Pub Date : 2024-12-01Epub Date: 2024-11-27DOI: 10.1080/17568919.2024.2431477
Shuai-Jiang Liu, Chenxi Cai, Hong-Ping Zhu, Xiang Li, Bo Han
{"title":"Autophagy degradation: a promising dimension in drug discovery for neurodegenerative diseases.","authors":"Shuai-Jiang Liu, Chenxi Cai, Hong-Ping Zhu, Xiang Li, Bo Han","doi":"10.1080/17568919.2024.2431477","DOIUrl":"10.1080/17568919.2024.2431477","url":null,"abstract":"","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2563-2565"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142727637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-12-22DOI: 10.1080/17568919.2024.2435254
Ritu Mamgain, Garima Mishra, Saumya Kriti, Fateh V Singh
Organoselenium chemistry has become a significant field due to its role in synthesizing numerous biologically active and therapeutic compounds. In early phase, researchers focused on designing organoselenium compounds with antioxidant properties and were quite successful. In last two decades, synthetic chemists shifted their focus toward synthesis of organoselenium compounds with biological properties, moving beyond their traditional antioxidant properties. The review includes synthesis and study of organo-selenium compounds as anticancer, antimicrobial, antiviral, antidiabetic, antithyroid, anti-inflammatory therapies, contributing to disease treatment. This review covers the synthesis and medicinal applications of synthetic organoselenium compounds over the past 10 years, thus making it a valuable resource for researchers in the field of medicinal chemistry.
{"title":"Organoselenium compounds beyond antioxidants.","authors":"Ritu Mamgain, Garima Mishra, Saumya Kriti, Fateh V Singh","doi":"10.1080/17568919.2024.2435254","DOIUrl":"10.1080/17568919.2024.2435254","url":null,"abstract":"<p><p>Organoselenium chemistry has become a significant field due to its role in synthesizing numerous biologically active and therapeutic compounds. In early phase, researchers focused on designing organoselenium compounds with antioxidant properties and were quite successful. In last two decades, synthetic chemists shifted their focus toward synthesis of organoselenium compounds with biological properties, moving beyond their traditional antioxidant properties. The review includes synthesis and study of organo-selenium compounds as anticancer, antimicrobial, antiviral, antidiabetic, antithyroid, anti-inflammatory therapies, contributing to disease treatment. This review covers the synthesis and medicinal applications of synthetic organoselenium compounds over the past 10 years, thus making it a valuable resource for researchers in the field of medicinal chemistry.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2663-2685"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-24DOI: 10.1080/17568919.2024.2431475
Aladdin M Srour, Eman S Nossier, Najla A Altwaijry, Safeya M Mousa, Hanem M Awad, Heba S A Elzahabi
Aim: New pyrano[3,2-c]pyridine 4a-h, 5-8 and pyrano[2,3-d]pyrimidin 9a,b series were designed and chemically synthesized.
Methodology: Using the standard drug doxorubicin, the novel chemical entities have been assessed in vitro as potential anticancer prospects on cell lines from liver, breast, colon, and lung cancer along with examining their inhibitory behaviors upon both EGFR and VEGFR-2 kinases.
Results & conclusion: Compared to erlotinib (IC50 = 0.18 µM), compounds 8a and 8b demonstrated the highest anticancer activity with IC50 Values 0.23 and 0.15 µM, respectively). Further, derivative 8a illustrated encouraging inhibitory characteristics against EGFR and VEGFR-2 (IC50 = 1.21 and 2.65 μM, respectively). A computational study was used to estimate the physicochemical and pharmacokinetic properties to afford insightful information about the newly synthesized agents.
{"title":"New pyrano-pyridine conjugates as potential anticancer agents: design, synthesis and computational studies.","authors":"Aladdin M Srour, Eman S Nossier, Najla A Altwaijry, Safeya M Mousa, Hanem M Awad, Heba S A Elzahabi","doi":"10.1080/17568919.2024.2431475","DOIUrl":"10.1080/17568919.2024.2431475","url":null,"abstract":"<p><strong>Aim: </strong>New pyrano[3,2-c]pyridine 4a-h, 5-8 and pyrano[2,3-d]pyrimidin 9a,b series were designed and chemically synthesized.</p><p><strong>Methodology: </strong>Using the standard drug doxorubicin, the novel chemical entities have been assessed in vitro as potential anticancer prospects on cell lines from liver, breast, colon, and lung cancer along with examining their inhibitory behaviors upon both EGFR and VEGFR-2 kinases.</p><p><strong>Results & conclusion: </strong>Compared to erlotinib (IC<sub>50</sub> = 0.18 µM), compounds 8a and 8b demonstrated the highest anticancer activity with IC<sub>50</sub> Values 0.23 and 0.15 µM, respectively). Further, derivative 8a illustrated encouraging inhibitory characteristics against EGFR and VEGFR-2 (IC<sub>50</sub> = 1.21 and 2.65 μM, respectively). A computational study was used to estimate the physicochemical and pharmacokinetic properties to afford insightful information about the newly synthesized agents.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2567-2582"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-12-08DOI: 10.1080/17568919.2024.2432303
Yousaf Khan, Rafaqat Hussain, Wajid Rehman, Shoaib Khan, Aneela Maalik, Tayyiaba Iqbal, Tariq Aziz, Muhammad Irfan Afridi, Metab Alharbi, Abdullah F Alasmari
Aims: Current research work aims to synthesize hybrid compounds with a thiazole-thiazolidinone structure, as potent inhibitors of urease and α-glucosidase enzymes.
Materials and methods: These compounds were characterize through1HNMR,13CNMR and HREI-MS techniques. These compounds were also evaluated for their potential to inhibit urease and α-glucosidase enzymes for the treatment of urinary tract infections (UTIs) and diabetes treatments. Moreover, molecular docking and ADMET analysis was carried out to confirm biological outcomes.
Results and conclusion: Compounds-4 (IC50 = 1.80 ± 0.80 and 3.61 ± 0.59 μM against urease and α-glucosidase, respectively) exhibited significant effectiveness in inhibiting the activity of both enzymes in comparison to the conventional inhibitors thiourea and acarbose. Molecular docking experiments showed that potent compounds exhibited favorable binding orientations in the active sites of urease and α-glucosidase playing a pivotal role in inhibition profile of these compounds. These compounds were also investigated for their drug likeness and were found with desirable attributes for pharmaceutical development. Based on the findings of this research, these compounds have the potential to be developed into effective anti-diabetic and anti-urease treatments in the future.
{"title":"<i>In-vitro</i> and <i>in-silico</i> assessment of thiazole-thiazolidinone derivatives as selective inhibitors of urease and α-glucosidase.","authors":"Yousaf Khan, Rafaqat Hussain, Wajid Rehman, Shoaib Khan, Aneela Maalik, Tayyiaba Iqbal, Tariq Aziz, Muhammad Irfan Afridi, Metab Alharbi, Abdullah F Alasmari","doi":"10.1080/17568919.2024.2432303","DOIUrl":"10.1080/17568919.2024.2432303","url":null,"abstract":"<p><strong>Aims: </strong>Current research work aims to synthesize hybrid compounds with a thiazole-thiazolidinone structure, as potent inhibitors of urease and α-glucosidase enzymes.</p><p><strong>Materials and methods: </strong>These compounds were characterize through<sup>1</sup>HNMR,<sup>13</sup>CNMR and HREI-MS techniques. These compounds were also evaluated for their potential to inhibit urease and α-glucosidase enzymes for the treatment of urinary tract infections (UTIs) and diabetes treatments. Moreover, molecular docking and ADMET analysis was carried out to confirm biological outcomes.</p><p><strong>Results and conclusion: </strong>Compounds-4 (IC<sub>50</sub> = 1.80 ± 0.80 and 3.61 ± 0.59 μM against urease and α-glucosidase, respectively) exhibited significant effectiveness in inhibiting the activity of both enzymes in comparison to the conventional inhibitors thiourea and acarbose. Molecular docking experiments showed that potent compounds exhibited favorable binding orientations in the active sites of urease and α-glucosidase playing a pivotal role in inhibition profile of these compounds. These compounds were also investigated for their drug likeness and were found with desirable attributes for pharmaceutical development. Based on the findings of this research, these compounds have the potential to be developed into effective anti-diabetic and anti-urease treatments in the future.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2627-2636"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-12DOI: 10.1080/17568919.2024.2419350
Vladislav Naumovich, Shivananda Kandagalla, Maria Grishina
Aim: To develop a model for predicting the biological activity of compounds targeting the HIV-1 protease and to establish factors influencing enzyme inhibition.Materials & methods: Machine learning models were built based on a combination of Richard Bader's theory of Atoms in Molecules and topological analysis of electron density using experimental x-ray 'protein-ligand' complexes and inhibition constants data.Results & conclusion: Among all the models tested, logistic regression achieved the highest accuracy of 0.76 on the test set. The model's ability to differentiate between less active and highly active classes was relatively good, as indicated by an AUC-ROC score of 0.77. The analysis identified several critical factors affecting the biological activity of HIV-1 protease inhibitors, including the electron density contribution of hydrogen atoms, bond-critical points and particular amino acid residues. These findings provide new insights into how these molecular factors influence HIV-1 protease inhibition, emphasizing the importance of hydrogen bonding, glycine's flexibility and hydrophobic interactions in ligand binding.
目的:开发一种模型,用于预测针对 HIV-1 蛋白酶的化合物的生物活性,并确定影响酶抑制作用的因素:结合理查德-贝德尔(Richard Bader)的 "分子中的原子"(Atoms in Molecules)理论和电子密度拓扑分析,利用实验性 X 射线 "蛋白质-配体 "复合物和抑制常数数据,建立机器学习模型:在所有测试模型中,逻辑回归模型在测试集上的准确率最高,达到 0.76。该模型区分低活性和高活性类别的能力相对较好,AUC-ROC 得分为 0.77。分析确定了影响 HIV-1 蛋白酶抑制剂生物活性的几个关键因素,包括氢原子的电子密度贡献、键临界点和特定氨基酸残基。这些发现为了解这些分子因素如何影响 HIV-1 蛋白酶抑制作用提供了新的视角,强调了氢键、甘氨酸的灵活性和疏水相互作用在配体结合中的重要性。
{"title":"Machine learning-based prediction of bioactivity in HIV-1 protease: insights from electron density analysis.","authors":"Vladislav Naumovich, Shivananda Kandagalla, Maria Grishina","doi":"10.1080/17568919.2024.2419350","DOIUrl":"10.1080/17568919.2024.2419350","url":null,"abstract":"<p><p><b>Aim:</b> To develop a model for predicting the biological activity of compounds targeting the HIV-1 protease and to establish factors influencing enzyme inhibition.<b>Materials & methods:</b> Machine learning models were built based on a combination of Richard Bader's theory of Atoms in Molecules and topological analysis of electron density using experimental x-ray 'protein-ligand' complexes and inhibition constants data.<b>Results & conclusion:</b> Among all the models tested, logistic regression achieved the highest accuracy of 0.76 on the test set. The model's ability to differentiate between less active and highly active classes was relatively good, as indicated by an AUC-ROC score of 0.77. The analysis identified several critical factors affecting the biological activity of HIV-1 protease inhibitors, including the electron density contribution of hydrogen atoms, bond-critical points and particular amino acid residues. These findings provide new insights into how these molecular factors influence HIV-1 protease inhibition, emphasizing the importance of hydrogen bonding, glycine's flexibility and hydrophobic interactions in ligand binding.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2599-2607"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-14DOI: 10.1080/17568919.2024.2421150
Reda G Yousef, Ibrahim H Eissa, Hazem Elkady, Ahmed B M Mehany, Mariam Ali Abo-Saif, Mohamed M Radwan, Mahmoud A ElSohly, Ibrahim M Ibrahim, Alaa Elwan, Mohamed Ayman El-Zahabi
Background: Nicotinamide-based VEGFR-2 inhibitors have good contribution in drug discovery.Aim: Development of novel nicotinamides as VEGFR-2 inhibitors.Methods: different in vitro and in silico assays were conducted to evaluate the VEGFR-2 inhibition and cytotoxicity.Results: Compound 16c displayed strongest anti-VEGFR-2 potentiality and good anti-proliferative effects. Compound 16c enhanced apoptosis and caused cell cycle arrest in the Pre-G1 and S phases. Compound 16c boosted the level of the apoptotic caspase-3 and inhibited the level of TNF-α and IL-6 in tumor cells. Molecular docking and molecular dynamics (MD) simulations indicated the outstanding binding potential of compound 16c against VEGFR-2.Conclusion: Compound 16c is a good candidate for the creation of a novel antiangiogenic lead anticancer medication.
{"title":"Design and synthesis of new nicotinamides as immunomodulatory VEGFR-2 inhibitors and apoptosis inducers.","authors":"Reda G Yousef, Ibrahim H Eissa, Hazem Elkady, Ahmed B M Mehany, Mariam Ali Abo-Saif, Mohamed M Radwan, Mahmoud A ElSohly, Ibrahim M Ibrahim, Alaa Elwan, Mohamed Ayman El-Zahabi","doi":"10.1080/17568919.2024.2421150","DOIUrl":"10.1080/17568919.2024.2421150","url":null,"abstract":"<p><p><b>Background:</b> Nicotinamide-based VEGFR-2 inhibitors have good contribution in drug discovery.<b>Aim:</b> Development of novel nicotinamides as VEGFR-2 inhibitors.<b>Methods:</b> different <i>in vitro</i> and <i>in silico</i> assays were conducted to evaluate the VEGFR-2 inhibition and cytotoxicity.<b>Results:</b> Compound <b>16c</b> displayed strongest anti-VEGFR-2 potentiality and good anti-proliferative effects. Compound <b>16c</b> enhanced apoptosis and caused cell cycle arrest in the Pre-G1 and S phases. Compound <b>16c</b> boosted the level of the apoptotic caspase-3 and inhibited the level of TNF-α and IL-6 in tumor cells. Molecular docking and molecular dynamics (MD) simulations indicated the outstanding binding potential of compound <b>16c</b> against VEGFR-2.<b>Conclusion:</b> Compound <b>16c</b> is a good candidate for the creation of a novel antiangiogenic lead anticancer medication.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2583-2598"},"PeriodicalIF":3.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1080/17568919.2024.2389766
Binesh Kumar,Jai Devi,Amit Dubey,Manish Kumar
Aim: In the annals of human history, infectious diseases significantly influencing the collective well-being of people worldwide. Consequently, to identify effective agents for infectious ailments, the octahedral Co(II), Ni(II), Cu(II), Zn(II) complexes of 4-(3-methoxyphenyl)pyrimidin-2-amine and 2-methoxy-1-napthaldehyde based ligand were synthesized and well characterized in the current investigation.Results & methodology: The synthesized compounds were evaluated for anti-TB, anti-inflammatory, antibacterial, antifungal activities by microplate Alamar blue, bovine serum albumin, serial dilution assays. The [Zn(L1)2(H2O)2] complex (5) demonstrates robust potency with 0.0040 ± 0.0007 and 0.0038 μmol/ml MIC value in anti-tuberculosis and antimicrobial activities, correspondingly while 06.57 ± 0.03 μM IC50 value in anti-inflammatory investigation.Conclusion: Complex (5) show promising potential as targets for pathogen deformities, supported by rigorous biological and computational investigations including pharmacophore modelling, molecular docking (binding score -121.018 and -59.8662 kcal/mol for 6H53 and 1CX2 proteins, respectively), DFT (Density functional theory), MESP (Molecular Electrostatic Potential) and ADMET (absorption, distribution, metabolism, excretion and toxicity).
{"title":"Exploration of newly synthesized transition metal(II) complexes for infectious diseases.","authors":"Binesh Kumar,Jai Devi,Amit Dubey,Manish Kumar","doi":"10.1080/17568919.2024.2389766","DOIUrl":"https://doi.org/10.1080/17568919.2024.2389766","url":null,"abstract":"Aim: In the annals of human history, infectious diseases significantly influencing the collective well-being of people worldwide. Consequently, to identify effective agents for infectious ailments, the octahedral Co(II), Ni(II), Cu(II), Zn(II) complexes of 4-(3-methoxyphenyl)pyrimidin-2-amine and 2-methoxy-1-napthaldehyde based ligand were synthesized and well characterized in the current investigation.Results & methodology: The synthesized compounds were evaluated for anti-TB, anti-inflammatory, antibacterial, antifungal activities by microplate Alamar blue, bovine serum albumin, serial dilution assays. The [Zn(L1)2(H2O)2] complex (5) demonstrates robust potency with 0.0040 ± 0.0007 and 0.0038 μmol/ml MIC value in anti-tuberculosis and antimicrobial activities, correspondingly while 06.57 ± 0.03 μM IC50 value in anti-inflammatory investigation.Conclusion: Complex (5) show promising potential as targets for pathogen deformities, supported by rigorous biological and computational investigations including pharmacophore modelling, molecular docking (binding score -121.018 and -59.8662 kcal/mol for 6H53 and 1CX2 proteins, respectively), DFT (Density functional theory), MESP (Molecular Electrostatic Potential) and ADMET (absorption, distribution, metabolism, excretion and toxicity).","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"215 1","pages":"1-19"},"PeriodicalIF":4.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1080/17568919.2024.2394011
Abdoullah Bimoussa,Mouhi Eddine Hachim,Khalil El Khatabi,Yassine Laamari,Ali Oubella,Mohamed F AlAjmi,Aziz Auhmani,Mohammed Aziz Ajana,Hamid Morjani,My Youssef Ait Itto
Aim: A series of semicarbazone and thiosemicarbazone-tailed hybrids comprising pyrazole and acetylisoxazoline were prepared from (R)-carvone and characterized by technique spectroscopies Nuclear Magnetic Resonance (NMR), IR and High-Resolution Mass Spectrometry. Density Functional Theory (DFT) determined the structural parameters. Their cytotoxic activity was evaluated in vitro against four human cancer cell lines.Methods & results: All the studied semi and thiosemicarbazone demonstrate a promising potential as anticancer agents. The mechanism of action of these compounds involves apoptosis in HT-1080 cells, supported by an increase in the level of caspase-3/7 activity, which also arrests the cell cycle in the G0/G1 phase. Molecular docking studies were performed to establish the potential of the most active compounds 4a and 5a. ADMET analysis showed appropriate pharmacokinetic properties, allowing structure prediction for anticancer activity.
{"title":"Semicarbazone, thiosemicarbazone tailed isoxazoline-pyrazole: synthesis, DFT, biological and computational assessment.","authors":"Abdoullah Bimoussa,Mouhi Eddine Hachim,Khalil El Khatabi,Yassine Laamari,Ali Oubella,Mohamed F AlAjmi,Aziz Auhmani,Mohammed Aziz Ajana,Hamid Morjani,My Youssef Ait Itto","doi":"10.1080/17568919.2024.2394011","DOIUrl":"https://doi.org/10.1080/17568919.2024.2394011","url":null,"abstract":"Aim: A series of semicarbazone and thiosemicarbazone-tailed hybrids comprising pyrazole and acetylisoxazoline were prepared from (R)-carvone and characterized by technique spectroscopies Nuclear Magnetic Resonance (NMR), IR and High-Resolution Mass Spectrometry. Density Functional Theory (DFT) determined the structural parameters. Their cytotoxic activity was evaluated in vitro against four human cancer cell lines.Methods & results: All the studied semi and thiosemicarbazone demonstrate a promising potential as anticancer agents. The mechanism of action of these compounds involves apoptosis in HT-1080 cells, supported by an increase in the level of caspase-3/7 activity, which also arrests the cell cycle in the G0/G1 phase. Molecular docking studies were performed to establish the potential of the most active compounds 4a and 5a. ADMET analysis showed appropriate pharmacokinetic properties, allowing structure prediction for anticancer activity.","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"9 1","pages":"1-14"},"PeriodicalIF":4.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1080/17568919.2024.2394018
Michael Atef Fawzy,Karim Hagag Ibrahim,Ashraf A Aly,Asmaa H Mohamed,Sara Mohamed Naguib Abdel Hafez,Walaa Yehia Abdelzaher,Eslam B Elkaeed,Aisha A Alsfouk,El-Shimaa Mn Abdelhafez
Aim: Pulmonary fibrosis is a life threating disease which requires an immediate treatment and due to the limited medications, this study focused on synthesizing a series of quinoline-based pyrimidodiazepines 4a-f as a novel antifibrotic hit.Materials & methods: The target compounds were synthesized via a one-pot reaction then investigated in a rat model of lung fibrosis induced by bleomycin (BLM).Results: Results revealed significant attenuation of the tested pro-inflammatory cytokines, fibrotic genes and apoptotic markers; however, Bcl-2 was upregulated, indicating a protective effect against fibrosis. Moreover, the molecular docking studies highlighted promising interactions between compounds 4b and 4c and specific amino acids within the protein pockets of caspase-3 (ARG341 and THR177), malondialdehyde (LYS195, LYS118 and ARG188) and TNF-α (SER99 and NME102).Conclusion: Compounds 4b and 4c emerge as promising candidates for further preclinical investigation as pulmonary antifibrotic agents.
{"title":"One-pot synthesis and pharmacological evaluation of new quinoline/pyrimido-diazepines as pulmonary antifibrotic agents.","authors":"Michael Atef Fawzy,Karim Hagag Ibrahim,Ashraf A Aly,Asmaa H Mohamed,Sara Mohamed Naguib Abdel Hafez,Walaa Yehia Abdelzaher,Eslam B Elkaeed,Aisha A Alsfouk,El-Shimaa Mn Abdelhafez","doi":"10.1080/17568919.2024.2394018","DOIUrl":"https://doi.org/10.1080/17568919.2024.2394018","url":null,"abstract":"Aim: Pulmonary fibrosis is a life threating disease which requires an immediate treatment and due to the limited medications, this study focused on synthesizing a series of quinoline-based pyrimidodiazepines 4a-f as a novel antifibrotic hit.Materials & methods: The target compounds were synthesized via a one-pot reaction then investigated in a rat model of lung fibrosis induced by bleomycin (BLM).Results: Results revealed significant attenuation of the tested pro-inflammatory cytokines, fibrotic genes and apoptotic markers; however, Bcl-2 was upregulated, indicating a protective effect against fibrosis. Moreover, the molecular docking studies highlighted promising interactions between compounds 4b and 4c and specific amino acids within the protein pockets of caspase-3 (ARG341 and THR177), malondialdehyde (LYS195, LYS118 and ARG188) and TNF-α (SER99 and NME102).Conclusion: Compounds 4b and 4c emerge as promising candidates for further preclinical investigation as pulmonary antifibrotic agents.","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"48 1","pages":"1-20"},"PeriodicalIF":4.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1080/17568919.2024.2393569
Mohamed S Othman,Rafaqat Hussain,Fazal Rahim,Hayat Ullah,Shoaib Khan,Muhammad Taha,Mohamed A Fareid,Anas T Altaleb,Shimaa M Aboelnaga,Syed Adnan Ali Shah
Aim: Current study aims exploration of bis-benzoxazole bearing bis-Schiff base scaffolds (1-16) as anti-Alzheimer's agents.Materials & methods: 2-aminophenol is used as starting materials which react with different reagents in different step to give us bis-benzoxazole bearing bis-Schiff base analogs. NMR and HREI-MS techniques were used for characterization. All derivatives demonstrated varied range of activities with IC50 values 1.10 ± 0.40-24.50 ± 0.90 μM against acetylcholinesterase (AChE) and 1.90 ± 0.70-28.60 ± 0.60 μM against butyrylcholinesterase (BuChE) in contrast to donepezil. In both cases, analog-3 was found most potent. Molecular docking explored modes of interactions between scaffolds and receptor sites of targeted enzymes.Conclusion: This study offering promising approach for optimization and development of potent inhibitors of cholinesterase enzymes.
{"title":"Synthesis, biological and computational evaluation of benzoxazole hybrid analogs as potential anti-Alzheimer's agents.","authors":"Mohamed S Othman,Rafaqat Hussain,Fazal Rahim,Hayat Ullah,Shoaib Khan,Muhammad Taha,Mohamed A Fareid,Anas T Altaleb,Shimaa M Aboelnaga,Syed Adnan Ali Shah","doi":"10.1080/17568919.2024.2393569","DOIUrl":"https://doi.org/10.1080/17568919.2024.2393569","url":null,"abstract":"Aim: Current study aims exploration of bis-benzoxazole bearing bis-Schiff base scaffolds (1-16) as anti-Alzheimer's agents.Materials & methods: 2-aminophenol is used as starting materials which react with different reagents in different step to give us bis-benzoxazole bearing bis-Schiff base analogs. NMR and HREI-MS techniques were used for characterization. All derivatives demonstrated varied range of activities with IC50 values 1.10 ± 0.40-24.50 ± 0.90 μM against acetylcholinesterase (AChE) and 1.90 ± 0.70-28.60 ± 0.60 μM against butyrylcholinesterase (BuChE) in contrast to donepezil. In both cases, analog-3 was found most potent. Molecular docking explored modes of interactions between scaffolds and receptor sites of targeted enzymes.Conclusion: This study offering promising approach for optimization and development of potent inhibitors of cholinesterase enzymes.","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"25 1","pages":"1-11"},"PeriodicalIF":4.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}