Introduction: Many studies have investigated the manipulation of a virtual upper arm using electromyogram (EMG); however, these studies primarily used a machine learning model or trigger control for this purpose. Furthermore, most of them could only display the constant motion of the virtual arm because the motion to be displayed was selected by pattern recognition or trigger control. In addition, these studies did not examine changes in the electromyographic signals after experiencing the virtual arm. By contrast, we propose a real-time, continuous, learning-free avatar that manipulates the virtual arm with electromyogram signals or physio-avatar EMG biofeedback (EB). The goal of the physio-avatar EB system is to induce physiological changes through experiential interactions.
Methods: We explored the possibility of changing motor control strategies by applying the system to healthy individuals as a case study. An intervention method that provided an experience of a body different from one's own was conducted on seven participants using a time-invariant calculation algorithm to determine the joint angles of the avatar. Control strategies for an indicator of the equilibrium point in the baseline and adaptation phases were determined to evaluate the physio-avatar EB intervention effect. The similarity of these BL and adaptation control strategies compared to those used during the washout period was assessed using the coefficient of determination. The accuracy and reliability of the virtual reality (VR) system were evaluated by comparison with existing studies and the required specs.
Results and discussion: Changes in motor control strategies due to the physio-avatar EB system were observed in four experiments, where the participants gradually returned to their pre-intervention control strategies. This result can be attributed to the aftereffects caused by error learning. This implies that the developed system influenced their motor control strategies. The number of EMG acquisition bits was 16 bits, and the sampling rate was 1,000 Hz. The refresh rate of the head-mounted display was 90 Hz, and its resolution was for a single eye. Additionally, the simulation frame rate was 30 FPS. These values were adequate compared to existing studies and required specs. The essential contribution of this study is the development of an avatar that is controlled by a different method than has been used in previous studies and the demonstration of changes in a subject's muscle activity after they experience an avatar. In the future, the clinical efficacy of the proposed system will be evaluated with actual patients.
{"title":"Physio-avatar EB: aftereffects in error learning with EMG manipulation of first-person avatar experience.","authors":"Tetsuya Ando, Kazuhiro Matsui, Yuto Okamoto, Keita Atsuumi, Kazuhiro Taniguchi, Hiroaki Hirai, Atsushi Nishikawa","doi":"10.3389/fbioe.2024.1421765","DOIUrl":"10.3389/fbioe.2024.1421765","url":null,"abstract":"<p><strong>Introduction: </strong>Many studies have investigated the manipulation of a virtual upper arm using electromyogram (EMG); however, these studies primarily used a machine learning model or trigger control for this purpose. Furthermore, most of them could only display the constant motion of the virtual arm because the motion to be displayed was selected by pattern recognition or trigger control. In addition, these studies did not examine changes in the electromyographic signals after experiencing the virtual arm. By contrast, we propose a real-time, continuous, learning-free avatar that manipulates the virtual arm with electromyogram signals or physio-avatar EMG biofeedback (EB). The goal of the physio-avatar EB system is to induce physiological changes through experiential interactions.</p><p><strong>Methods: </strong>We explored the possibility of changing motor control strategies by applying the system to healthy individuals as a case study. An intervention method that provided an experience of a body different from one's own was conducted on seven participants using a time-invariant calculation algorithm to determine the joint angles of the avatar. Control strategies for an indicator of the equilibrium point in the baseline and adaptation phases were determined to evaluate the physio-avatar EB intervention effect. The similarity of these BL and adaptation control strategies compared to those used during the washout period was assessed using the coefficient of determination. The accuracy and reliability of the virtual reality (VR) system were evaluated by comparison with existing studies and the required specs.</p><p><strong>Results and discussion: </strong>Changes in motor control strategies due to the physio-avatar EB system were observed in four experiments, where the participants gradually returned to their pre-intervention control strategies. This result can be attributed to the aftereffects caused by error learning. This implies that the developed system influenced their motor control strategies. The number of EMG acquisition bits was 16 bits, and the sampling rate was 1,000 Hz. The refresh rate of the head-mounted display was 90 Hz, and its resolution was <math><mrow><mn>1440</mn> <mo>×</mo> <mn>1600</mn></mrow> </math> for a single eye. Additionally, the simulation frame rate was 30 FPS. These values were adequate compared to existing studies and required specs. The essential contribution of this study is the development of an avatar that is controlled by a different method than has been used in previous studies and the demonstration of changes in a subject's muscle activity after they experience an avatar. In the future, the clinical efficacy of the proposed system will be evaluated with actual patients.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09eCollection Date: 2024-01-01DOI: 10.3389/fbioe.2024.1374299
Xiang Zhou, Xishan Li, Kai Oliver Böker, Arndt F Schilling, Wolfgang Lehmann
Background: Gotfried positive reduction offers an alternative strategy for femoral neck fracture (FNF) when achieving anatomical reduction is challenging. However, the biomechanical consequences of positive reduction remain unclear. The purpose of this study was to investigate the biomechanical behavior of positive reduction across different Pauwels classification, providing a reference for quantifying positive reduction in clinical practice.
Methods: Three-dimensional (3D) models of FNF were established and categorized according to the Pauwels classifications (Pauwels I, II, and III), each of them contained seven models with different reduction qualities, including an anatomical reduction model, two negative reduction models, and four positive reduction models, all of which were stabilized with dynamic hip screws (DHS) and cannulated screws (CS). We investigated the maximal von-Mises stress of internal fixation and proximal femoral, femoral fragment displacement, and maximal von-Mises strain at the proximal fragment fracture site when a 2100 N load was applied to the femoral head.
Results: The maximum von-Mises stress on the internal fixators in each Pauwels group was lowest in the anatomical reduction model. In the Pauwels I group, positive reduction exceeding 3 mm resulted in the maximum von-Mises stress on the internal fixators surpassing that of the negative reduction model. For the Pauwels II group, positive reduction beyond 2 mm led to the maximum von-Mises stress on the internal fixators exceeding that of the negative reduction model. In the Pauwels III group, positive reduction beyond 1 mm caused the maximum von-Mises stress on the internal fixators to be higher than that of the negative reduction model. The maximum von-Mises strain at the fracture site of proximal femur fragment increased with positive reduction. Varus displacement increased in positive reduction models as the Pauwels angle rose, potentially exacerbating rotation deformity in Pauwels III group.
Conclusion: Excessive positive reduction may increase the risk of FNF failure after internal fixation. From a biomechanical stability perspective, positive reduction should be limited to 3 mm or below in the Pauwels I group, restricted to not exceed 2 mm in the Pauwels II group, and should not exceed 1 mm in the Pauwels III group. Negative reduction should be avoided in all Pauwels groups.
背景:当实现解剖复位具有挑战性时,戈特弗里德正位复位术为股骨颈骨折(FNF)提供了一种替代策略。然而,积极复位的生物力学后果仍不清楚。本研究的目的是调查不同 Pauwels 分类下积极复位的生物力学行为,为临床实践中量化积极复位提供参考:建立了 FNF 的三维(3D)模型,并根据 Pauwels 分级(Pauwels I、II 和 III)进行了分类,每个分类包含 7 个不同减径质量的模型,其中包括一个解剖减径模型、两个负减径模型和四个正减径模型,所有模型均使用动态髋关节螺钉(DHS)和套管螺钉(CS)进行稳定。我们研究了股骨头承受2100牛载荷时,内固定和股骨近端最大von-Mises应力、股骨碎片位移以及近端碎片骨折部位的最大von-Mises应变:在解剖复位模型中,每个 Pauwels 组内固定器上的最大 von-Mises 应力最小。在 Pauwels I 组中,正减径超过 3 mm 时,内固定器上的最大 von-Mises 应力超过了负减径模型。在 Pauwels II 组中,正向缩减超过 2 mm 会导致内固定器上的最大 von-Mises 应力超过负向缩减模型。在 Pauwels III 组中,正向缩减超过 1 mm 会导致内固定器上的最大 von-Mises 应力高于负向缩减模型。股骨近端骨折部位的最大 von-Mises 应变随着正位复位而增加。随着Pauwels角的增大,正位复位模型中的屈曲移位也随之增大,这可能会加剧Pauwels III组的旋转畸形:结论:过度正位复位可能会增加内固定后 FNF 失败的风险。从生物力学稳定性的角度来看,Pauwels I 组的正缩应限制在 3 毫米或以下,Pauwels II 组不应超过 2 毫米,Pauwels III 组不应超过 1 毫米。所有 Pauwels 组均应避免负缩减。
{"title":"Biomechanical investigation of positive reduction in the femoral neck fracture: a finite element analysis.","authors":"Xiang Zhou, Xishan Li, Kai Oliver Böker, Arndt F Schilling, Wolfgang Lehmann","doi":"10.3389/fbioe.2024.1374299","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1374299","url":null,"abstract":"<p><strong>Background: </strong>Gotfried positive reduction offers an alternative strategy for femoral neck fracture (FNF) when achieving anatomical reduction is challenging. However, the biomechanical consequences of positive reduction remain unclear. The purpose of this study was to investigate the biomechanical behavior of positive reduction across different Pauwels classification, providing a reference for quantifying positive reduction in clinical practice.</p><p><strong>Methods: </strong>Three-dimensional (3D) models of FNF were established and categorized according to the Pauwels classifications (Pauwels I, II, and III), each of them contained seven models with different reduction qualities, including an anatomical reduction model, two negative reduction models, and four positive reduction models, all of which were stabilized with dynamic hip screws (DHS) and cannulated screws (CS). We investigated the maximal von-Mises stress of internal fixation and proximal femoral, femoral fragment displacement, and maximal von-Mises strain at the proximal fragment fracture site when a 2100 N load was applied to the femoral head.</p><p><strong>Results: </strong>The maximum von-Mises stress on the internal fixators in each Pauwels group was lowest in the anatomical reduction model. In the Pauwels I group, positive reduction exceeding 3 mm resulted in the maximum von-Mises stress on the internal fixators surpassing that of the negative reduction model. For the Pauwels II group, positive reduction beyond 2 mm led to the maximum von-Mises stress on the internal fixators exceeding that of the negative reduction model. In the Pauwels III group, positive reduction beyond 1 mm caused the maximum von-Mises stress on the internal fixators to be higher than that of the negative reduction model. The maximum von-Mises strain at the fracture site of proximal femur fragment increased with positive reduction. Varus displacement increased in positive reduction models as the Pauwels angle rose, potentially exacerbating rotation deformity in Pauwels III group.</p><p><strong>Conclusion: </strong>Excessive positive reduction may increase the risk of FNF failure after internal fixation. From a biomechanical stability perspective, positive reduction should be limited to 3 mm or below in the Pauwels I group, restricted to not exceed 2 mm in the Pauwels II group, and should not exceed 1 mm in the Pauwels III group. Negative reduction should be avoided in all Pauwels groups.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08eCollection Date: 2024-01-01DOI: 10.3389/fbioe.2024.1464129
Murad Ali, Muhammed Hisham, Rashid K Abu Al-Rub, Haider Butt
In this study, multifunctional Fresnel lenses were explored as a potential solution for correcting vision in patients with color vision deficiency (CVD) and high myopia. Current studies have primarily focused on color vision correction through the 3D printing of glasses and contact lenses. However, the potential of 3D-printed multifunctional devices, such as Fresnel lenses, goes beyond addressing a single vision correction issue. For this study, computer-aided design (CAD) model of Fresnel lens with high diopter based on constant height configuration was developed. The CAD model was successfully fabricated using vat photopolymerization 3D printer, employing laboratory-prepared transparent HEMA resin. The resin was modified with two Atto dyes (565 nm and 488 nm), known for their ability to filter out problematic wavelengths (400-500 nm and 540-580 nm) to address color vision deficiency. The printed lenses were characterized by their chemical, physical, and optical properties using various characterization techniques. The focusing performance was evaluated using focal length measurements, and the results obtained were less than 2 mm deviation from the design value, having the potential to assist in higher myopic vision correction. The resulting optical spectra were compared with commercial glasses, revealing close agreement for CVD correction. These results expand the potential applications of multifunctional Fresnel lenses in ophthalmology, demonstrating their effectiveness as vision-correcting lenses and imaging systems.
本研究探索了多功能菲涅尔镜片作为矫正色觉缺陷(CVD)和高度近视患者视力的潜在解决方案。目前的研究主要集中在通过 3D 打印眼镜和隐形眼镜矫正色觉。然而,3D打印多功能设备(如菲涅尔镜片)的潜力不仅限于解决单一的视力矫正问题。本研究开发了基于恒定高度配置的高屈光度菲涅尔透镜计算机辅助设计(CAD)模型。该 CAD 模型采用实验室制备的透明 HEMA 树脂,使用大桶光聚合 3D 打印机成功制作。树脂中添加了两种阿托染料(565 nm 和 488 nm),这两种染料具有过滤问题波长(400-500 nm 和 540-580 nm)的能力,可解决色觉缺陷问题。利用各种表征技术对印刷镜片的化学、物理和光学特性进行了表征。通过焦距测量对聚焦性能进行了评估,所得结果与设计值的偏差小于 2 毫米,具有帮助矫正高度近视的潜力。所得到的光学光谱与商用眼镜进行了比较,结果表明两者的 CVD 矫正效果非常接近。这些结果拓展了多功能菲涅尔透镜在眼科领域的潜在应用,证明了其作为视力矫正透镜和成像系统的有效性。
{"title":"Vat photopolymerization of multifunctional fresnel lenses for ocular management.","authors":"Murad Ali, Muhammed Hisham, Rashid K Abu Al-Rub, Haider Butt","doi":"10.3389/fbioe.2024.1464129","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1464129","url":null,"abstract":"<p><p>In this study, multifunctional Fresnel lenses were explored as a potential solution for correcting vision in patients with color vision deficiency (CVD) and high myopia. Current studies have primarily focused on color vision correction through the 3D printing of glasses and contact lenses. However, the potential of 3D-printed multifunctional devices, such as Fresnel lenses, goes beyond addressing a single vision correction issue. For this study, computer-aided design (CAD) model of Fresnel lens with high diopter based on constant height configuration was developed. The CAD model was successfully fabricated using vat photopolymerization 3D printer, employing laboratory-prepared transparent HEMA resin. The resin was modified with two Atto dyes (565 nm and 488 nm), known for their ability to filter out problematic wavelengths (400-500 nm and 540-580 nm) to address color vision deficiency. The printed lenses were characterized by their chemical, physical, and optical properties using various characterization techniques. The focusing performance was evaluated using focal length measurements, and the results obtained were less than 2 mm deviation from the design value, having the potential to assist in higher myopic vision correction. The resulting optical spectra were compared with commercial glasses, revealing close agreement for CVD correction. These results expand the potential applications of multifunctional Fresnel lenses in ophthalmology, demonstrating their effectiveness as vision-correcting lenses and imaging systems.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Running poses a high risk of developing running-related injuries (RRIs). The majority of RRIs are the result of an imbalance between cumulative musculoskeletal load and load capacity. A general estimate of whole-body biomechanical load can be inferred from ground reaction forces (GRFs). Unfortunately, GRFs typically can only be measured in a controlled environment, which hinders its wider applicability. The advent of portable sensors has enabled training machine-learned models that are able to monitor GRF characteristics associated with RRIs in a broader range of contexts. Our study presents and evaluates a machine-learning method to predict the contact time, active peak, impact peak, and impulse of the vertical GRF during running from three-dimensional sacral acceleration. The developed models for predicting active peak, impact peak, impulse, and contact time demonstrated a root-mean-squared error of 0.080 body weight (BW), 0.198 BW, 0.0073 BW seconds, and 0.0101 seconds, respectively. Our proposed method outperformed a mean-prediction baseline and two established methods from the literature. The results indicate the potential utility of this approach as a valuable tool for monitoring selected factors related to running-related injuries.
{"title":"Predicting vertical ground reaction force characteristics during running with machine learning.","authors":"Sieglinde Bogaert, Jesse Davis, Benedicte Vanwanseele","doi":"10.3389/fbioe.2024.1440033","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1440033","url":null,"abstract":"<p><p>Running poses a high risk of developing running-related injuries (RRIs). The majority of RRIs are the result of an imbalance between cumulative musculoskeletal load and load capacity. A general estimate of whole-body biomechanical load can be inferred from ground reaction forces (GRFs). Unfortunately, GRFs typically can only be measured in a controlled environment, which hinders its wider applicability. The advent of portable sensors has enabled training machine-learned models that are able to monitor GRF characteristics associated with RRIs in a broader range of contexts. Our study presents and evaluates a machine-learning method to predict the contact time, active peak, impact peak, and impulse of the vertical GRF during running from three-dimensional sacral acceleration. The developed models for predicting active peak, impact peak, impulse, and contact time demonstrated a root-mean-squared error of 0.080 body weight (BW), 0.198 BW, 0.0073 BW <math><mrow><mo>⋅</mo></mrow> </math> seconds, and 0.0101 seconds, respectively. Our proposed method outperformed a mean-prediction baseline and two established methods from the literature. The results indicate the potential utility of this approach as a valuable tool for monitoring selected factors related to running-related injuries.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493597/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08eCollection Date: 2024-01-01DOI: 10.3389/fbioe.2024.1458091
Hugo Abreu, Mari Lallukka, Davide Raineri, Massimiliano Leigheb, Mario Ronga, Giuseppe Cappellano, Silvia Spriano, Annalisa Chiocchetti
Introduction: While titanium and its alloys exhibit excellent biocompatibility and corrosion resistance, their polished surfaces can hinder fast and effective osseointegration and other biological processes, such as angiogenesis, due to their inert and hydrophobic properties. Despite being commonly used for orthopedic implants, research focuses on developing surface treatments to improve osseointegration, promoting cell adhesion and proliferation, as well as increasing protein adsorption capacity. This study explores a chemical treatment intended for titanium-based implants that enhances tissue integration without compromising the mechanical properties of the Ti6Al4V substrate. However, recognizing that inflammation contributes to nearly half of early implant failures, we assessed the impact of this treatment on T-cell viability, cytokine production, and phenotype.
Methods: Ti6Al4V with extra low interstitial (ELI) content discs were treated with hydrofluoric acid followed by a controlled oxidation step in hydrogen peroxide that creates a complex surface topography with micro- and nano-texture and modifies the chemistry of the surface oxide layer. The acid etched surface contains an abundance of hydroxyl groups, crucial for promoting bone growth and apatite precipitation, while also enabling further functionalization with biomolecules.
Results: While cell viability remained high in both groups, untreated discs triggered an increase in Th2 cells and a decrease of the Th17 subset. Furthermore, peripheral blood mononuclear cells exposed to untreated discs displayed a rise in various pro-inflammatory and anti-inflammatory cytokines compared to the control and treated groups. Conversely, the treated discs showed a similar profile to the control, both in terms of immune cell subset frequencies and cytokine secretion.
Discussion: The dysregulation of the cytokine profile upon contact with untreated Ti6Al4V-ELI discs, namely upregulation of IL-2 could be responsible for the decrease in Th17 frequency, and thus might contribute to implant-associated bacterial infection. Interestingly, the chemical treatment restores the immune response to levels comparable to the control condition, suggesting the treatment's potential to mitigate inflammation by enhancing biocompatibility.
{"title":"Evaluation of the immune response of peripheral blood mononuclear cells cultured on Ti6Al4V-ELI polished or etched surfaces.","authors":"Hugo Abreu, Mari Lallukka, Davide Raineri, Massimiliano Leigheb, Mario Ronga, Giuseppe Cappellano, Silvia Spriano, Annalisa Chiocchetti","doi":"10.3389/fbioe.2024.1458091","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1458091","url":null,"abstract":"<p><strong>Introduction: </strong>While titanium and its alloys exhibit excellent biocompatibility and corrosion resistance, their polished surfaces can hinder fast and effective osseointegration and other biological processes, such as angiogenesis, due to their inert and hydrophobic properties. Despite being commonly used for orthopedic implants, research focuses on developing surface treatments to improve osseointegration, promoting cell adhesion and proliferation, as well as increasing protein adsorption capacity. This study explores a chemical treatment intended for titanium-based implants that enhances tissue integration without compromising the mechanical properties of the Ti6Al4V substrate. However, recognizing that inflammation contributes to nearly half of early implant failures, we assessed the impact of this treatment on T-cell viability, cytokine production, and phenotype.</p><p><strong>Methods: </strong>Ti6Al4V with extra low interstitial (ELI) content discs were treated with hydrofluoric acid followed by a controlled oxidation step in hydrogen peroxide that creates a complex surface topography with micro- and nano-texture and modifies the chemistry of the surface oxide layer. The acid etched surface contains an abundance of hydroxyl groups, crucial for promoting bone growth and apatite precipitation, while also enabling further functionalization with biomolecules.</p><p><strong>Results: </strong>While cell viability remained high in both groups, untreated discs triggered an increase in Th2 cells and a decrease of the Th17 subset. Furthermore, peripheral blood mononuclear cells exposed to untreated discs displayed a rise in various pro-inflammatory and anti-inflammatory cytokines compared to the control and treated groups. Conversely, the treated discs showed a similar profile to the control, both in terms of immune cell subset frequencies and cytokine secretion.</p><p><strong>Discussion: </strong>The dysregulation of the cytokine profile upon contact with untreated Ti6Al4V-ELI discs, namely upregulation of IL-2 could be responsible for the decrease in Th17 frequency, and thus might contribute to implant-associated bacterial infection. Interestingly, the chemical treatment restores the immune response to levels comparable to the control condition, suggesting the treatment's potential to mitigate inflammation by enhancing biocompatibility.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08eCollection Date: 2024-01-01DOI: 10.3389/fbioe.2024.1457884
Karin F Schmid, Soheila Zeinali, Susanne K Moser, Christelle Dubey, Sabine Schneider, Haibin Deng, Simon Haefliger, Thomas M Marti, Olivier T Guenat
Metastatic lung cancer remains a leading cause of death worldwide, with its intricate metastatic cascade posing significant challenges to researchers and clinicians. Despite substantial progress in understanding this cascade, many aspects remain elusive. Microfluidic-based vasculature-on-chip models have emerged as powerful tools in cancer research, enabling the simulation of specific stages of tumor progression. In this study, we investigate the extravasation behaviors of A549 lung cancer cell subpopulations, revealing distinct differences based on their phenotypes. Our results show that holoclones, which exhibit an epithelial phenotype, do not undergo extravasation. In contrast, paraclones, characterized by a mesenchymal phenotype, demonstrate a notable capacity for extravasation. Furthermore, we observed that paraclones migrate significantly faster than holoclones within the microfluidic model. Importantly, we found that the depletion of vascular endothelial growth factor (VEGF) effectively inhibits the extravasation of paraclones. These findings highlight the utility of microfluidic-based models in replicating key aspects of the metastatic cascade. The insights gained from this study underscore the potential of these models to advance precision medicine by facilitating the assessment of patient-specific cancer cell dynamics and drug responses. This approach could lead to improved strategies for predicting metastatic risk and tailoring personalized cancer therapies, potentially involving the sampling of cancer cells from patients during tumor resection or biopsies.
{"title":"Assessing the metastatic potential of circulating tumor cells using an organ-on-chip model.","authors":"Karin F Schmid, Soheila Zeinali, Susanne K Moser, Christelle Dubey, Sabine Schneider, Haibin Deng, Simon Haefliger, Thomas M Marti, Olivier T Guenat","doi":"10.3389/fbioe.2024.1457884","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1457884","url":null,"abstract":"<p><p>Metastatic lung cancer remains a leading cause of death worldwide, with its intricate metastatic cascade posing significant challenges to researchers and clinicians. Despite substantial progress in understanding this cascade, many aspects remain elusive. Microfluidic-based vasculature-on-chip models have emerged as powerful tools in cancer research, enabling the simulation of specific stages of tumor progression. In this study, we investigate the extravasation behaviors of A549 lung cancer cell subpopulations, revealing distinct differences based on their phenotypes. Our results show that holoclones, which exhibit an epithelial phenotype, do not undergo extravasation. In contrast, paraclones, characterized by a mesenchymal phenotype, demonstrate a notable capacity for extravasation. Furthermore, we observed that paraclones migrate significantly faster than holoclones within the microfluidic model. Importantly, we found that the depletion of vascular endothelial growth factor (VEGF) effectively inhibits the extravasation of paraclones. These findings highlight the utility of microfluidic-based models in replicating key aspects of the metastatic cascade. The insights gained from this study underscore the potential of these models to advance precision medicine by facilitating the assessment of patient-specific cancer cell dynamics and drug responses. This approach could lead to improved strategies for predicting metastatic risk and tailoring personalized cancer therapies, potentially involving the sampling of cancer cells from patients during tumor resection or biopsies.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08eCollection Date: 2024-01-01DOI: 10.3389/fbioe.2024.1480279
Zhongxu Li, Xiaobo Dai, Zhixin Li, Zhenxin Wu, Lili Xue, Yi Li, Bing Yan
Purpose: An accurate assessment of the surgical margins of tongue squamous cell carcinoma (TSCC), especially the deep muscle tissue, can help completely remove the cancer cells and thus minimize the risk of recurrence. This study aimed to develop a classification model that classifies TSCC and normal tissues in order to aid in the rapid and accurate intraoperative assessment of TSCC surgical deep muscle tissue margins.
Materials and methods: The study obtained 240 Raman spectra from 60 sections (30 TSCC and 30 normal) from 15 patients diagnosed with TSCC. The classification model based on the analysis of Raman spectral data was developed, utilizing principal component analysis (PCA) and linear discriminant analysis (LDA) for the diagnosis and classification of TSCC. The leave-one-out cross-validation was employed to estimate and evaluate the prediction performance model.
Results: This approach effectively classified TSCC tissue and normal muscle tissue, achieving an accuracy of exceeding 90%. The Raman analysis showed that TSCC tissues contained significantly higher levels of proteins, lipids, and nucleic acids compared to the adjacent normal tissues. In addition, we have also explored the potential of Raman spectroscopy in classifying different histological grades of TSCC.
Conclusion: The PCA-LDA tissue classification model based on Raman spectroscopy exhibited good accuracy, which could aid in identifying tumor-free margins during surgical interventions and present a promising avenue for the development of rapid and accurate intraoperative techniques.
{"title":"Intraoperative rapid assessment of the deep muscle surgical margin of tongue squamous cell carcinoma via Raman spectroscopy.","authors":"Zhongxu Li, Xiaobo Dai, Zhixin Li, Zhenxin Wu, Lili Xue, Yi Li, Bing Yan","doi":"10.3389/fbioe.2024.1480279","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1480279","url":null,"abstract":"<p><strong>Purpose: </strong>An accurate assessment of the surgical margins of tongue squamous cell carcinoma (TSCC), especially the deep muscle tissue, can help completely remove the cancer cells and thus minimize the risk of recurrence. This study aimed to develop a classification model that classifies TSCC and normal tissues in order to aid in the rapid and accurate intraoperative assessment of TSCC surgical deep muscle tissue margins.</p><p><strong>Materials and methods: </strong>The study obtained 240 Raman spectra from 60 sections (30 TSCC and 30 normal) from 15 patients diagnosed with TSCC. The classification model based on the analysis of Raman spectral data was developed, utilizing principal component analysis (PCA) and linear discriminant analysis (LDA) for the diagnosis and classification of TSCC. The leave-one-out cross-validation was employed to estimate and evaluate the prediction performance model.</p><p><strong>Results: </strong>This approach effectively classified TSCC tissue and normal muscle tissue, achieving an accuracy of exceeding 90%. The Raman analysis showed that TSCC tissues contained significantly higher levels of proteins, lipids, and nucleic acids compared to the adjacent normal tissues. In addition, we have also explored the potential of Raman spectroscopy in classifying different histological grades of TSCC.</p><p><strong>Conclusion: </strong>The PCA-LDA tissue classification model based on Raman spectroscopy exhibited good accuracy, which could aid in identifying tumor-free margins during surgical interventions and present a promising avenue for the development of rapid and accurate intraoperative techniques.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08eCollection Date: 2024-01-01DOI: 10.3389/fbioe.2024.1462148
Ava Mazhari, Mehdi Shafieian
Brain tissue under preconditioning, as a complex issue, refers to repeated loading-unloading cycles applied in mechanical testing protocols. In previous studies, only the mechanical behavior of the tissue under preconditioning was investigated; However, the link between macrostructural mechanical behavior and microstructural changes in brain tissue remains underexplored. This study aims to bridge this gap by investigating bovine brain tissue responses both before and after preconditioning. We employed a dual approach: experimental mechanical testing and computational modeling. Experimental tests were conducted to observe microstructural changes in mechanical behavior due to preconditioning, with a focus on axonal damage. Concurrently, we developed multiscale models using statistically representative volume elements (RVE) to simulate the tissue's microstructural response. These RVEs, featuring randomly distributed axonal fibers within the extracellular matrix, provide a realistic depiction of the white matter microstructure. Our findings show that preconditioning induces significant changes in the mechanical properties of brain tissue and affects axonal integrity. The RVE models successfully captured localized stresses and facilitated the microscopic analysis of axonal injury mechanisms. These results underscore the importance of considering both macro and micro scales in understanding brain tissue behavior under mechanical loading. This comprehensive approach offers valuable insights into mechanotransduction processes and improves the analysis of microstructural phenomena in brain tissue.
{"title":"Toward understanding the brain tissue behavior due to preconditioning: an experimental study and RVE approach.","authors":"Ava Mazhari, Mehdi Shafieian","doi":"10.3389/fbioe.2024.1462148","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1462148","url":null,"abstract":"<p><p>Brain tissue under preconditioning, as a complex issue, refers to repeated loading-unloading cycles applied in mechanical testing protocols. In previous studies, only the mechanical behavior of the tissue under preconditioning was investigated; However, the link between macrostructural mechanical behavior and microstructural changes in brain tissue remains underexplored. This study aims to bridge this gap by investigating bovine brain tissue responses both before and after preconditioning. We employed a dual approach: experimental mechanical testing and computational modeling. Experimental tests were conducted to observe microstructural changes in mechanical behavior due to preconditioning, with a focus on axonal damage. Concurrently, we developed multiscale models using statistically representative volume elements (RVE) to simulate the tissue's microstructural response. These RVEs, featuring randomly distributed axonal fibers within the extracellular matrix, provide a realistic depiction of the white matter microstructure. Our findings show that preconditioning induces significant changes in the mechanical properties of brain tissue and affects axonal integrity. The RVE models successfully captured localized stresses and facilitated the microscopic analysis of axonal injury mechanisms. These results underscore the importance of considering both macro and micro scales in understanding brain tissue behavior under mechanical loading. This comprehensive approach offers valuable insights into mechanotransduction processes and improves the analysis of microstructural phenomena in brain tissue.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493751/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07eCollection Date: 2024-01-01DOI: 10.3389/fbioe.2024.1465019
Lauma Ieviņa, Arita Dubņika
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
{"title":"Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery.","authors":"Lauma Ieviņa, Arita Dubņika","doi":"10.3389/fbioe.2024.1465019","DOIUrl":"10.3389/fbioe.2024.1465019","url":null,"abstract":"<p><p>Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both <i>in vivo</i> and <i>in vitro</i>. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Nonunion following fracture treatment remains a significant clinical challenge, adversely affecting the patient's quality of life and imposing a substantial economic burden. The emergence of bone morphogenetic protein 2 (BMP-2) for bone regeneration represents a promising avenue, albeit limited by side effects such as inflammatory reactions primarily due to suboptimal drug delivery systems. This study focuses on NOVOSIS putty (NP), a novel biomaterial designed for the sustained release of BMP-2, aiming to mitigate these limitations and enhance bone healing.
Objective: This research aimed to evaluate the effectiveness of NP, a hydroxyapatite granules/β-tricalcium phosphate hydrogel composite (HA/β-TCP/hydrogel), as a BMP-2 carrier for promoting bone regeneration in a new rat nonunion model of long bone.
Methods: Using Sprague Dawley rats, a 2-mm silicone disk was interposed at the femoral fracture site, and intramedullary fixation with K-wire was performed to create a nonunion with a 2-mm bone defect. After 3 weeks, internal fixation with a plate, removal of the silicon disk, and refreshing the nonunion site were performed by implanting three different materials into the nonunion sites: allogenic iliac bone (IB), collagen sponge (CS) containing 10 μg of BMP-2, or NP containing 10 μg of BMP-2. Bone healing was evaluated weekly using micro-computed tomography (CT); ex vivo micro-Ct and histological evaluation were conducted at 6 weeks.
Results: At 6 weeks, NP demonstrated a significantly higher bone union rate (76.5%) compared with the CS group (35.3%, p = 0.037), and the IB group (6.3%, p < 0.0001). Bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were also significantly higher in the NP group compared with the CS group (BMD, p < 0.0001; BV/TV, p = 0.031). Histological analysis showed the fracture gap in the NP group was filled with more trabecular bone and less fibrous tissue compared with the CS group.
Conclusion: The study confirms NP is a highly effective BMP-2 carrier, significantly improving bone union rates and new bone formation in nonunion fractures. The sustained release of BMP-2 from the hydrogel component reduced inflammatory responses and enhanced bone regeneration. NP can be a promising alternative to collagen-based BMP-2 delivery systems.
{"title":"rhBMP-2-loaded hydroxyapatite/beta-tricalcium phosphate microsphere/hydrogel composite promotes bone regeneration in a novel rat femoral nonunion model.","authors":"Takayuki Kitahara, Daisuke Tateiwa, Hiromasa Hirai, Masato Ikuta, Takuya Furuichi, Masayuki Bun, Yuichiro Ukon, Yuya Kanie, Masayuki Furuya, Takahito Fujimori, Seiji Okada, Takashi Kaito","doi":"10.3389/fbioe.2024.1461260","DOIUrl":"10.3389/fbioe.2024.1461260","url":null,"abstract":"<p><strong>Background: </strong>Nonunion following fracture treatment remains a significant clinical challenge, adversely affecting the patient's quality of life and imposing a substantial economic burden. The emergence of bone morphogenetic protein 2 (BMP-2) for bone regeneration represents a promising avenue, albeit limited by side effects such as inflammatory reactions primarily due to suboptimal drug delivery systems. This study focuses on NOVOSIS putty (NP), a novel biomaterial designed for the sustained release of BMP-2, aiming to mitigate these limitations and enhance bone healing.</p><p><strong>Objective: </strong>This research aimed to evaluate the effectiveness of NP, a hydroxyapatite granules/β-tricalcium phosphate hydrogel composite (HA/β-TCP/hydrogel), as a BMP-2 carrier for promoting bone regeneration in a new rat nonunion model of long bone.</p><p><strong>Methods: </strong>Using Sprague Dawley rats, a 2-mm silicone disk was interposed at the femoral fracture site, and intramedullary fixation with K-wire was performed to create a nonunion with a 2-mm bone defect. After 3 weeks, internal fixation with a plate, removal of the silicon disk, and refreshing the nonunion site were performed by implanting three different materials into the nonunion sites: allogenic iliac bone (IB), collagen sponge (CS) containing 10 μg of BMP-2, or NP containing 10 μg of BMP-2. Bone healing was evaluated weekly using micro-computed tomography (CT); <i>ex vivo</i> micro-Ct and histological evaluation were conducted at 6 weeks.</p><p><strong>Results: </strong>At 6 weeks, NP demonstrated a significantly higher bone union rate (76.5%) compared with the CS group (35.3%, <i>p</i> = 0.037), and the IB group (6.3%, <i>p</i> < 0.0001). Bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were also significantly higher in the NP group compared with the CS group (BMD, <i>p</i> < 0.0001; BV/TV, <i>p</i> = 0.031). Histological analysis showed the fracture gap in the NP group was filled with more trabecular bone and less fibrous tissue compared with the CS group.</p><p><strong>Conclusion: </strong>The study confirms NP is a highly effective BMP-2 carrier, significantly improving bone union rates and new bone formation in nonunion fractures. The sustained release of BMP-2 from the hydrogel component reduced inflammatory responses and enhanced bone regeneration. NP can be a promising alternative to collagen-based BMP-2 delivery systems.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}