Pub Date : 2024-04-01Epub Date: 2024-03-04DOI: 10.4155/fmc-2023-0336
Mona S El-Zoghbi, Amr Ka Bass, Gamal El-Din A Abuo-Rahma, Mamdouh Fa Mohamed, Mohamed Badr, Hanan A Al-Ghulikah, El-Shimaa Mn Abdelhafez
Aim: The purpose of this work is to create and synthesize a new class of chemicals: 3-cyano-2-substituted pyridine compounds with expected multitarget inhibition of histone deacetylase (HDAC) and tubulin. Materials & methods: The target compounds (3a-c, 4a-c and 5a-c) were synthesized utilizing 6-(4-methoxyphenyl)-2-oxo-4-(3,4,5-trimethoxyphenyl)-3-cyanopyridine, with various linkers and zinc-binding groups (ZBGs). Results: Most of the tested compounds showed promising growth inhibition, and hydroxamic acid-containing hybrids possessed higher HDAC inhibition than other ZBGs. Compound 4b possessed the highest potency; however, it showed the most tubulin polymerization inhibition. Docking studies displayed good binding into HDAC1 and six pockets and tubulin polymerization protein. Conclusion: Compound 4b could be considered a good antitumor candidate to go further into in vivo and clinical studies.
{"title":"Design, synthesis and mechanistic study of new dual targeting HDAC/tubulin inhibitors.","authors":"Mona S El-Zoghbi, Amr Ka Bass, Gamal El-Din A Abuo-Rahma, Mamdouh Fa Mohamed, Mohamed Badr, Hanan A Al-Ghulikah, El-Shimaa Mn Abdelhafez","doi":"10.4155/fmc-2023-0336","DOIUrl":"10.4155/fmc-2023-0336","url":null,"abstract":"<p><p><b>Aim:</b> The purpose of this work is to create and synthesize a new class of chemicals: 3-cyano-2-substituted pyridine compounds with expected multitarget inhibition of histone deacetylase (HDAC) and tubulin. <b>Materials & methods:</b> The target compounds (<b>3a-c, 4a-c</b> and <b>5a-c</b>) were synthesized utilizing 6-(4-methoxyphenyl)-2-oxo-4-(3,4,5-trimethoxyphenyl)-3-cyanopyridine, with various linkers and zinc-binding groups (ZBGs). <b>Results:</b> Most of the tested compounds showed promising growth inhibition, and hydroxamic acid-containing hybrids possessed higher HDAC inhibition than other ZBGs. Compound <b>4b</b> possessed the highest potency; however, it showed the most tubulin polymerization inhibition. Docking studies displayed good binding into HDAC1 and six pockets and tubulin polymerization protein. <b>Conclusion:</b> Compound <b>4b</b> could be considered a good antitumor candidate to go further into <i>in vivo</i> and clinical studies.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"601-622"},"PeriodicalIF":4.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-13DOI: 10.4155/fmc-2023-0116
Martin Krátký
Increasing resistance in Staphylococcus aureus has created a critical need for new drugs, especially those effective against methicillin-resistant strains (methicillin-resistant Staphylococcus aureus [MRSA]). Sulfonamides are a privileged scaffold for the development of novel antistaphylococcal agents. This review covers recent advances in sulfonamides active against MRSA. Based on the substitution patterns of sulfonamide moieties, its derivatives can be tuned for desired properties and biological activity. Contrary to the traditional view, not only N-monosubstituted 4-aminobenzenesulfonamides are effective. Novel sulfonamides have various mechanisms of action, not only 'classical' inhibition of the folate biosynthetic pathway. Some of them can overcome resistance to classical sulfa drugs and cotrimoxazole, are bactericidal and active in vivo. Hybrid compounds with distinct bioactive scaffolds are particularly advantageous.
{"title":"Novel sulfonamide derivatives as a tool to combat methicillin-resistant <i>Staphylococcus aureus</i>.","authors":"Martin Krátký","doi":"10.4155/fmc-2023-0116","DOIUrl":"10.4155/fmc-2023-0116","url":null,"abstract":"<p><p>Increasing resistance in <i>Staphylococcus aureus</i> has created a critical need for new drugs, especially those effective against methicillin-resistant strains (methicillin-resistant <i>Staphylococcus aureus</i> [MRSA]). Sulfonamides are a privileged scaffold for the development of novel antistaphylococcal agents. This review covers recent advances in sulfonamides active against MRSA. Based on the substitution patterns of sulfonamide moieties, its derivatives can be tuned for desired properties and biological activity. Contrary to the traditional view, not only <i>N</i>-monosubstituted 4-aminobenzenesulfonamides are effective. Novel sulfonamides have various mechanisms of action, not only 'classical' inhibition of the folate biosynthetic pathway. Some of them can overcome resistance to classical sulfa drugs and cotrimoxazole, are bactericidal and active <i>in vivo</i>. Hybrid compounds with distinct bioactive scaffolds are particularly advantageous.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"545-562"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-05DOI: 10.4155/fmc-2023-0305
Yu-Xiang Cai, Jun-Xian Chen, Hong-Mei Dong, Zai-Chang Yang
Aim: To discover novel anti-Mycobacterium tuberculosis (Mtb) drugs, 19 compounds were synthesized; their anti-Mtb effects were evaluated and mechanisms of action were preliminarily explored. Materials & methods: The compounds were synthesized and their anti-Mtb activity was elucidated using resazurin microtiter assays. The plausible target of the potential compound was investigated by microimaging techniques, gas chromatography-mass spectrometry analysis and molecular docking. Results: 19 compounds inhibited Mtb growth with minimum inhibitory concentrations ranging from 1 to 32 μg/ml. Compounds 1-17 showed inhibition of Mtb KatG enzyme. Compound 19, the most potent, might be an inhibitor of Pks13 polyketide synthase. Conclusion: This study suggests that 2-((6-fluoropyridin-3-yl)methylene) hydrazine-1-carbothioamide (19) is a potential anti-Mtb lead compound with a novel mechanism of action.
{"title":"19 Schiff bases as antimycobacterial agents: synthesis, molecular docking and a plausible mechanism of action.","authors":"Yu-Xiang Cai, Jun-Xian Chen, Hong-Mei Dong, Zai-Chang Yang","doi":"10.4155/fmc-2023-0305","DOIUrl":"10.4155/fmc-2023-0305","url":null,"abstract":"<p><p><b>Aim:</b> To discover novel anti-<i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) drugs, 19 compounds were synthesized; their anti-<i>Mtb</i> effects were evaluated and mechanisms of action were preliminarily explored. <b>Materials & methods:</b> The compounds were synthesized and their anti-<i>Mtb</i> activity was elucidated using resazurin microtiter assays. The plausible target of the potential compound was investigated by microimaging techniques, gas chromatography-mass spectrometry analysis and molecular docking. <b>Results:</b> 19 compounds inhibited <i>Mtb</i> growth with minimum inhibitory concentrations ranging from 1 to 32 μg/ml. Compounds <b>1</b>-<b>17</b> showed inhibition of <i>Mtb</i> KatG enzyme. Compound <b>19</b>, the most potent, might be an inhibitor of Pks13 polyketide synthase. <b>Conclusion:</b> This study suggests that 2-((6-fluoropyridin-3-yl)methylene) hydrazine-1-carbothioamide (<b>19</b>) is a potential anti-<i>Mtb</i> lead compound with a novel mechanism of action.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"453-467"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review meticulously examines the synthesis techniques for 1,3,4-thiadiazole derivatives, focusing on cyclization, condensation reactions and functional group transformations. It enhances the understanding of these chemical methods that re crucial for tailoring derivative properties and functionalities. This study is considered to be vital for researchers, detailing established effects such as antioxidant, antimicrobial and anticancer activities, and revealing emerging pharmacological potentials such as neuroprotective, antiviral and antidiabetic properties. It also discusses the molecular mechanisms underlying these effects. In addition, this article covers structure-activity relationship studies and computational modelling that are essential for designing potent, selective 1,3,4-thiadiazole compounds. This work lays a foundation for future research and targeted therapeutic development.
{"title":"Emerging synthetic strategies and pharmacological insights of 1,3,4-thiadiazole derivatives: a comprehensive review.","authors":"Davinder Kumar, Navidha Aggarwal, Virender Kumar, Hitesh Chopra, Rakesh Kumar Marwaha, Rohit Sharma","doi":"10.4155/fmc-2023-0203","DOIUrl":"10.4155/fmc-2023-0203","url":null,"abstract":"<p><p>This review meticulously examines the synthesis techniques for 1,3,4-thiadiazole derivatives, focusing on cyclization, condensation reactions and functional group transformations. It enhances the understanding of these chemical methods that re crucial for tailoring derivative properties and functionalities. This study is considered to be vital for researchers, detailing established effects such as antioxidant, antimicrobial and anticancer activities, and revealing emerging pharmacological potentials such as neuroprotective, antiviral and antidiabetic properties. It also discusses the molecular mechanisms underlying these effects. In addition, this article covers structure-activity relationship studies and computational modelling that are essential for designing potent, selective 1,3,4-thiadiazole compounds. This work lays a foundation for future research and targeted therapeutic development.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"563-581"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-19DOI: 10.4155/fmc-2023-0017
Anastasiia M Isakova, Alexander A Kovalenko, Ekaterina V Skorb, Sergey Shityakov
Background: Traditional methods for chemical library generation in virtual screening often impose limitations on the accessible chemical space or produce synthetically irrelevant structures. Incorporating common chemical reactions into generative algorithms could offer significant benefits. Materials & methods: In this study, we developed NeuroClick, a graphical user interface software designed to perform in silico azide-alkyne cycloaddition, a widely utilized synthetic approach in modern medicinal chemistry. Results & conclusion: NeuroClick facilitates the generation and filtering of large combinatorial libraries at a remarkable rate of 10,000 molecules per minute. Moreover, the generated products can be filtered to identify subsets of pharmaceutically relevant compounds based on Lipinski's rule of five and blood-brain barrier permeability prediction. We demonstrate the utility of NeuroClick by generating and filtering several thousand molecules for dopamine D3 receptor ligand screening.
{"title":"NeuroClick: software for mimicking click reaction to generate drug-like molecules permeating the blood-brain barrier.","authors":"Anastasiia M Isakova, Alexander A Kovalenko, Ekaterina V Skorb, Sergey Shityakov","doi":"10.4155/fmc-2023-0017","DOIUrl":"10.4155/fmc-2023-0017","url":null,"abstract":"<p><p><b>Background:</b> Traditional methods for chemical library generation in virtual screening often impose limitations on the accessible chemical space or produce synthetically irrelevant structures. Incorporating common chemical reactions into generative algorithms could offer significant benefits. <b>Materials & methods:</b> In this study, we developed NeuroClick, a graphical user interface software designed to perform in silico azide-alkyne cycloaddition, a widely utilized synthetic approach in modern medicinal chemistry. <b>Results & conclusion:</b> NeuroClick facilitates the generation and filtering of large combinatorial libraries at a remarkable rate of 10,000 molecules per minute. Moreover, the generated products can be filtered to identify subsets of pharmaceutically relevant compounds based on Lipinski's rule of five and blood-brain barrier permeability prediction. We demonstrate the utility of NeuroClick by generating and filtering several thousand molecules for dopamine D3 receptor ligand screening.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"389-398"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-22DOI: 10.4155/fmc-2023-0261
Luyao Li, Shouping Gong
Background: IκB kinase β (IKKβ) plays a pivotal role in the NF-κB signaling pathway and is considered a promising therapeutic target for various diseases. Materials & methods: The authors developed and validated a 3D pharmacophore model of IKKβ inhibitors via the HypoGen algorithm in Discovery Studio 2019, then performed virtual screening, molecular docking and kinase assays to identify hit compounds from the ChemDiv database. The compound with the highest inhibitory activity was further evaluated in adjuvant-induced arthritis rat models. Results: Among the four hit compounds, Hit 4 had the highest IKKβ inhibitory activity (IC50 = 30.4 ± 3.8), and it could significantly ameliorate joint inflammation and damage in vivo. Conclusion: The identified compound, Hit 4, can be optimized as a therapeutic agent for inflammatory diseases.
{"title":"The discovery of a novel IκB kinase β inhibitor based on pharmacophore modeling, virtual screening and biological evaluation.","authors":"Luyao Li, Shouping Gong","doi":"10.4155/fmc-2023-0261","DOIUrl":"10.4155/fmc-2023-0261","url":null,"abstract":"<p><p><b>Background:</b> IκB kinase β (IKKβ) plays a pivotal role in the NF-κB signaling pathway and is considered a promising therapeutic target for various diseases. <b>Materials & methods:</b> The authors developed and validated a 3D pharmacophore model of IKKβ inhibitors via the HypoGen algorithm in Discovery Studio 2019, then performed virtual screening, molecular docking and kinase assays to identify hit compounds from the ChemDiv database. The compound with the highest inhibitory activity was further evaluated in adjuvant-induced arthritis rat models. <b>Results:</b> Among the four hit compounds, Hit 4 had the highest IKKβ inhibitory activity (IC<sub>50</sub> = 30.4 ± 3.8), and it could significantly ameliorate joint inflammation and damage <i>in vivo</i>. <b>Conclusion:</b> The identified compound, Hit 4, can be optimized as a therapeutic agent for inflammatory diseases.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"531-544"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-20DOI: 10.4155/fmc-2023-0290
Arti Soni, Ashwani Kumar, Vivek Kumar, Ravi Rawat, Volkan Eyupoglu
Aim: The objective of the present study was to design, synthesize and evaluate diverse Schiff bases and thiazolidin-4-one derivatives of aminothiazole as key pharmacophores possessing acetylcholinesterase inhibitory activity. Materials & methods: Two series of compounds (13 each) were synthesized and evaluated for their acetylcholinesterase inhibition and antioxidant activity. Molecular docking of all compounds was performed to provide an insight into their binding interactions. Results: Compounds 2j (IC50 = 0.03 μM) and 3e (IC50 = 1.58 μM) were found to be the best acetylcholinesterase inhibitors among compounds of their respective series. Molecular docking analysis supported the results of in vitro activity by displaying good docking scores with the binding pocket of human acetylcholinesterase (Protein Data Bank ID: 4EY7). Conclusion: Compound 2j emerged as a potential lead compound with excellent acetylcholinesterase inhibition, antioxidant and chelation activity.
{"title":"Design, synthesis and evaluation of aminothiazole derivatives as potential anti-Alzheimer's candidates.","authors":"Arti Soni, Ashwani Kumar, Vivek Kumar, Ravi Rawat, Volkan Eyupoglu","doi":"10.4155/fmc-2023-0290","DOIUrl":"10.4155/fmc-2023-0290","url":null,"abstract":"<p><p><b>Aim:</b> The objective of the present study was to design, synthesize and evaluate diverse Schiff bases and thiazolidin-4-one derivatives of aminothiazole as key pharmacophores possessing acetylcholinesterase inhibitory activity. <b>Materials & methods:</b> Two series of compounds (13 each) were synthesized and evaluated for their acetylcholinesterase inhibition and antioxidant activity. Molecular docking of all compounds was performed to provide an insight into their binding interactions. <b>Results:</b> Compounds <b>2j</b> (IC<sub>50</sub> = 0.03 μM) and <b>3e</b> (IC<sub>50</sub> = 1.58 μM) were found to be the best acetylcholinesterase inhibitors among compounds of their respective series. Molecular docking analysis supported the results of <i>in vitro</i> activity by displaying good docking scores with the binding pocket of human acetylcholinesterase (Protein Data Bank ID: 4EY7). <b>Conclusion:</b> Compound <b>2j</b> emerged as a potential lead compound with excellent acetylcholinesterase inhibition, antioxidant and chelation activity.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"513-529"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-31DOI: 10.4155/fmc-2023-0284
Xinran Cao, Yufeng Gong
Histone deacetylase inhibitors not only possess favorable effects on modulating tumor microenvironment and host immune cells but also can reactivate the genes silenced due to deacetylation and chromatin condensation. Hydroxamic acid hybrids as promising histone deacetylase inhibitors have the potential to address drug resistance and reduce severe side effects associated with a single drug molecule due to their capacity to simultaneously modulate multiple targets in cancer cells. Accordingly, rational design of hydroxamic acid hybrids may provide valuable therapeutic interventions for the treatment of breast cancer. This review aimed to provide insights into the in vitro and in vivo anti-breast cancer therapeutic potential of hydroxamic acid hybrids, together with their mechanisms of action and structure-activity relationships, covering articles published from 2020 to the present.
{"title":"Recent developments of hydroxamic acid hybrids as potential anti-breast cancer agents.","authors":"Xinran Cao, Yufeng Gong","doi":"10.4155/fmc-2023-0284","DOIUrl":"10.4155/fmc-2023-0284","url":null,"abstract":"<p><p>Histone deacetylase inhibitors not only possess favorable effects on modulating tumor microenvironment and host immune cells but also can reactivate the genes silenced due to deacetylation and chromatin condensation. Hydroxamic acid hybrids as promising histone deacetylase inhibitors have the potential to address drug resistance and reduce severe side effects associated with a single drug molecule due to their capacity to simultaneously modulate multiple targets in cancer cells. Accordingly, rational design of hydroxamic acid hybrids may provide valuable therapeutic interventions for the treatment of breast cancer. This review aimed to provide insights into the <i>in vitro</i> and <i>in vivo</i> anti-breast cancer therapeutic potential of hydroxamic acid hybrids, together with their mechanisms of action and structure-activity relationships, covering articles published from 2020 to the present.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"469-492"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139642014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-14DOI: 10.4155/fmc-2023-0294
Akram H Abd El-Haleem, Manar A Ellafy, Safinaz E-S Abbas, Mohamed K El-Ashrey
Aim: 22 derivatives of 7-hydroxy-4-methyl-3-substituted benzopyran-2-one were designed, synthesized and evaluated for their anticancer activity. Materials & methods: The prepared compounds were screened for their cytotoxicity against the MCF-7 breast cancer cell line. The best five were then evaluated against MCF10a to check their safety and then tested for their PI3K and Akt-1 inhibitory action. The best two derivatives were further analyzed through cell cycle analysis, caspase 3/7 activation, increasing BAX level and decreasing BCL-2. Docking and absorption, distribution, metabolism and excretion prediction studies were also performed. Results & conclusion: Compounds 3b, 3c, 3j, 7 and 8 were the most active. Compounds 3c and 8 showed remarkable inhibitory action against PI3K and Akt-1 enzymes, and both are promising candidates for treatment of breast cancer.
{"title":"Design, synthesis and anticancer evaluation of some novel 7-hydroxy-4-methyl-3-substituted benzopyran-2-one derivatives.","authors":"Akram H Abd El-Haleem, Manar A Ellafy, Safinaz E-S Abbas, Mohamed K El-Ashrey","doi":"10.4155/fmc-2023-0294","DOIUrl":"10.4155/fmc-2023-0294","url":null,"abstract":"<p><p><b>Aim:</b> 22 derivatives of 7-hydroxy-4-methyl-3-substituted benzopyran-2-one were designed, synthesized and evaluated for their anticancer activity. <b>Materials & methods:</b> The prepared compounds were screened for their cytotoxicity against the MCF-7 breast cancer cell line. The best five were then evaluated against MCF10a to check their safety and then tested for their PI3K and Akt-1 inhibitory action. The best two derivatives were further analyzed through cell cycle analysis, caspase 3/7 activation, increasing BAX level and decreasing BCL-2. Docking and absorption, distribution, metabolism and excretion prediction studies were also performed. <b>Results & conclusion:</b> Compounds <b>3b</b>, <b>3c</b>, <b>3j</b>, <b>7</b> and <b>8</b> were the most active. Compounds <b>3c</b> and <b>8</b> showed remarkable inhibitory action against PI3K and Akt-1 enzymes, and both are promising candidates for treatment of breast cancer.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"417-437"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-20DOI: 10.4155/fmc-2023-0313
Jyoti Rasgania, Renu Gavadia, Neetu Sahu, Pinki Sharma, Nar S Chauhan, Vicky Saharan, Rajeev K Kapoor, Komal Jakhar
Background: Antimicrobial resistance has become a critical health concern, and quorum-sensing exacerbates the resistance by facilitating cell-to-cell communication within the microbial community, leading to severe pathogenic outbreaks. Methods & results: Novel 1-(2-((5H-[1,2,4]-triazino[5,6-b]indol-3-yl)thio)acetyl)indoline-2,3-diones were synthesized. The title compounds exhibit outstanding anti-quorum-sensing efficacy, and compound 7g demonstrated the maximum proficiency (IC50 = 0.0504 μg/ml). The hybrids displayed potent antioxidant action, and compound 7c showed the highest antioxidant ability (IC50 = 40.71 μg/ml). Molecular docking of the isatin hybrids against DNA gyrase and quorum-sensing receptor CviR validated the observed in vitro findings. The befitting pharmacokinetic profile of the synthesized drug candidates was ascertained through absorption, distribution, metabolism, excretion and toxicity screening. Conclusion: The remarkable biocompetence of the synthesized triazinoindoles may help to combat drug-resistant infections.
{"title":"Design, synthesis and exploration of novel triazinoindoles as potent quorum-sensing inhibitors and radical quenchers.","authors":"Jyoti Rasgania, Renu Gavadia, Neetu Sahu, Pinki Sharma, Nar S Chauhan, Vicky Saharan, Rajeev K Kapoor, Komal Jakhar","doi":"10.4155/fmc-2023-0313","DOIUrl":"10.4155/fmc-2023-0313","url":null,"abstract":"<p><p><b>Background:</b> Antimicrobial resistance has become a critical health concern, and quorum-sensing exacerbates the resistance by facilitating cell-to-cell communication within the microbial community, leading to severe pathogenic outbreaks. <b>Methods & results:</b> Novel 1-(2-((5<i>H</i>-[1,2,4]-triazino[5,6-<i>b</i>]indol-3-yl)thio)acetyl)indoline-2,3-diones were synthesized. The title compounds exhibit outstanding anti-quorum-sensing efficacy, and compound <b>7g</b> demonstrated the maximum proficiency (IC<sub>50</sub> = 0.0504 μg/ml). The hybrids displayed potent antioxidant action, and compound <b>7c</b> showed the highest antioxidant ability (IC<sub>50</sub> = 40.71 μg/ml). Molecular docking of the isatin hybrids against DNA gyrase and quorum-sensing receptor CviR validated the observed <i>in vitro</i> findings. The befitting pharmacokinetic profile of the synthesized drug candidates was ascertained through absorption, distribution, metabolism, excretion and toxicity screening. <b>Conclusion:</b> The remarkable biocompetence of the synthesized triazinoindoles may help to combat drug-resistant infections.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"399-416"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}