Pub Date : 2020-06-12Epub Date: 2020-04-21DOI: 10.3727/105221620X15874935364268
Robyn P Strauss, Katherine M Audsley, Adam M Passman, Joanne H van Vuuren, Megan L Finch-Edmondson, Bernard A Callus, George C Yeoh
Liver progenitor cells (LPCs) contribute to liver regeneration during chronic damage and are implicated as cells of origin for liver cancers including hepatocellular carcinoma (HCC). The CDKN2A locus, which encodes the tumor suppressors alternate reading frame protein (ARF) and INK4A, was identified as one of the most frequently altered genes in HCC. This study demonstrates that inactivation of CDKN2A enhances tumorigenic transformation of LPCs. The level of ARF and INK4A expression was determined in a panel of transformed and nontransformed wild-type LPC lines. Moreover, the transforming potential of LPCs with inactivated CDKN2A was shown to be enhanced in LPCs derived from Arf-/- and CDKN2Afl/fl mice and in wild-type LPCs following CRISPR-Cas9 suppression of CDKN2A. ARF and INK4A abundance is consistently reduced or ablated following LPC transformation. Arf-/- and CDKN2A-/- LPCs displayed hallmarks of transformation such as anchorage-independent and more rapid growth than control LPC lines with unaltered CDKN2A. Transformation was not immediate, suggesting that the loss of CDKN2A alone is insufficient. Further analysis revealed decreased p21 expression as well as reduced epithelial markers and increased mesenchymal markers, indicative of epithelial-to-mesenchymal transition, following inactivation of the CDKN2A gene were required for tumorigenic transformation. Loss of ARF and INK4A enhances the propensity of LPCs to undergo a tumorigenic transformation. As LPCs represent a cancer stem cell candidate, identifying CDKN2A as a driver of LPC transformation highlights ARF and INK4A as viable prognostic markers and therapeutic targets for HCC.
{"title":"Loss of ARF/INK4A Promotes Liver Progenitor Cell Transformation Toward Tumorigenicity Supporting Their Role in Hepatocarcinogenesis.","authors":"Robyn P Strauss, Katherine M Audsley, Adam M Passman, Joanne H van Vuuren, Megan L Finch-Edmondson, Bernard A Callus, George C Yeoh","doi":"10.3727/105221620X15874935364268","DOIUrl":"https://doi.org/10.3727/105221620X15874935364268","url":null,"abstract":"<p><p>Liver progenitor cells (LPCs) contribute to liver regeneration during chronic damage and are implicated as cells of origin for liver cancers including hepatocellular carcinoma (HCC). The <i>CDKN2A</i> locus, which encodes the tumor suppressors alternate reading frame protein (ARF) and INK4A, was identified as one of the most frequently altered genes in HCC. This study demonstrates that inactivation of <i>CDKN2A</i> enhances tumorigenic transformation of LPCs. The level of ARF and INK4A expression was determined in a panel of transformed and nontransformed wild-type LPC lines. Moreover, the transforming potential of LPCs with inactivated <i>CDKN2A</i> was shown to be enhanced in LPCs derived from <i>Arf</i><sup><i>-/-</i></sup> and <i>CDKN2A</i><sup><i>fl/fl</i></sup> mice and in wild-type LPCs following CRISPR-Cas9 suppression of <i>CDKN2A</i>. ARF and INK4A abundance is consistently reduced or ablated following LPC transformation. <i>Arf</i><sup><i>-/-</i></sup> and <i>CDKN2A</i><sup><i>-/-</i></sup> LPCs displayed hallmarks of transformation such as anchorage-independent and more rapid growth than control LPC lines with unaltered <i>CDKN2A</i>. Transformation was not immediate, suggesting that the loss of <i>CDKN2A</i> alone is insufficient. Further analysis revealed decreased p21 expression as well as reduced epithelial markers and increased mesenchymal markers, indicative of epithelial-to-mesenchymal transition, following inactivation of the <i>CDKN2A</i> gene were required for tumorigenic transformation. Loss of ARF and INK4A enhances the propensity of LPCs to undergo a tumorigenic transformation. As LPCs represent a cancer stem cell candidate, identifying <i>CDKN2A</i> as a driver of LPC transformation highlights ARF and INK4A as viable prognostic markers and therapeutic targets for HCC.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":" ","pages":"39-52"},"PeriodicalIF":0.0,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284103/pdf/GE-20-39.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37856914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-12Epub Date: 2019-06-28DOI: 10.3727/105221619X15617324583639
Nathan Werneburg, Gregory J Gores, Rory L Smoot
The Hippo pathway and its effector protein YAP (a transcriptional coactivator) have been identified as important in the biology of both hepatocellular carcinoma and cholangiocarcinoma. First identified as a tumor suppressor pathway in Drosophila, the understanding of the mammalian YAP signaling and its regulation continues to expand. In its "on" function, the canonical regulatory Hippo pathway, a well-described serine/threonine kinase module, regulates YAP function by restricting its subcellular localization to the cytoplasm. In contrast, when the Hippo pathway is "off," YAP translocates to the nucleus and drives cotranscriptional activity. Given the role of Hippo/YAP signaling in hepatic malignancies, investigators have sought to target these molecules; however, standard approaches have not been successful based on the pathways' negative regulatory role. More recently, additional regulatory mechanisms, such as tyrosine phosphorylation, of YAP have been described. These represent positive regulatory events that may be targetable. Additionally, several groups have identified potentiating feed-forward signaling for YAP in multiple contexts, suggesting other experimental therapeutic approaches to interrupt these signaling loops. Herein we explore the current data supporting alternative YAP regulatory pathways, review the described feed-forward signaling cascades that are YAP dependent, and explore targeting strategies that have been employed in preclinical models of hepatic malignancies.
{"title":"The Hippo Pathway and YAP Signaling: Emerging Concepts in Regulation, Signaling, and Experimental Targeting Strategies With Implications for Hepatobiliary Malignancies.","authors":"Nathan Werneburg, Gregory J Gores, Rory L Smoot","doi":"10.3727/105221619X15617324583639","DOIUrl":"https://doi.org/10.3727/105221619X15617324583639","url":null,"abstract":"<p><p>The Hippo pathway and its effector protein YAP (a transcriptional coactivator) have been identified as important in the biology of both hepatocellular carcinoma and cholangiocarcinoma. First identified as a tumor suppressor pathway in <i>Drosophila</i>, the understanding of the mammalian YAP signaling and its regulation continues to expand. In its \"on\" function, the canonical regulatory Hippo pathway, a well-described serine/threonine kinase module, regulates YAP function by restricting its subcellular localization to the cytoplasm. In contrast, when the Hippo pathway is \"off,\" YAP translocates to the nucleus and drives cotranscriptional activity. Given the role of Hippo/YAP signaling in hepatic malignancies, investigators have sought to target these molecules; however, standard approaches have not been successful based on the pathways' negative regulatory role. More recently, additional regulatory mechanisms, such as tyrosine phosphorylation, of YAP have been described. These represent positive regulatory events that may be targetable. Additionally, several groups have identified potentiating feed-forward signaling for YAP in multiple contexts, suggesting other experimental therapeutic approaches to interrupt these signaling loops. Herein we explore the current data supporting alternative YAP regulatory pathways, review the described feed-forward signaling cascades that are YAP dependent, and explore targeting strategies that have been employed in preclinical models of hepatic malignancies.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":" ","pages":"67-74"},"PeriodicalIF":0.0,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221619X15617324583639","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37380702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-12DOI: 10.3727/105221619X15664105014956
Kari Nejak‐Bowen
Cholangiopathies are chronic, progressive diseases of the biliary tree, and can be either acquired or genetic. The primary target is the cholangiocyte (CC), the cell type lining the bile duct that is responsible for bile modification and transport. Despite advances in our understanding and diagnosis of these diseases in recent years, there are no proven therapeutic treatments for the majority of the cholangiopathies, and liver transplantation is the only life-extending treatment option for patients with end-stage cholestatic liver disease. One potential therapeutic strategy is to facilitate endogenous repair of the biliary system, which may alleviate intrahepatic cholestasis caused by these diseases. During biliary injury, hepatocytes (HC) are known to alter their phenotype and acquire CC-like features, a process known as cellular reprogramming. This brief review discusses the potential ways in which reprogrammed HC may contribute to biliary repair, thereby restoring bile flow and reducing the severity of cholangiopathies. Some of these include modifying bile to reduce toxicity, serving as a source of de novo CC to repair the biliary epithelium, or creating new channels to facilitate bile flow.
{"title":"IF IT LOOKS LIKE A DUCT AND ACTS LIKE A DUCT: ON THE ROLE OF REPROGRAMMED HEPATOCYTES IN CHOLANGIOPATHIES.","authors":"Kari Nejak‐Bowen","doi":"10.3727/105221619X15664105014956","DOIUrl":"https://doi.org/10.3727/105221619X15664105014956","url":null,"abstract":"Cholangiopathies are chronic, progressive diseases of the biliary tree, and can be either acquired or genetic. The primary target is the cholangiocyte (CC), the cell type lining the bile duct that is responsible for bile modification and transport. Despite advances in our understanding and diagnosis of these diseases in recent years, there are no proven therapeutic treatments for the majority of the cholangiopathies, and liver transplantation is the only life-extending treatment option for patients with end-stage cholestatic liver disease. One potential therapeutic strategy is to facilitate endogenous repair of the biliary system, which may alleviate intrahepatic cholestasis caused by these diseases. During biliary injury, hepatocytes (HC) are known to alter their phenotype and acquire CC-like features, a process known as cellular reprogramming. This brief review discusses the potential ways in which reprogrammed HC may contribute to biliary repair, thereby restoring bile flow and reducing the severity of cholangiopathies. Some of these include modifying bile to reduce toxicity, serving as a source of de novo CC to repair the biliary epithelium, or creating new channels to facilitate bile flow.","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221619X15664105014956","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44974118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-22DOI: 10.3727/105221619X15742818049365
Haleigh B Eubanks, É. Lavoie, J. Goree, J. Kamykowski, N. Gokden, Michel Fausther, J. Dranoff
Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble-NSF-attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction of polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction of SNAP-23 in mice by monogenic deletion delayed but did not prevent progression liver fibrosis to cirrhosis. Taken together these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.
{"title":"Reduction in SNAP-23 Alters Microfilament Organization in Myofibrobastic Hepatic Stellate Cells.","authors":"Haleigh B Eubanks, É. Lavoie, J. Goree, J. Kamykowski, N. Gokden, Michel Fausther, J. Dranoff","doi":"10.3727/105221619X15742818049365","DOIUrl":"https://doi.org/10.3727/105221619X15742818049365","url":null,"abstract":"Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble-NSF-attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction of polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction of SNAP-23 in mice by monogenic deletion delayed but did not prevent progression liver fibrosis to cirrhosis. Taken together these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41713811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-04Epub Date: 2019-04-02DOI: 10.3727/105221619X15536120524171
Ming-Ming Chen, Jing-Jing Cai, Yao Yu, Zhi-Gang She, Hongliang Li
Nonalcoholic steatohepatitis (NASH) is the second leading cause of liver transplantation in the US with a high risk of liver-related morbidities and mortality. Given the global burden of NASH, development of appropriate therapeutic strategies is an important clinical need. Where applicable, lifestyle modification remains the primary recommendation for the treatment of NASH, even though such changes are difficult to sustain and even insufficient to cure NASH. Bariatric surgery resolves NASH in such patients where lifestyle modifications have failed, and is recommended for morbidly obese patients with NASH. Thus, pharmacotherapies are of high value for NASH treatment. Though no drug has been approved by the US Food and Drug Administration for treatment of NASH, substantial progress in pharmacological development has been made in the last few years. Agents such as vitamin E and pioglitazone are recommended in patients with NASH, and yet concerns about their side effects remain. Many agents targeting various vital molecules and pathways, including those impacting metabolic perturbations, inflammatory cascades, and oxidative stress, are in clinical trials for the treatment of NASH. Some agents have shown promising results in phase II or III clinical trials, but more studies are required to assess their long-term effects. Herein, we review the potential strategies and challenges in therapeutic approaches to treating NASH.
{"title":"Current and Emerging Approaches for Nonalcoholic Steatohepatitis Treatment.","authors":"Ming-Ming Chen, Jing-Jing Cai, Yao Yu, Zhi-Gang She, Hongliang Li","doi":"10.3727/105221619X15536120524171","DOIUrl":"https://doi.org/10.3727/105221619X15536120524171","url":null,"abstract":"<p><p>Nonalcoholic steatohepatitis (NASH) is the second leading cause of liver transplantation in the US with a high risk of liver-related morbidities and mortality. Given the global burden of NASH, development of appropriate therapeutic strategies is an important clinical need. Where applicable, lifestyle modification remains the primary recommendation for the treatment of NASH, even though such changes are difficult to sustain and even insufficient to cure NASH. Bariatric surgery resolves NASH in such patients where lifestyle modifications have failed, and is recommended for morbidly obese patients with NASH. Thus, pharmacotherapies are of high value for NASH treatment. Though no drug has been approved by the US Food and Drug Administration for treatment of NASH, substantial progress in pharmacological development has been made in the last few years. Agents such as vitamin E and pioglitazone are recommended in patients with NASH, and yet concerns about their side effects remain. Many agents targeting various vital molecules and pathways, including those impacting metabolic perturbations, inflammatory cascades, and oxidative stress, are in clinical trials for the treatment of NASH. Some agents have shown promising results in phase II or III clinical trials, but more studies are required to assess their long-term effects. Herein, we review the potential strategies and challenges in therapeutic approaches to treating NASH.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"19 3","pages":"175-185"},"PeriodicalIF":0.0,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221619X15536120524171","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37290099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-04Epub Date: 2019-03-19DOI: 10.3727/105221619X15529371970455
Preeti Pathak, John Y L Chiang
Sterol 12α-hydroxylase (CYP8B1) is required for the synthesis of cholic acid in the classic bile acid synthesis pathway and plays a role in dyslipidemia and insulin resistance. However, the mechanism of the involvement of Cyp8b1 in dyslipidemia and insulin resistance is not known. CYP8B1 mRNA and protein expression are elevated in diabetic and obese (db/db) mouse liver. In this study adenovirus-mediated transduction of CYP8B1 was used to study the effect of Cyp8b1 on lipid metabolism in mice. Results show that Ad-Cyp8b1 increased 12α-hydroxylated bile acids and induced sterol regulatory element-binding protein 1c (Srebp-1c)-mediated lipogenic gene expression. Interestingly, Ad-Cyp8b1 increased ceramide synthesis and activated hepatic mechanistic target of rapamycin complex 1 (mTORC1)-p70S6K signaling cascade and inhibited AKT/insulin signaling in mice. Ad-Cyp8b1 increased free fatty acid uptake into mouse primary hepatocytes. Ceramides stimulated S6K phosphorylation in both mouse and human primary hepatocytes. In high-fat diet-fed mice, Ad-Cyp8b1 reduced fibroblast growth factor 21 (FGF21), activated intestinal farnesoid X receptor (FXR) target gene expression, increased serum ceramides, VLDL secretion, and LDL cholesterol. In high-fat diet-induced obese (DIO) mice, Cyp8b1 ablation by adenovirus-mediated shRNA improved oral glucose tolerance, increased FGF21, and reduced liver triglycerides, inflammatory cytokine expression, nuclear localization of Srebp-1c and phosphorylation of S6K. In conclusion, this study unveiled a novel mechanism linking CYP8B1 to ceramide synthesis and mTORC1 signaling in dyslipidemia and insulin resistance, via intestinal FXR-mediated induction of FGF15 and liver FGF21. Reducing cholic acid synthesis may be a potential therapeutic strategy to treat dyslipidemia and nonalcoholic fatty liver disease.
{"title":"Sterol 12α-Hydroxylase Aggravates Dyslipidemia by Activating the Ceramide/mTORC1/SREBP-1C Pathway via FGF21 and FGF15.","authors":"Preeti Pathak, John Y L Chiang","doi":"10.3727/105221619X15529371970455","DOIUrl":"https://doi.org/10.3727/105221619X15529371970455","url":null,"abstract":"<p><p>Sterol 12α-hydroxylase (CYP8B1) is required for the synthesis of cholic acid in the classic bile acid synthesis pathway and plays a role in dyslipidemia and insulin resistance. However, the mechanism of the involvement of Cyp8b1 in dyslipidemia and insulin resistance is not known. CYP8B1 mRNA and protein expression are elevated in diabetic and obese (<i>db/db</i>) mouse liver. In this study adenovirus-mediated transduction of CYP8B1 was used to study the effect of Cyp8b1 on lipid metabolism in mice. Results show that Ad-Cyp8b1 increased 12α-hydroxylated bile acids and induced sterol regulatory element-binding protein 1c (Srebp-1c)-mediated lipogenic gene expression. Interestingly, Ad-Cyp8b1 increased ceramide synthesis and activated hepatic mechanistic target of rapamycin complex 1 (mTORC1)-p70S6K signaling cascade and inhibited AKT/insulin signaling in mice. Ad-Cyp8b1 increased free fatty acid uptake into mouse primary hepatocytes. Ceramides stimulated S6K phosphorylation in both mouse and human primary hepatocytes. In high-fat diet-fed mice, Ad-Cyp8b1 reduced fibroblast growth factor 21 (FGF21), activated intestinal farnesoid X receptor (FXR) target gene expression, increased serum ceramides, VLDL secretion, and LDL cholesterol. In high-fat diet-induced obese (DIO) mice, Cyp8b1 ablation by adenovirus-mediated shRNA improved oral glucose tolerance, increased FGF21, and reduced liver triglycerides, inflammatory cytokine expression, nuclear localization of Srebp-1c and phosphorylation of S6K. In conclusion, this study unveiled a novel mechanism linking CYP8B1 to ceramide synthesis and mTORC1 signaling in dyslipidemia and insulin resistance, via intestinal FXR-mediated induction of FGF15 and liver FGF21. Reducing cholic acid synthesis may be a potential therapeutic strategy to treat dyslipidemia and nonalcoholic fatty liver disease.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"19 3","pages":"161-173"},"PeriodicalIF":0.0,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221619X15529371970455","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37071325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-04DOI: 10.3727/105221619X15638857793317
B. Ware, Grace E. Brown, V. Soldatow, E. LeCluyse, S. Khetani
Testing drugs in isogenic rodent strains to satisfy regulatory requirements is insufficient for derisking organ toxicity in genetically diverse human populations; in contrast, advances in mouse genetics can help mitigate these limitations. Compared to the expensive and slower in vivo testing, in vitro cultures enable the testing of large compound libraries towards prioritizing lead compounds and selecting an animal model with human-like response to a compound. In the case of the liver, a leading cause of drug attrition, isolated primary mouse hepatocytes (PMHs) rapidly decline in function within current culture platforms, which restricts their use for assessing the effects of longer-term compound exposure. Here, we addressed this challenge by fabricating mouse micropatterned co-cultures (mMPCC) containing PMHs and 3T3-J2 murine embryonic fibroblasts that displayed 4 weeks of functions; mMPCCs created from either C57Bl/6J or CD-1 PMHs outperformed collagen/MatrigelTM sandwich-cultured hepatocyte monocultures by ~143-fold, 413-fold, and 10-fold for albumin secretion, urea synthesis, and CYP activities, respectively. Such functional longevity of mMPCCs enabled in vivo-relevant comparisons across strains for CYP induction and hepatotoxicity following exposure to 14 compounds with subsequent comparison to responses in primary human hepatocytes (PHHs). In conclusion, mMPCCs display high levels of major liver functions for several weeks and can be used to assess strain- and species-specific compound effects when used in conjunction with responses in PHHs. Ultimately, mMPCCs can be used to leverage the power of mouse genetics for characterizing sub-populations sensitive to compounds, characterizing the degree of interindividual variability, and elucidating genetic determinants of severe hepatotoxicity in humans.
{"title":"Long-term Engineered Cultures of Primary Mouse Hepatocytes for Strain and Species Comparison Studies During Drug Development.","authors":"B. Ware, Grace E. Brown, V. Soldatow, E. LeCluyse, S. Khetani","doi":"10.3727/105221619X15638857793317","DOIUrl":"https://doi.org/10.3727/105221619X15638857793317","url":null,"abstract":"Testing drugs in isogenic rodent strains to satisfy regulatory requirements is insufficient for derisking organ toxicity in genetically diverse human populations; in contrast, advances in mouse genetics can help mitigate these limitations. Compared to the expensive and slower in vivo testing, in vitro cultures enable the testing of large compound libraries towards prioritizing lead compounds and selecting an animal model with human-like response to a compound. In the case of the liver, a leading cause of drug attrition, isolated primary mouse hepatocytes (PMHs) rapidly decline in function within current culture platforms, which restricts their use for assessing the effects of longer-term compound exposure. Here, we addressed this challenge by fabricating mouse micropatterned co-cultures (mMPCC) containing PMHs and 3T3-J2 murine embryonic fibroblasts that displayed 4 weeks of functions; mMPCCs created from either C57Bl/6J or CD-1 PMHs outperformed collagen/MatrigelTM sandwich-cultured hepatocyte monocultures by ~143-fold, 413-fold, and 10-fold for albumin secretion, urea synthesis, and CYP activities, respectively. Such functional longevity of mMPCCs enabled in vivo-relevant comparisons across strains for CYP induction and hepatotoxicity following exposure to 14 compounds with subsequent comparison to responses in primary human hepatocytes (PHHs). In conclusion, mMPCCs display high levels of major liver functions for several weeks and can be used to assess strain- and species-specific compound effects when used in conjunction with responses in PHHs. Ultimately, mMPCCs can be used to leverage the power of mouse genetics for characterizing sub-populations sensitive to compounds, characterizing the degree of interindividual variability, and elucidating genetic determinants of severe hepatotoxicity in humans.","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221619X15638857793317","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44385604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-04Epub Date: 2019-04-22DOI: 10.3727/105221619X15553433838609
Jia-Zhen Zhang, Jing-Jing Cai, Yao Yu, Zhi-Gang She, Hongliang Li
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease and a major cause of related complications such as cirrhosis and hepatocellular carcinoma (HCC). NAFLD progresses through the stages of simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and HCC. However, NAFLD usually cannot be diagnosed in a timely manner, which is largely attributed to the asymptomatic features of NAFLD patients and the lack of an effective and accurate noninvasive screening approach. Although liver biopsy has been recognized as a gold standard for diagnosing NAFLD, this approach is not suitable for screening and monitoring NAFLD because of its high cost and invasiveness. Several noninvasive screening and diagnostic systemic assessments have been developed in recent years for NAFLD evaluation. Here we summarize the current status and methods for NAFLD diagnosis, including both noninvasive (imaging, biomarkers) and invasive (liver biopsy) assessments. We further discuss the advantages and disadvantages of these developed diagnostic approaches for NAFLD.
{"title":"Nonalcoholic Fatty Liver Disease: An Update on the Diagnosis.","authors":"Jia-Zhen Zhang, Jing-Jing Cai, Yao Yu, Zhi-Gang She, Hongliang Li","doi":"10.3727/105221619X15553433838609","DOIUrl":"https://doi.org/10.3727/105221619X15553433838609","url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is a common liver disease and a major cause of related complications such as cirrhosis and hepatocellular carcinoma (HCC). NAFLD progresses through the stages of simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and HCC. However, NAFLD usually cannot be diagnosed in a timely manner, which is largely attributed to the asymptomatic features of NAFLD patients and the lack of an effective and accurate noninvasive screening approach. Although liver biopsy has been recognized as a gold standard for diagnosing NAFLD, this approach is not suitable for screening and monitoring NAFLD because of its high cost and invasiveness. Several noninvasive screening and diagnostic systemic assessments have been developed in recent years for NAFLD evaluation. Here we summarize the current status and methods for NAFLD diagnosis, including both noninvasive (imaging, biomarkers) and invasive (liver biopsy) assessments. We further discuss the advantages and disadvantages of these developed diagnostic approaches for NAFLD.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"19 3","pages":"187-198"},"PeriodicalIF":0.0,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221619X15553433838609","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37175747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-04Epub Date: 2019-01-28DOI: 10.3727/105221619X15486875608177
Hua Yang, Hong-Min Ni, Wen-Xing Ding
Studies using genetic mouse models that have defective autophagy have led to the conclusion that macroautophagy/autophagy serves as a tumor suppressor. One of such models is the liver-specific Atg5 or Atg7 knockout mice, and these knockout mice develop spontaneous liver tumors. It has been generally agreed that p62-mediated Nrf2 activation plays a critical role in promoting autophagy deficiency-induced liver injury and liver tumorigenesis. The mechanisms of how persistent Nrf2 activation induces liver injury and tumorigenesis are incompletely known. We discuss the recent progress on the new roles of HMGB1 and Yap in regulating liver injury and tumorigenesis in mice with liver-specific autophagy deficiency.
{"title":"Emerging Players in Autophagy Deficiency-Induced Liver Injury and Tumorigenesis.","authors":"Hua Yang, Hong-Min Ni, Wen-Xing Ding","doi":"10.3727/105221619X15486875608177","DOIUrl":"https://doi.org/10.3727/105221619X15486875608177","url":null,"abstract":"<p><p>Studies using genetic mouse models that have defective autophagy have led to the conclusion that macroautophagy/autophagy serves as a tumor suppressor. One of such models is the liver-specific Atg5 or Atg7 knockout mice, and these knockout mice develop spontaneous liver tumors. It has been generally agreed that p62-mediated Nrf2 activation plays a critical role in promoting autophagy deficiency-induced liver injury and liver tumorigenesis. The mechanisms of how persistent Nrf2 activation induces liver injury and tumorigenesis are incompletely known. We discuss the recent progress on the new roles of HMGB1 and Yap in regulating liver injury and tumorigenesis in mice with liver-specific autophagy deficiency.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"19 3","pages":"229-234"},"PeriodicalIF":0.0,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221619X15486875608177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36917715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-04Epub Date: 2019-06-28DOI: 10.3727/105221619X15614873062730
Benjamin L Woolbright, Hartmut Jaeschke
Cholestasis results in blockage of bile flow whether the point of obstruction occurs extrahepatically or intrahepatically. Bile acids are a primary constituent of bile, and thus one of the primary outcomes is acute retention of bile acids in hepatocytes. Bile acids are normally secreted into the biliary tracts and then released into the small bowel before recirculating back to the liver. Retention of bile acids has long been hypothesized to be a primary cause of the associated liver injury that occurs during acute or chronic cholestasis. Despite this, a surge of papers in the last decade have reported a primary role for inflammation in the pathophysiology of cholestatic liver injury. Furthermore, it has increasingly been recognized that both the constituency of individual bile acids that make up the greater pool, as well as their conjugation status, is intimately involved in their toxicity, and this varies between species. Finally, the role of bile acids in drug-induced cholestatic liver injury remains an area of increasing interest. The purpose of this review is to critically evaluate current proposed mechanisms of cholestatic liver injury, with a focus on the evolving role of bile acids in cell death and inflammation.
{"title":"Inflammation and Cell Death During Cholestasis: The Evolving Role of Bile Acids.","authors":"Benjamin L Woolbright, Hartmut Jaeschke","doi":"10.3727/105221619X15614873062730","DOIUrl":"https://doi.org/10.3727/105221619X15614873062730","url":null,"abstract":"<p><p>Cholestasis results in blockage of bile flow whether the point of obstruction occurs extrahepatically or intrahepatically. Bile acids are a primary constituent of bile, and thus one of the primary outcomes is acute retention of bile acids in hepatocytes. Bile acids are normally secreted into the biliary tracts and then released into the small bowel before recirculating back to the liver. Retention of bile acids has long been hypothesized to be a primary cause of the associated liver injury that occurs during acute or chronic cholestasis. Despite this, a surge of papers in the last decade have reported a primary role for inflammation in the pathophysiology of cholestatic liver injury. Furthermore, it has increasingly been recognized that both the constituency of individual bile acids that make up the greater pool, as well as their conjugation status, is intimately involved in their toxicity, and this varies between species. Finally, the role of bile acids in drug-induced cholestatic liver injury remains an area of increasing interest. The purpose of this review is to critically evaluate current proposed mechanisms of cholestatic liver injury, with a focus on the evolving role of bile acids in cell death and inflammation.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":"19 3","pages":"215-228"},"PeriodicalIF":0.0,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3727/105221619X15614873062730","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37380704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}