionally, the abundance of methanogenic archaea and the mcrA gene did not change. The co-occurrence networks enabled us to identify the interactions between each taxon in microbial communities and to determine the reshaping of rumen microbiome associations by gastrointestinal nematode infection. Besides, the correlation between ANMEs was lower in the animal's postinfection. Our findings suggest that gastrointestinal parasites potentially lead to decreased methanotrophic metabolism-related microorganisms and genes.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Verena S Brauer, Lisa Voskuhl, Sadjad Mohammadian, Mark Pannekens, Shirin Haque, Rainer U Meckenstock
It is widely assumed that a taxonomic core community emerges among microbial communities from similar habitats because similar environments select for the same taxa bearing the same traits. Yet, a core community itself is no indicator of selection because it may also arise from dispersal and neutral drift, i.e. by chance. Here, we hypothesize that a core community produced by either selection or chance processes should be distinguishable. While dispersal and drift should produce core communities with similar relative taxon abundances, especially when the proportional core community, i.e. the sum of the relative abundances of the core taxa, is large, selection may produce variable relative abundances. We analyzed the core community of 16S rRNA gene sequences of 193 microbial communities occurring in tiny water droplets enclosed in heavy oil from the Pitch Lake, Trinidad and Tobago. These communities revealed highly variable relative abundances along with a large proportional core community (68.0 ± 19.9%). A dispersal-drift null model predicted a negative relationship of proportional core community and compositional variability along a range of dispersal probabilities and was largely inconsistent with the observed data, suggesting a major role of selection for shaping the water droplet communities in the Pitch Lake.
{"title":"Imprints of ecological processes in the taxonomic core community: an analysis of naturally replicated microbial communities enclosed in oil.","authors":"Verena S Brauer, Lisa Voskuhl, Sadjad Mohammadian, Mark Pannekens, Shirin Haque, Rainer U Meckenstock","doi":"10.1093/femsec/fiae074","DOIUrl":"10.1093/femsec/fiae074","url":null,"abstract":"<p><p>It is widely assumed that a taxonomic core community emerges among microbial communities from similar habitats because similar environments select for the same taxa bearing the same traits. Yet, a core community itself is no indicator of selection because it may also arise from dispersal and neutral drift, i.e. by chance. Here, we hypothesize that a core community produced by either selection or chance processes should be distinguishable. While dispersal and drift should produce core communities with similar relative taxon abundances, especially when the proportional core community, i.e. the sum of the relative abundances of the core taxa, is large, selection may produce variable relative abundances. We analyzed the core community of 16S rRNA gene sequences of 193 microbial communities occurring in tiny water droplets enclosed in heavy oil from the Pitch Lake, Trinidad and Tobago. These communities revealed highly variable relative abundances along with a large proportional core community (68.0 ± 19.9%). A dispersal-drift null model predicted a negative relationship of proportional core community and compositional variability along a range of dispersal probabilities and was largely inconsistent with the observed data, suggesting a major role of selection for shaping the water droplet communities in the Pitch Lake.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorrayne Cardoso Guimarães, Gizele Duarte Garcia, Fernanda Sampaio Cavalcante, Graciela Maria Dias, Felipe Miceli de Farias, Simone Saintive, Eliane de Dios Abad, Dennis de Carvalho Ferreira, Kátia Regina Netto Dos Santos
Coagulase-negative Staphylococcus (CoNS) species inhibiting Staphylococcus aureus has been described in the skin of atopic dermatitis (AD) patients. This study evaluated whether Staphylococcus spp. from the skin and nares of AD and non-AD children produced antimicrobial substances (AMS). AMS production was screened by an overlay method and tested against NaOH, proteases and 30 indicator strains. Clonality was assessed by pulsed-field gel electrophoresis. Proteinaceous AMS-producers were investigated for autoimmunity by the overlay method and presence of bacteriocin genes by polymerase chain reaction. Two AMS-producers had their genome screened for AMS genes. A methicillin-resistant S. aureus (MRSA) produced proteinaceous AMS that inhibited 51.7% of the staphylococcal indicator strains, and it was active against 60% of the colonies selected from the AD child where it was isolated. On the other hand, 57 (8.8%) CoNS from the nares and skin of AD and non-AD children, most of them S. epidermidis (45.6%), reduced the growth of S. aureus and other CoNS species. Bacteriocin-related genes were detected in the genomes of AMS-producers. AMS production by CoNS inhibited S. aureus and other skin microbiota species from children with AD. Furthermore, an MRSA colonizing a child with AD produced AMS, reinforcing its contribution to dysbiosis and disease severity.
特应性皮炎(AD)患者皮肤中的凝固酶阴性葡萄球菌(CoNS)可抑制金黄色葡萄球菌。本研究评估了特应性皮炎儿童和非特应性皮炎儿童皮肤和鼻腔中的葡萄球菌是否会产生抗菌物质(AMS)。AMS 的产生是通过叠加法进行筛选的,并针对 NaOH、蛋白酶和 30 种指示菌株进行了测试。通过脉冲场凝胶电泳评估克隆性。用叠加法检测了蛋白型 AMS 生产者的自身免疫性,并用聚合酶链反应检测了细菌素基因的存在。对两种 AMS 生产者的基因组进行了 AMS 基因筛查。一种耐甲氧西林金黄色葡萄球菌(MRSA)产生的蛋白型AMS对51.7%的葡萄球菌指示菌株有抑制作用,对从AD患儿中分离出的60%的菌落有活性。另一方面,从 AD 儿童和非 AD 儿童的鼻腔和皮肤中分离出的 57 株(8.8%)CoNS(其中大部分为表皮葡萄球菌(45.6%))可减少金黄色葡萄球菌和其他 CoNS 菌种的生长。在AMS产生者的基因组中发现了与细菌素相关的基因。CoNS产生的AMS可抑制金黄色葡萄球菌和其他来自AD患儿皮肤微生物群的物种。此外,定植于AD患儿体内的MRSA也会产生AMS,从而加强了其对菌群失调和疾病严重性的作用。
{"title":"Methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus produce antimicrobial substances against members of the skin microbiota in children with atopic dermatitis.","authors":"Lorrayne Cardoso Guimarães, Gizele Duarte Garcia, Fernanda Sampaio Cavalcante, Graciela Maria Dias, Felipe Miceli de Farias, Simone Saintive, Eliane de Dios Abad, Dennis de Carvalho Ferreira, Kátia Regina Netto Dos Santos","doi":"10.1093/femsec/fiae070","DOIUrl":"10.1093/femsec/fiae070","url":null,"abstract":"<p><p>Coagulase-negative Staphylococcus (CoNS) species inhibiting Staphylococcus aureus has been described in the skin of atopic dermatitis (AD) patients. This study evaluated whether Staphylococcus spp. from the skin and nares of AD and non-AD children produced antimicrobial substances (AMS). AMS production was screened by an overlay method and tested against NaOH, proteases and 30 indicator strains. Clonality was assessed by pulsed-field gel electrophoresis. Proteinaceous AMS-producers were investigated for autoimmunity by the overlay method and presence of bacteriocin genes by polymerase chain reaction. Two AMS-producers had their genome screened for AMS genes. A methicillin-resistant S. aureus (MRSA) produced proteinaceous AMS that inhibited 51.7% of the staphylococcal indicator strains, and it was active against 60% of the colonies selected from the AD child where it was isolated. On the other hand, 57 (8.8%) CoNS from the nares and skin of AD and non-AD children, most of them S. epidermidis (45.6%), reduced the growth of S. aureus and other CoNS species. Bacteriocin-related genes were detected in the genomes of AMS-producers. AMS production by CoNS inhibited S. aureus and other skin microbiota species from children with AD. Furthermore, an MRSA colonizing a child with AD produced AMS, reinforcing its contribution to dysbiosis and disease severity.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Oprei, José Schreckinger, Insa Franzmann, Hayoung Lee, Michael Mutz, Ute Risse-Buhl
Sandy sediments of lowland streams are transported as migrating ripples. Benthic microorganisms colonizing sandy grains are exposed to frequent moving-resting cycles and are believed to be shaped by two dominant environmental factors: mechanical stress during the moving phase causing biofilm abrasion, and alternating light-dark cycles during the resting phase. Our study consisted of two laboratory experiments and aimed to decipher which environmental factor causes the previously observed hampered sediment associated microbial activity and altered community structure during ripple migration. The first experiment tested the effect of three different migration velocities under comparable light conditions. The second experiment compared migrating and stationary sediments under either constant light exposure or light oscillation. We hypothesized that microbial activity and community structure would be more strongly affected by 1) higher compared to lower migration velocities, and by 2) light oscillation compared to mechanical stress. Combining the results from both experiments, we observed lower microbial activity and an altered community structure in sediments exposed to light oscillation, whereas migration velocity had less impact on community activity and structure. Our findings indicate that light oscillation is the predominating environmental factor acting during ripple migration, resulting in an increased vulnerability of light-dependent photoautotrophs and a possible shift towards heterotrophy.
{"title":"Light over mechanics: Microbial community structure and activity in simulated migrating bedforms are controlled by oscillating light rather than by mechanical forces","authors":"Anna Oprei, José Schreckinger, Insa Franzmann, Hayoung Lee, Michael Mutz, Ute Risse-Buhl","doi":"10.1093/femsec/fiae073","DOIUrl":"https://doi.org/10.1093/femsec/fiae073","url":null,"abstract":"Sandy sediments of lowland streams are transported as migrating ripples. Benthic microorganisms colonizing sandy grains are exposed to frequent moving-resting cycles and are believed to be shaped by two dominant environmental factors: mechanical stress during the moving phase causing biofilm abrasion, and alternating light-dark cycles during the resting phase. Our study consisted of two laboratory experiments and aimed to decipher which environmental factor causes the previously observed hampered sediment associated microbial activity and altered community structure during ripple migration. The first experiment tested the effect of three different migration velocities under comparable light conditions. The second experiment compared migrating and stationary sediments under either constant light exposure or light oscillation. We hypothesized that microbial activity and community structure would be more strongly affected by 1) higher compared to lower migration velocities, and by 2) light oscillation compared to mechanical stress. Combining the results from both experiments, we observed lower microbial activity and an altered community structure in sediments exposed to light oscillation, whereas migration velocity had less impact on community activity and structure. Our findings indicate that light oscillation is the predominating environmental factor acting during ripple migration, resulting in an increased vulnerability of light-dependent photoautotrophs and a possible shift towards heterotrophy.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"23 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paula A Rojas-Pinzon, Judith Prommer, Christopher J Sedlacek, Taru Sandén, Heide Spiegel, Petra Pjevac, Lucia Fuchslueger, Andrew T Giguere
Up to 70% of the nitrogen (N) fertilizer applied to agricultural soils is lost through microbially mediated processes, such as nitrification. This can be counteracted by synthetic and biological compounds that inhibit nitrification. However, for many biological nitrification inhibitors (BNIs), the interaction with soil properties, nitrifier specificity, and effective concentrations are unclear. Here, we investigated three synthetic nitrification inhibitors (SNIs) (DCD, DMPP, and nitrapyrin) and three BNIs (methyl 3(4-hydroxyphenyl) propionate (MHPP), methyl 3(4-hydroxyphenyl) acrylate (MHPA), and limonene) in two agricultural soils differing in pH and nitrifier communities. The efficacies of SNIs and BNIs were resilient to short-term pH changes in the neutral pH soil, whereas the efficacy of some BNIs increased by neutralizing the alkaline soil. Among the BNIs, MHPA showed the highest inhibition and was, together with MHPP, identified as a putative AOB/comammox-selective inhibitor. Additionally, MHPA and limonene effectively inhibited nitrification at concentrations comparable to those used for DCD. Moreover, we identified the effective concentrations at which 50 and 80% of inhibition is observed (EC50 and EC80) for the BNIs, and similar EC80 values were observed in both soils. Overall, our results show that these BNIs could potentially serve as effective alternatives to SNIs currently used.
{"title":"Inhibition profile of three biological nitrification inhibitors and their response to soil pH modification in two contrasting soils","authors":"Paula A Rojas-Pinzon, Judith Prommer, Christopher J Sedlacek, Taru Sandén, Heide Spiegel, Petra Pjevac, Lucia Fuchslueger, Andrew T Giguere","doi":"10.1093/femsec/fiae072","DOIUrl":"https://doi.org/10.1093/femsec/fiae072","url":null,"abstract":"Up to 70% of the nitrogen (N) fertilizer applied to agricultural soils is lost through microbially mediated processes, such as nitrification. This can be counteracted by synthetic and biological compounds that inhibit nitrification. However, for many biological nitrification inhibitors (BNIs), the interaction with soil properties, nitrifier specificity, and effective concentrations are unclear. Here, we investigated three synthetic nitrification inhibitors (SNIs) (DCD, DMPP, and nitrapyrin) and three BNIs (methyl 3(4-hydroxyphenyl) propionate (MHPP), methyl 3(4-hydroxyphenyl) acrylate (MHPA), and limonene) in two agricultural soils differing in pH and nitrifier communities. The efficacies of SNIs and BNIs were resilient to short-term pH changes in the neutral pH soil, whereas the efficacy of some BNIs increased by neutralizing the alkaline soil. Among the BNIs, MHPA showed the highest inhibition and was, together with MHPP, identified as a putative AOB/comammox-selective inhibitor. Additionally, MHPA and limonene effectively inhibited nitrification at concentrations comparable to those used for DCD. Moreover, we identified the effective concentrations at which 50 and 80% of inhibition is observed (EC50 and EC80) for the BNIs, and similar EC80 values were observed in both soils. Overall, our results show that these BNIs could potentially serve as effective alternatives to SNIs currently used.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"45 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Girish R Nair, Bhaveni B Kooverjee, Storme de Scally, Don A Cowan, Thulani P Makhalanyane
In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting meltwater run-off and mobilisation of surface nutrients. Yet, the short-term effects of altered nutrient regimes, on the diversity and function of soil microbiota in poly-extreme environments such as Antarctica, remains poorly understood. We studied these effects by simulating such environments via constructing soil microcosms through augmented carbon, nitrogen, and moisture supplements. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatment groups. Other treatments led to shift in relative abundances of these microbial assemblages with random distributional patterns. Only nitrogen treatment appeared to show clear community structural patterns, with increase in abundance of Proteobacteria (Gammaproteobateria) and decrease in Verrucomicrobiota (Chlamydiae, Verrucomicrobiae). Effects of extracellular enzyme activities and soil parameters on changes in microbial taxa also showed significance impacts of nitrogen treatment. Microbial response to nutrient addition was predicted using structural equation modelling which revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms which showed resilience to nutrient increases. Rather than being resistant to change, these microorganisms rapidly responded to augmented nutrient regimes.
{"title":"Changes in nutrient availability substantially alter bacteria and extracellular enzymatic activities in Antarctic soils","authors":"Girish R Nair, Bhaveni B Kooverjee, Storme de Scally, Don A Cowan, Thulani P Makhalanyane","doi":"10.1093/femsec/fiae071","DOIUrl":"https://doi.org/10.1093/femsec/fiae071","url":null,"abstract":"In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting meltwater run-off and mobilisation of surface nutrients. Yet, the short-term effects of altered nutrient regimes, on the diversity and function of soil microbiota in poly-extreme environments such as Antarctica, remains poorly understood. We studied these effects by simulating such environments via constructing soil microcosms through augmented carbon, nitrogen, and moisture supplements. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatment groups. Other treatments led to shift in relative abundances of these microbial assemblages with random distributional patterns. Only nitrogen treatment appeared to show clear community structural patterns, with increase in abundance of Proteobacteria (Gammaproteobateria) and decrease in Verrucomicrobiota (Chlamydiae, Verrucomicrobiae). Effects of extracellular enzyme activities and soil parameters on changes in microbial taxa also showed significance impacts of nitrogen treatment. Microbial response to nutrient addition was predicted using structural equation modelling which revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms which showed resilience to nutrient increases. Rather than being resistant to change, these microorganisms rapidly responded to augmented nutrient regimes.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"24 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}