Infertility affects over 15% of the global population, and genetic mutations are a substantial cause of infertility. Recent studies have focused on the subcortical maternal complex and its role in early embryonic development. TLE6, a core protein in the subcortical maternal complex, is crucial for female fertility; however, its role in male germ cells remains poorly understood. In this study, we generated a novel Tle6 knockout mouse model using CRISPR-Cas9 to examine the impact of Tle6 mutations on male fertility. Tle6 knockout males exhibited a reduced total sperm count compared to wild-type mice, with a marked decrease in highly motile sperm. Histological observation of Tle6+/- mouse testes showed no apparent structural changes, though impaired sperm maturation was observed. Immunofluorescence staining showed that TLE6 localizes to the midpiece of sperm. It was also confirmed that the expression of Tle6 is reduced in Tle6+/- male mice. In addition, Tle6+/- mice exhibited a significant increase in serum testosterone levels compared to wild-type mice. Changes in the expression of genes related to sperm function were also observed in the testes of Tle6 knockout mice. These findings suggest that TLE6 is involved in sperm production and function, and that mutations in TLE6 may impair the production of functional sperm in humans, potentially leading to infertility.
{"title":"<i>Tle6</i> deficiency in male mice led to abnormal sperm morphology and reduced sperm motility.","authors":"Kousuke Kazama, Yuki Miyagoshi, Hirofumi Nishizono","doi":"10.3389/fcell.2024.1481659","DOIUrl":"https://doi.org/10.3389/fcell.2024.1481659","url":null,"abstract":"<p><p>Infertility affects over 15% of the global population, and genetic mutations are a substantial cause of infertility. Recent studies have focused on the subcortical maternal complex and its role in early embryonic development. TLE6, a core protein in the subcortical maternal complex, is crucial for female fertility; however, its role in male germ cells remains poorly understood. In this study, we generated a novel <i>Tle6</i> knockout mouse model using CRISPR-Cas9 to examine the impact of <i>Tle6</i> mutations on male fertility. <i>Tle6</i> knockout males exhibited a reduced total sperm count compared to wild-type mice, with a marked decrease in highly motile sperm. Histological observation of <i>Tle6</i> <sup>+/-</sup> mouse testes showed no apparent structural changes, though impaired sperm maturation was observed. Immunofluorescence staining showed that TLE6 localizes to the midpiece of sperm. It was also confirmed that the expression of <i>Tle6</i> is reduced in <i>Tle6</i> <sup>+/-</sup> male mice. In addition, <i>Tle6</i> <sup>+/-</sup> mice exhibited a significant increase in serum testosterone levels compared to wild-type mice. Changes in the expression of genes related to sperm function were also observed in the testes of <i>Tle6</i> knockout mice. These findings suggest that TLE6 is involved in sperm production and function, and that mutations in TLE6 may impair the production of functional sperm in humans, potentially leading to infertility.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1481659"},"PeriodicalIF":4.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-01-01DOI: 10.3389/fcell.2024.1462840
Unsun Lee, Ludmila Szabova, Victor J Collins, Melanie Gordon, Kristine Johnson, Deborah Householder, Stephanie Jorgensen, Lucy Lu, Laura Bassel, Fathi Elloumi, Cody J Peer, Ariana E Nelson, Sophia Varriano, Sudhir Varma, Ryan D Roberts, Zoe Weaver Ohler, William D Figg, Shyam K Sharan, Yves Pommier, Christine M Heske
Introduction: The topoisomerase 1 (TOP1) inhibitor irinotecan is a standard-of-care agent for relapsed Ewing sarcoma (EWS), but its efficacy is limited by chemical instability, rapid clearance and reversibility, and dose-limiting toxicities, such as diarrhea. Indenoisoquinolines (IIQs) represent a new class of clinical TOP1 inhibitors designed to address these limitations.
Methods: In this study, we evaluated the preclinical efficacy of three IIQs (LMP400, LMP744, and LMP776) in relevant models of EWS. We characterized the pharmacokinetics of IIQs in orthotopic xenograft models of EWS, optimized the dosing regimen through tolerability studies, and tested the efficacy of IIQs in a panel of six molecularly heterogeneous EWS patient-derived xenograft (PDX) models. For each PDX, we conducted whole genome and RNA sequencing, and methylation analysis.
Results: We show that IIQs potently inhibit the proliferation of EWS cells in vitro, inducing complete cell growth inhibition at nanomolar concentrations via induction of DNA damage and apoptotic cell death. LMP400 treatment induced ≥30% tumor regression in two of six PDX models, with more durable regression compared to irinotecan treatment in one of these models. RNA sequencing of PDX models identified a candidate predictive biomarker gene signature for LMP400 response. These data, along with pharmacogenomic data on IIQs in sarcoma cell lines, are available at a new interactive public website: https://discover.nci.nih.gov/rsconnect/EwingSarcomaMinerCDB/.
Discussion: Our findings suggest that IIQs may be promising new agents for a subset of EWS patients.
{"title":"Treatment with novel topoisomerase inhibitors in Ewing sarcoma models reveals heterogeneity of tumor response.","authors":"Unsun Lee, Ludmila Szabova, Victor J Collins, Melanie Gordon, Kristine Johnson, Deborah Householder, Stephanie Jorgensen, Lucy Lu, Laura Bassel, Fathi Elloumi, Cody J Peer, Ariana E Nelson, Sophia Varriano, Sudhir Varma, Ryan D Roberts, Zoe Weaver Ohler, William D Figg, Shyam K Sharan, Yves Pommier, Christine M Heske","doi":"10.3389/fcell.2024.1462840","DOIUrl":"https://doi.org/10.3389/fcell.2024.1462840","url":null,"abstract":"<p><strong>Introduction: </strong>The topoisomerase 1 (TOP1) inhibitor irinotecan is a standard-of-care agent for relapsed Ewing sarcoma (EWS), but its efficacy is limited by chemical instability, rapid clearance and reversibility, and dose-limiting toxicities, such as diarrhea. Indenoisoquinolines (IIQs) represent a new class of clinical TOP1 inhibitors designed to address these limitations.</p><p><strong>Methods: </strong>In this study, we evaluated the preclinical efficacy of three IIQs (LMP400, LMP744, and LMP776) in relevant models of EWS. We characterized the pharmacokinetics of IIQs in orthotopic xenograft models of EWS, optimized the dosing regimen through tolerability studies, and tested the efficacy of IIQs in a panel of six molecularly heterogeneous EWS patient-derived xenograft (PDX) models. For each PDX, we conducted whole genome and RNA sequencing, and methylation analysis.</p><p><strong>Results: </strong>We show that IIQs potently inhibit the proliferation of EWS cells in vitro, inducing complete cell growth inhibition at nanomolar concentrations via induction of DNA damage and apoptotic cell death. LMP400 treatment induced ≥30% tumor regression in two of six PDX models, with more durable regression compared to irinotecan treatment in one of these models. RNA sequencing of PDX models identified a candidate predictive biomarker gene signature for LMP400 response. These data, along with pharmacogenomic data on IIQs in sarcoma cell lines, are available at a new interactive public website: https://discover.nci.nih.gov/rsconnect/EwingSarcomaMinerCDB/.</p><p><strong>Discussion: </strong>Our findings suggest that IIQs may be promising new agents for a subset of EWS patients.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1462840"},"PeriodicalIF":4.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-01-01DOI: 10.3389/fcell.2024.1485089
Leonid L Moroz, Daria Y Romanova
{"title":"Functional evolution and functional biodiversity: 150 years of <i>déjà vu</i> or new physiology of evolution?","authors":"Leonid L Moroz, Daria Y Romanova","doi":"10.3389/fcell.2024.1485089","DOIUrl":"https://doi.org/10.3389/fcell.2024.1485089","url":null,"abstract":"","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1485089"},"PeriodicalIF":4.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-01-01DOI: 10.3389/fcell.2024.1490315
Caoyuan Niu, Yanan Hu, Kai Xu, Xiaoyue Pan, Lan Wang, Guoying Yu
Fibrosis is the process whereby cells at a damaged site are transformed into fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen and fibronectin, following damage to organs or tissues that exceeds their repair capacity. Depending on the affected organs or tissues, fibrosis can be classified into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac fibrosis. The primary pathological features of fibrotic diseases include recurrent damage to normal cells and the abnormal activation of fibroblasts, leading to excessive deposition of extracellular matrix and collagen in the intercellular spaces. However, the etiology of certain specific fibrotic diseases remains unclear. Recent research increasingly suggests that the cytoskeleton plays a significant role in fibrotic diseases, with structural changes in the cytoskeleton potentially influencing the progression of organ fibrosis. This review examines cytoskeletal remodeling and its impact on the transformation or activation of normal tissue cells during fibrosis, potentially offering important insights into the etiology and therapeutic strategies for fibrotic diseases.
{"title":"The role of the cytoskeleton in fibrotic diseases.","authors":"Caoyuan Niu, Yanan Hu, Kai Xu, Xiaoyue Pan, Lan Wang, Guoying Yu","doi":"10.3389/fcell.2024.1490315","DOIUrl":"https://doi.org/10.3389/fcell.2024.1490315","url":null,"abstract":"<p><p>Fibrosis is the process whereby cells at a damaged site are transformed into fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen and fibronectin, following damage to organs or tissues that exceeds their repair capacity. Depending on the affected organs or tissues, fibrosis can be classified into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac fibrosis. The primary pathological features of fibrotic diseases include recurrent damage to normal cells and the abnormal activation of fibroblasts, leading to excessive deposition of extracellular matrix and collagen in the intercellular spaces. However, the etiology of certain specific fibrotic diseases remains unclear. Recent research increasingly suggests that the cytoskeleton plays a significant role in fibrotic diseases, with structural changes in the cytoskeleton potentially influencing the progression of organ fibrosis. This review examines cytoskeletal remodeling and its impact on the transformation or activation of normal tissue cells during fibrosis, potentially offering important insights into the etiology and therapeutic strategies for fibrotic diseases.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1490315"},"PeriodicalIF":4.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-01-01DOI: 10.3389/fcell.2024.1464773
Rosalba Senese, Giuseppe Petito, Elena Silvestri, Maria Ventriglia, Nicola Mosca, Nicoletta Potenza, Aniello Russo, Sara Falvo, Francesco Manfrevola, Gilda Cobellis, Teresa Chioccarelli, Veronica Porreca, Vincenza Grazia Mele, Rosanna Chianese, Pieter de Lange, Giulia Ricci, Federica Cioffi, Antonia Lanni
Introduction: The contribution of Cannabinoid type 1 receptor (CB1) in mitochondrial energy transduction mechanisms and mitochondrial activities awaits deeper investigations. Our study aims to assess the impact of CB1 absence on the mitochondrial compartment in the liver, focusing on both functional aspects and remodeling processes.
Methods: We used CB1-/- and CB1+/+ male mice. Cytochrome C Oxidase activity was determined polarographically. The expression and the activities of separated mitochondrial complexes and supercomplexes were performed by using Blue-Native Page, Western blotting and histochemical staining for in-gel activity. Key players of Mitochondrial Quality Control processes were measured using RT-qPCR and Western blotting. Liver fine sub-cellular ultrastructural features were analyzed by TEM analysis.
Results and discussion: In the absence of CB1, several changes in the liver occur, including increased oxidative capacity, reduced complex I activity, enhanced complex IV activity, general upregulation of respiratory supercomplexes, as well as higher levels of oxidative stress. The mitochondria and cellular metabolism may be affected by these changes, increasing the risk of ROS-related damage. CB1-/- mice show upregulation of mitochondrial fusion, fission and biogenesis processes which suggests a dynamic response to the absence of CB1. Furthermore, oxidative stress disturbs mitochondrial proteostasis, initiating the mitochondrial unfolded protein response (UPRmt). We noted heightened levels of pivotal enzymes responsible for maintaining mitochondrial integrity, along with heightened expression of molecular chaperones and transcription factors associated with cellular stress reactions. Additionally, our discoveries demonstrate a synchronized reaction to cellular stress, involving both UPRmt and UPRER pathways.
导言:大麻素 1 型受体(CB1)在线粒体能量转移机制和线粒体活动中的作用有待深入研究。我们的研究旨在评估 CB1 缺失对肝脏线粒体区室的影响,重点关注功能方面和重塑过程:我们使用了 CB1-/- 和 CB1+/+ 雄性小鼠。方法:我们使用 CB1-/- 和 CB1+/+ 雄性小鼠,用极谱法测定细胞色素 C 氧化酶活性。使用蓝原生页、Western 印迹和组织化学染色法检测分离的线粒体复合物和超复合物的表达和活性。使用 RT-qPCR 和 Western 印迹法测定了线粒体质量控制过程的主要参与者。肝脏细亚细胞超微结构特征通过 TEM 分析进行了分析:在 CB1 缺失的情况下,肝脏会发生一些变化,包括氧化能力增强、复合体 I 活性降低、复合体 IV 活性增强、呼吸超级复合体普遍上调以及氧化应激水平升高。线粒体和细胞代谢可能会受到这些变化的影响,从而增加 ROS 相关损伤的风险。CB1-/- 小鼠表现出线粒体融合、裂变和生物生成过程的上调,这表明了对 CB1 缺失的动态响应。此外,氧化应激扰乱了线粒体蛋白稳态,启动了线粒体未折叠蛋白反应(UPRmt)。我们注意到,负责维持线粒体完整性的关键酶的水平有所提高,与细胞应激反应相关的分子伴侣和转录因子的表达也有所提高。此外,我们的发现表明,细胞应激反应是同步进行的,涉及 UPRmt 和 UPRER 途径。
{"title":"The impact of cannabinoid receptor 1 absence on mouse liver mitochondria homeostasis: insight into mitochondrial unfolded protein response.","authors":"Rosalba Senese, Giuseppe Petito, Elena Silvestri, Maria Ventriglia, Nicola Mosca, Nicoletta Potenza, Aniello Russo, Sara Falvo, Francesco Manfrevola, Gilda Cobellis, Teresa Chioccarelli, Veronica Porreca, Vincenza Grazia Mele, Rosanna Chianese, Pieter de Lange, Giulia Ricci, Federica Cioffi, Antonia Lanni","doi":"10.3389/fcell.2024.1464773","DOIUrl":"https://doi.org/10.3389/fcell.2024.1464773","url":null,"abstract":"<p><strong>Introduction: </strong>The contribution of Cannabinoid type 1 receptor (CB1) in mitochondrial energy transduction mechanisms and mitochondrial activities awaits deeper investigations. Our study aims to assess the impact of CB1 absence on the mitochondrial compartment in the liver, focusing on both functional aspects and remodeling processes.</p><p><strong>Methods: </strong>We used CB1<sup>-/-</sup> and CB1<sup>+/+</sup> male mice. Cytochrome C Oxidase activity was determined polarographically. The expression and the activities of separated mitochondrial complexes and supercomplexes were performed by using Blue-Native Page, Western blotting and histochemical staining for in-gel activity. Key players of Mitochondrial Quality Control processes were measured using RT-qPCR and Western blotting. Liver fine sub-cellular ultrastructural features were analyzed by TEM analysis.</p><p><strong>Results and discussion: </strong>In the absence of CB1, several changes in the liver occur, including increased oxidative capacity, reduced complex I activity, enhanced complex IV activity, general upregulation of respiratory supercomplexes, as well as higher levels of oxidative stress. The mitochondria and cellular metabolism may be affected by these changes, increasing the risk of ROS-related damage. CB1<sup>-/-</sup> mice show upregulation of mitochondrial fusion, fission and biogenesis processes which suggests a dynamic response to the absence of CB1. Furthermore, oxidative stress disturbs mitochondrial proteostasis, initiating the mitochondrial unfolded protein response (UPR<sup>mt</sup>). We noted heightened levels of pivotal enzymes responsible for maintaining mitochondrial integrity, along with heightened expression of molecular chaperones and transcription factors associated with cellular stress reactions. Additionally, our discoveries demonstrate a synchronized reaction to cellular stress, involving both UPR<sup>mt</sup> and UPR<sup>ER</sup> pathways.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1464773"},"PeriodicalIF":4.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24eCollection Date: 2024-01-01DOI: 10.3389/fcell.2024.1448773
Simona Mikula Mrstakova, Zbynek Kozmik
Landmark discovery of eye defects caused by Pax6 gene mutations in humans, rodents, and even fruit flies combined with Pax6 gene expression studies in various phyla, led to the master control gene hypothesis postulating that the gene is required almost universally for animal visual system development. However, this assumption has not been broadly tested in genetically trackable organisms such as vertebrates. Here, to determine the functional role of the fish orthologue of mammalian Pax6 in eye development we analyzed mutants in medaka Pax6.1 gene generated by genome editing. We found that transcription factors implicated in vertebrate lens development (Prox1a, MafB, c-Maf, FoxE3) failed to initiate expression in the presumptive lens tissue of Pax6.1 mutant fish resulting in aphakia, a phenotype observed previously in Pax6 mutant mice. Surprisingly, the overall differentiation potential of Pax6.1-deficient retinal progenitor cells (RPCs) is not severely compromised, and the only cell types affected by the absence of Pax6.1 transcription factor are retinal ganglion cells. This is in stark contrast to the situation in mice where the Pax6 gene is required cell-autonomously for the expansion of RPCs, and the differentiation of all retina cell types. Our results provide novel insight into the conserved and divergent roles of Pax6 gene orthologues in vertebrate eye development indicating that the lens-specific role is more evolutionarily conserved than the role in retina differentiation.
{"title":"Genetic analysis of medaka fish illuminates conserved and divergent roles of Pax6 in vertebrate eye development.","authors":"Simona Mikula Mrstakova, Zbynek Kozmik","doi":"10.3389/fcell.2024.1448773","DOIUrl":"https://doi.org/10.3389/fcell.2024.1448773","url":null,"abstract":"<p><p>Landmark discovery of eye defects caused by Pax6 gene mutations in humans, rodents, and even fruit flies combined with Pax6 gene expression studies in various phyla, led to the master control gene hypothesis postulating that the gene is required almost universally for animal visual system development. However, this assumption has not been broadly tested in genetically trackable organisms such as vertebrates. Here, to determine the functional role of the fish orthologue of mammalian Pax6 in eye development we analyzed mutants in medaka Pax6.1 gene generated by genome editing. We found that transcription factors implicated in vertebrate lens development (Prox1a, MafB, c-Maf, FoxE3) failed to initiate expression in the presumptive lens tissue of Pax6.1 mutant fish resulting in aphakia, a phenotype observed previously in Pax6 mutant mice. Surprisingly, the overall differentiation potential of Pax6.1-deficient retinal progenitor cells (RPCs) is not severely compromised, and the only cell types affected by the absence of Pax6.1 transcription factor are retinal ganglion cells. This is in stark contrast to the situation in mice where the Pax6 gene is required cell-autonomously for the expansion of RPCs, and the differentiation of all retina cell types. Our results provide novel insight into the conserved and divergent roles of Pax6 gene orthologues in vertebrate eye development indicating that the lens-specific role is more evolutionarily conserved than the role in retina differentiation.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1448773"},"PeriodicalIF":4.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23eCollection Date: 2024-01-01DOI: 10.3389/fcell.2024.1482054
Mária Kleinová, Ivan Varga, Michaela Čeháková, Martin Valent, Martin Klein
One of the critical processes in human reproduction that is still poorly understood is implantation. The implantation of an early human embryo is considered a significant limitation of successful pregnancy. Therefore, researchers are trying to develop an ideal model of endometrium in vitro that can mimic the endometrial micro-environment in vivo as much as possible. The ultimate goal of endometrial modeling is to study the molecular interactions at the embryo-maternal interface and to use this model as an in vitro diagnostic tool for infertility. Significant progress has been made over the years in generating such models. The first experiments of endometrial modeling involved animal models, which are undoubtedly valuable, but at the same time, their dissimilarities with human tissue represent a significant obstacle to further research. This fact led researchers to develop basic monolayer coculture systems using uterine cells obtained from biopsies and, later on, complex and multilayer coculture models. With successful tissue engineering methods and various cultivation systems, it is possible to form endometrial two-dimensional (2D) models to three-dimensional (3D) organoids and novel assembloids that can recapitulate many aspects of endometrial tissue architecture and cell composition. These organoids have already helped to provide new insight into the embryo-endometrium interplay. The main aim of this paper is a comprehensive review of past and current approaches to endometrial model generation, their feasibility, and potential clinical application for infertility treatment.
{"title":"Exploring the black box of human reproduction: endometrial organoids and assembloids - generation, implantation modeling, and future clinical perspectives.","authors":"Mária Kleinová, Ivan Varga, Michaela Čeháková, Martin Valent, Martin Klein","doi":"10.3389/fcell.2024.1482054","DOIUrl":"10.3389/fcell.2024.1482054","url":null,"abstract":"<p><p>One of the critical processes in human reproduction that is still poorly understood is implantation. The implantation of an early human embryo is considered a significant limitation of successful pregnancy. Therefore, researchers are trying to develop an ideal model of endometrium <i>in vitro</i> that can mimic the endometrial micro-environment <i>in vivo</i> as much as possible. The ultimate goal of endometrial modeling is to study the molecular interactions at the embryo-maternal interface and to use this model as an <i>in vitro</i> diagnostic tool for infertility. Significant progress has been made over the years in generating such models. The first experiments of endometrial modeling involved animal models, which are undoubtedly valuable, but at the same time, their dissimilarities with human tissue represent a significant obstacle to further research. This fact led researchers to develop basic monolayer coculture systems using uterine cells obtained from biopsies and, later on, complex and multilayer coculture models. With successful tissue engineering methods and various cultivation systems, it is possible to form endometrial two-dimensional (2D) models to three-dimensional (3D) organoids and novel assembloids that can recapitulate many aspects of endometrial tissue architecture and cell composition. These organoids have already helped to provide new insight into the embryo-endometrium interplay. The main aim of this paper is a comprehensive review of past and current approaches to endometrial model generation, their feasibility, and potential clinical application for infertility treatment.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1482054"},"PeriodicalIF":4.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23eCollection Date: 2024-01-01DOI: 10.3389/fcell.2024.1446452
Claudia Tanja Mierke
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
{"title":"Mechanosensory entities and functionality of endothelial cells.","authors":"Claudia Tanja Mierke","doi":"10.3389/fcell.2024.1446452","DOIUrl":"10.3389/fcell.2024.1446452","url":null,"abstract":"<p><p>The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1446452"},"PeriodicalIF":4.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23eCollection Date: 2024-01-01DOI: 10.3389/fcell.2024.1472613
Lan Li, Jie Li, Jian-Jiang Li, Huan Zhou, Xing-Wang Zhu, Ping-Heng Zhang, Bo Huang, Wen-Ting Zhao, Xiao-Feng Zhao, En-Sheng Chen
Osteoarthritis (OA) is the most common type of arthritis characterized by progressive cartilage degradation, with its pathogenesis closely related to chondrocyte autophagy. Chondrocytes are the only cells in articular cartilage, and the function of chondrocytes plays a vital role in maintaining articular cartilage homeostasis. Autophagy, an intracellular degradation system that regulates energy metabolism in cells, plays an incredibly important role in OA. During the early stages of OA, autophagy is enhanced in chondrocytes, acting as an adaptive mechanism to protect them from various environmental changes. However, with the progress of OA, chondrocyte autophagy gradually decreases, leading to the accumulation of damaged organelles and macromolecules within the cell, prompting chondrocyte apoptosis. Numerous studies have shown that cartilage degradation is influenced by the senescence and apoptosis of chondrocytes, which are associated with reduced autophagy. The relationship between autophagy, senescence, and apoptosis is complex. While autophagy is generally believed to inhibit cellular senescence and apoptosis to promote cell survival, recent studies have shown that some proteins are degraded by selective autophagy, leading to the secretion of the senescence-associated secretory phenotype (SASP) or increased SA-β-Gal activity in senescent cells within the damaged region of human OA cartilage. Autophagy activation may lead to different outcomes depending on the timing, duration, or type of its activation. Thus, our study explored the complex relationship between chondrocyte autophagy and OA, as well as the related regulatory molecules and signaling pathways, providing new insights for the future development of safe and effective drugs targeting chondrocyte autophagy to improve OA.
骨关节炎(OA)是最常见的关节炎类型,以软骨进行性退化为特征,其发病机制与软骨细胞自噬密切相关。软骨细胞是关节软骨中唯一的细胞,软骨细胞的功能对维持关节软骨的平衡起着至关重要的作用。自噬是一种调节细胞能量代谢的细胞内降解系统,在 OA 中发挥着极其重要的作用。在 OA 的早期阶段,软骨细胞中的自噬作用增强,这是一种保护软骨细胞免受各种环境变化影响的适应机制。然而,随着 OA 的进展,软骨细胞的自噬作用逐渐减弱,导致细胞内受损细胞器和大分子的积累,促使软骨细胞凋亡。大量研究表明,软骨降解受软骨细胞衰老和凋亡的影响,而软骨细胞衰老和凋亡与自噬减少有关。自噬、衰老和凋亡之间的关系非常复杂。虽然自噬通常被认为能抑制细胞衰老和凋亡以促进细胞存活,但最近的研究表明,一些蛋白质会被选择性自噬降解,导致衰老相关分泌表型(SASP)的分泌或人类OA软骨受损区域内衰老细胞的SA-β-Gal活性增加。自噬激活的时间、持续时间或类型不同,可能导致不同的结果。因此,我们的研究探讨了软骨细胞自噬与OA之间的复杂关系,以及相关的调控分子和信号通路,为将来开发针对软骨细胞自噬的安全有效的药物以改善OA提供了新的见解。
{"title":"Chondrocyte autophagy mechanism and therapeutic prospects in osteoarthritis.","authors":"Lan Li, Jie Li, Jian-Jiang Li, Huan Zhou, Xing-Wang Zhu, Ping-Heng Zhang, Bo Huang, Wen-Ting Zhao, Xiao-Feng Zhao, En-Sheng Chen","doi":"10.3389/fcell.2024.1472613","DOIUrl":"10.3389/fcell.2024.1472613","url":null,"abstract":"<p><p>Osteoarthritis (OA) is the most common type of arthritis characterized by progressive cartilage degradation, with its pathogenesis closely related to chondrocyte autophagy. Chondrocytes are the only cells in articular cartilage, and the function of chondrocytes plays a vital role in maintaining articular cartilage homeostasis. Autophagy, an intracellular degradation system that regulates energy metabolism in cells, plays an incredibly important role in OA. During the early stages of OA, autophagy is enhanced in chondrocytes, acting as an adaptive mechanism to protect them from various environmental changes. However, with the progress of OA, chondrocyte autophagy gradually decreases, leading to the accumulation of damaged organelles and macromolecules within the cell, prompting chondrocyte apoptosis. Numerous studies have shown that cartilage degradation is influenced by the senescence and apoptosis of chondrocytes, which are associated with reduced autophagy. The relationship between autophagy, senescence, and apoptosis is complex. While autophagy is generally believed to inhibit cellular senescence and apoptosis to promote cell survival, recent studies have shown that some proteins are degraded by selective autophagy, leading to the secretion of the senescence-associated secretory phenotype (SASP) or increased SA-β-Gal activity in senescent cells within the damaged region of human OA cartilage. Autophagy activation may lead to different outcomes depending on the timing, duration, or type of its activation. Thus, our study explored the complex relationship between chondrocyte autophagy and OA, as well as the related regulatory molecules and signaling pathways, providing new insights for the future development of safe and effective drugs targeting chondrocyte autophagy to improve OA.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1472613"},"PeriodicalIF":4.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Crocodiles are semi-aquatic animals well adapted to hear both on land and under water. Currently, there is limited information on how their amphibious hearing is accomplished. Here, we describe, for the first time, the ear anatomy in the living crocodile using photon-counting detector computed tomography (PCD-CT) and 3D rendering. We speculate on how crocodiles, despite their closed ear canals, can use tympanic hearing in water that also provides directional hearing.
Material and methods: A Cuban crocodile (Crocodylus rhombifer) underwent photon-counting detector computed tomography (PCD-CT), under anesthesia and spontaneous respiration. In addition two seven-month-old C. rhombifer and a juvenile Morelet´s crocodile (Crocodylus moreletii) underwent micro-computed tomography (µCT) and endoscopy. One adult Cuviérs dwarf caiman (Paleosuchus palpebrosus) was micro-dissected and video-recorded. Aeration, earflap, and middle ear morphology were evaluated and compared after 3D modeling.
Results and discussion: PCD-CT and µCT with 3D rendering and segmentation demonstrated the anatomy of the external and middle ears with high resolution in both living and expired crocodiles. Based on the findings and comparative examinations, we suggest that the superior earflap, by modulating the meatal recess together with local bone conduction, may implement tympanic hearing in submerged crocodiles, including directional hearing.
{"title":"First photon-counting detector computed tomography in the living crocodile: a 3D-Imaging study with special reference to amphibious hearing.","authors":"Karl-Gunnar Melkersson, Hao Li, Helge Rask-Andersen","doi":"10.3389/fcell.2024.1471983","DOIUrl":"10.3389/fcell.2024.1471983","url":null,"abstract":"<p><strong>Background: </strong>Crocodiles are semi-aquatic animals well adapted to hear both on land and under water. Currently, there is limited information on how their amphibious hearing is accomplished. Here, we describe, for the first time, the ear anatomy in the living crocodile using photon-counting detector computed tomography (PCD-CT) and 3D rendering. We speculate on how crocodiles, despite their closed ear canals, can use tympanic hearing in water that also provides directional hearing.</p><p><strong>Material and methods: </strong>A Cuban crocodile (<i>Crocodylus rhombifer)</i> underwent photon-counting detector computed tomography (PCD-CT), under anesthesia and spontaneous respiration. In addition two seven-month-old <i>C. rhombifer</i> and a juvenile Morelet´s crocodile (<i>Crocodylus moreletii)</i> underwent micro-computed tomography (µCT) and endoscopy. One adult Cuviérs dwarf caiman (<i>Paleosuchus palpebrosus)</i> was micro-dissected and video-recorded. Aeration, earflap, and middle ear morphology were evaluated and compared after 3D modeling.</p><p><strong>Results and discussion: </strong>PCD-CT and µCT with 3D rendering and segmentation demonstrated the anatomy of the external and middle ears with high resolution in both living and expired crocodiles. Based on the findings and comparative examinations, we suggest that the superior earflap, by modulating the meatal recess together with local bone conduction, may implement tympanic hearing in submerged crocodiles, including directional hearing.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1471983"},"PeriodicalIF":4.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538886/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}