Pub Date : 2024-09-01DOI: 10.1016/j.ygeno.2024.110931
Weijia Wen , Li Yuan , Xueyuan Zhao , Yan Jia , Linna Chen , Hongye Jiang , Wei Wang , Chunyu Zhang , Shuzhong Yao
The clinical benefit of anti-programmed cell death protein 1 (PD-1)-based immunotherapy among patients with microsatellite instable (MSI) endometrial cancer (EC) precedes that of microsatellite stable (MSS) EC, the mechanisms of which have not been fully understood. Circular RNAs (circRNAs) were reported to modulate immune evasion in several types of malignancies, while their roles in the immune regulation in EC remain largely unknown. Here, we conducted circRNA array analysis and mRNA-Sequencing of 10 MSI EC samples and 10 MSS EC samples and identified 1083 differentially expressed circRNAs (DE-circRNAs) and 864 differentially expressed mRNAs, based on which we constructed a circRNA-miRNA-mRNA comprehensive network consisting of 35 DE-circRNAs, 56 predicted miRNAs and 24 differentially expressed mRNAs. Finally, we confirmed hsa_circ_0058230 being positively correlated with CD8+ T cells infiltration, suggesting that it might take a part in anti-tumor immunity in EC.
在微卫星不稳定(MSI)子宫内膜癌(EC)患者中,基于抗程序性细胞死亡蛋白1(PD-1)的免疫疗法的临床获益先于微卫星稳定(MSS)EC,其机制尚未完全明了。据报道,环状核糖核酸(circRNAs)可调节多种恶性肿瘤的免疫逃避,但它们在子宫内膜癌免疫调节中的作用在很大程度上仍不为人所知。在此,我们对10个MSI EC样本和10个MSS EC样本进行了circRNA阵列分析和mRNA测序,发现了1083个差异表达的circRNAs(DE-circRNAs)和864个差异表达的mRNAs,并在此基础上构建了一个由35个DE-circRNAs、56个预测的miRNAs和24个差异表达的mRNAs组成的circRNA-miRNA-mRNA综合网络。最后,我们证实了 hsa_circ_0058230 与 CD8+ T 细胞浸润呈正相关,这表明它可能参与了 EC 的抗肿瘤免疫。
{"title":"Differentially expressed circular RNA profiles and comprehensive analysis of circRNA-miRNA-mRNA regulatory network in microsatellite instability-high endometrial cancer","authors":"Weijia Wen , Li Yuan , Xueyuan Zhao , Yan Jia , Linna Chen , Hongye Jiang , Wei Wang , Chunyu Zhang , Shuzhong Yao","doi":"10.1016/j.ygeno.2024.110931","DOIUrl":"10.1016/j.ygeno.2024.110931","url":null,"abstract":"<div><p>The clinical benefit of anti-programmed cell death protein 1 (PD-1)-based immunotherapy among patients with microsatellite instable (MSI) endometrial cancer (EC) precedes that of microsatellite stable (MSS) EC, the mechanisms of which have not been fully understood. Circular RNAs (circRNAs) were reported to modulate immune evasion in several types of malignancies, while their roles in the immune regulation in EC remain largely unknown. Here, we conducted circRNA array analysis and mRNA-Sequencing of 10 MSI EC samples and 10 MSS EC samples and identified 1083 differentially expressed circRNAs (DE-circRNAs) and 864 differentially expressed mRNAs, based on which we constructed a circRNA-miRNA-mRNA comprehensive network consisting of 35 DE-circRNAs, 56 predicted miRNAs and 24 differentially expressed mRNAs. Finally, we confirmed hsa_circ_0058230 being positively correlated with CD8+ T cells infiltration, suggesting that it might take a part in anti-tumor immunity in EC.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110931"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001526/pdfft?md5=eada44f563206f78943efdc7bd21929b&pid=1-s2.0-S0888754324001526-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.ygeno.2024.110942
Xiangzhan Kong , Xianhua Zhuo , Xi Huang , Lihuan Shang , Tianjun Lan , Hongquan Qin , Xiaochun Chen , Cui Lv , Qiuping Xu , Ping-Pui Wong
The influence of the stroma on cancer progression has been underestimated, particularly the role of vascular pericytes in the tumor microenvironment. Herein, we identified 51 differentially expressed genes in tumor-derived pericytes (TPCs) by analyzing transcriptomic data from TCGA alongside our proteomic data. Using five key TPC-related genes, we constructed a prognostic risk model that accurately predicts prognosis and treatment responses in liver and lung cancers. Enrichment analyses linked these genes to blood vessel remodeling, function, and immune-related pathways. Single-cell RNA sequencing data from the GEO database validated these findings, showing significant upregulation of AKAP12 and RRAS in TPCs. Immunostaining confirmed increased expression of these genes in liver and lung tumors. Depletion of RRAS or AKAP12 in TPCs restored their blood vessel-supporting role. Overall, our findings suggest that TPC-related gene profiles can predict patient outcomes and therapeutic responses in solid cancers, and targeting these profiles could be an improved treatment strategy.
{"title":"Multi-omics analysis reveals a pericyte-associated gene expression signature for predicting prognosis and therapeutic responses in solid cancers","authors":"Xiangzhan Kong , Xianhua Zhuo , Xi Huang , Lihuan Shang , Tianjun Lan , Hongquan Qin , Xiaochun Chen , Cui Lv , Qiuping Xu , Ping-Pui Wong","doi":"10.1016/j.ygeno.2024.110942","DOIUrl":"10.1016/j.ygeno.2024.110942","url":null,"abstract":"<div><div>The influence of the stroma on cancer progression has been underestimated, particularly the role of vascular pericytes in the tumor microenvironment. Herein, we identified 51 differentially expressed genes in tumor-derived pericytes (TPCs) by analyzing transcriptomic data from TCGA alongside our proteomic data. Using five key TPC-related genes, we constructed a prognostic risk model that accurately predicts prognosis and treatment responses in liver and lung cancers. Enrichment analyses linked these genes to blood vessel remodeling, function, and immune-related pathways. Single-cell RNA sequencing data from the GEO database validated these findings, showing significant upregulation of AKAP12 and RRAS in TPCs. Immunostaining confirmed increased expression of these genes in liver and lung tumors. Depletion of RRAS or AKAP12 in TPCs restored their blood vessel-supporting role. Overall, our findings suggest that TPC-related gene profiles can predict patient outcomes and therapeutic responses in solid cancers, and targeting these profiles could be an improved treatment strategy.</div></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110942"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.ygeno.2024.110946
Xin Li , Yang Zou , Baobao Geng , Peipei Liu , Liyun Cao , Zhiqin Zhang , Shaofeng Hu , Changhua Wang , Yan Zhao , Qiongfang Wu , Jun Tan
Patients with preimplantation embryo arrest (PREMBA) often experience assisted reproductive failure primarily due to the lack of transferable embryos, and the molecular mechanisms underlying PREMBA remain unclear. In our study, the embryos from five women with recurrent preimplantation embryo arrest and three women with tubal factor infertility were used for single-embryo transcriptome sequencing. Meanwhile, the transcriptomes of normal human preimplantation embryos obtained from GSE36552 were utilized to perform a comparative analysis with the transcriptomes of PREMBA embryos. Our results showed dysregulation of the cell cycle phase transition might be a potential pathogenic factor contributing to PREMBA. Through integrated analysis of the differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA), we identified a number of hub genes using the protein-protein interaction network. The top 5 hub genes were as follows: CCNB2, BUB1B, CDC25A, CCNB3, and PLK3. The expression of hub genes was validated in PREMBA embryos and donated embryos using RT-qPCR. The knockdown of Ccnb2 in mouse zygotes led to an increase in embryo fragmentation, a rise in apoptosis, and a reduction in blastocyst formation. Furthermore, silencing the expression of CDC25A in HEK293T cells resulted in a decrease in cell proliferation and an increase in apoptosis, providing further support for our findings. Our findings could predict the development outcomes of preimplantation embryos and be used as potential therapeutic targets to prevent recurrent failures of IVF/ICSI attempts.
{"title":"Transcriptome analysis reveals that defects in cell cycle regulation contribute to preimplantation embryo arrest","authors":"Xin Li , Yang Zou , Baobao Geng , Peipei Liu , Liyun Cao , Zhiqin Zhang , Shaofeng Hu , Changhua Wang , Yan Zhao , Qiongfang Wu , Jun Tan","doi":"10.1016/j.ygeno.2024.110946","DOIUrl":"10.1016/j.ygeno.2024.110946","url":null,"abstract":"<div><div>Patients with preimplantation embryo arrest (PREMBA) often experience assisted reproductive failure primarily due to the lack of transferable embryos, and the molecular mechanisms underlying PREMBA remain unclear. In our study, the embryos from five women with recurrent preimplantation embryo arrest and three women with tubal factor infertility were used for single-embryo transcriptome sequencing. Meanwhile, the transcriptomes of normal human preimplantation embryos obtained from GSE36552 were utilized to perform a comparative analysis with the transcriptomes of PREMBA embryos. Our results showed dysregulation of the cell cycle phase transition might be a potential pathogenic factor contributing to PREMBA. Through integrated analysis of the differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA), we identified a number of hub genes using the protein-protein interaction network. The top 5 hub genes were as follows: <em>CCNB2</em>, <em>BUB1B</em>, <em>CDC25A</em>, <em>CCNB3</em>, and <em>PLK3</em>. The expression of hub genes was validated in PREMBA embryos and donated embryos using RT-qPCR. The knockdown of <em>Ccnb2</em> in mouse zygotes led to an increase in embryo fragmentation, a rise in apoptosis, and a reduction in blastocyst formation. Furthermore, silencing the expression of <em>CDC25A</em> in HEK293T cells resulted in a decrease in cell proliferation and an increase in apoptosis, providing further support for our findings. Our findings could predict the development outcomes of preimplantation embryos and be used as potential therapeutic targets to prevent recurrent failures of IVF/ICSI attempts.</div></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110946"},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.ygeno.2024.110925
Yan Zhao , Jiankang Wang , Qing Xiao , Guihua Liu , Yongjie Li , Xingping Zha , Zhangjiang He , Jichuan Kang
Fungal-plant interactions have persisted for 460 million years, and almost all terrestrial plants on Earth have endophytic fungi. However, the mechanism of symbiosis between endophytic fungi and host plants has been inconclusive. In this dissertation, we used a strain of endophytic Fusarium lateritium (Fl617), which was found in the previous stage to promote disease resistance in tomato, and selected the pathogenic Fusarium oxysporum Fo4287 and endophytic Fusarium oxysporum Fo47, which are in the same host and the closest relatives of Fl617, to carry out a comparative genomics analysis of the three systems and to provide a new perspective for the elucidation of the special lifestyle of the fungal endophytes. We found that endophytic F. lateritium has a smaller genome, fewer clusters and genes associated with pathogenicity, and fewer plant cell wall degrading enzymes (PCWDEs). There were also relatively fewer secondary metabolisms and typical Fusarium spp. toxins, and a lack of the key Fusarium spp. pathogenicity factor, secreted in xylem (SIX), but the endophytic fungi may be more sophisticated in their regulation of the colonization process. It is hypothesized that the endophytic fungi may have maintained their symbiosis with plants due to the relatively homogeneous microenvironment in plants for a long period of time, considering only plant interactions and discarding the relevant pathogenicity factors, and that their endophytic evolutionary tendency may tend to be genome streamlining and to enhance the fineness of the regulation of plant interactions, thus maintaining their symbiotic status with plants.
{"title":"New insights into decoding the lifestyle of endophytic Fusarium lateritium Fl617 via comparing genomes","authors":"Yan Zhao , Jiankang Wang , Qing Xiao , Guihua Liu , Yongjie Li , Xingping Zha , Zhangjiang He , Jichuan Kang","doi":"10.1016/j.ygeno.2024.110925","DOIUrl":"10.1016/j.ygeno.2024.110925","url":null,"abstract":"<div><p>Fungal-plant interactions have persisted for 460 million years, and almost all terrestrial plants on Earth have endophytic fungi. However, the mechanism of symbiosis between endophytic fungi and host plants has been inconclusive. In this dissertation, we used a strain of endophytic <em>Fusarium lateritium</em> (Fl617), which was found in the previous stage to promote disease resistance in tomato, and selected the pathogenic <em>Fusarium oxysporum</em> Fo4287 and endophytic <em>Fusarium oxysporum</em> Fo47, which are in the same host and the closest relatives of Fl617, to carry out a comparative genomics analysis of the three systems and to provide a new perspective for the elucidation of the special lifestyle of the fungal endophytes. We found that endophytic <em>F. lateritium</em> has a smaller genome, fewer clusters and genes associated with pathogenicity, and fewer plant cell wall degrading enzymes (PCWDEs). There were also relatively fewer secondary metabolisms and typical <em>Fusarium</em> spp. toxins, and a lack of the key <em>Fusarium</em> spp. pathogenicity factor, secreted in xylem (SIX), but the endophytic fungi may be more sophisticated in their regulation of the colonization process. It is hypothesized that the endophytic fungi may have maintained their symbiosis with plants due to the relatively homogeneous microenvironment in plants for a long period of time, considering only plant interactions and discarding the relevant pathogenicity factors, and that their endophytic evolutionary tendency may tend to be genome streamlining and to enhance the fineness of the regulation of plant interactions, thus maintaining their symbiotic status with plants.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110925"},"PeriodicalIF":3.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001460/pdfft?md5=b7dcd1db6399cc48cbbaf1f9c1c69986&pid=1-s2.0-S0888754324001460-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of wool has a complex regulatory mechanism both influenced by genetic and environmental factors. MicroRNAs (miRNA) were involved in various biological processes of animals, and may play an important role in the regulation of wool development. In this study, we comprehensively analyzed and identified the histological parameters of hair follicles, as well as the miRNAs, target genes, pathways, and Gene Ontology terms related to wool fineness regulation and wool growth and development using HE staining and RNA-Seqs methods. Both coarse (group C, mean fiber diameter (MFD) = 22.26 ± 0.69 μm, n = 6) and fine (group F, MFD = 16.91 ± 0.29 μm, n = 6) of Gansu alpine fine-wool sheep with different wool fineness were used in this study. The results showed that the primary follicle diameter and secondary wool fiber diameter in group C were significantly higher than those in group F (P < 0.05). And the number of primary and secondary hair follicles in group C was significantly lower than that in group F (P < 0.05). Furthermore, a total of 67 DE miRNAs and 290 potential DE miRNAs target genes were screened in the skin tissues of sheep from groups F and C, and some potential target genes related to wool fineness regulation were screened, such as CDH2, KRT82, FOXN1, LOC101106296, KRT20, MCOLN3, KRT71, and TERT. These genes were closely related to Glutathione metabolism, epidermal cell differentiation, keratinization, and regulation of hair cycle. Moreover, the regulatory network of miRNAs-mRNAs suggested that miRNAs (miR-129-x, novel m0079-3p, miR-2484-z, novel m0025-5P, etc.) may play a key role in the wool development and wool fineness regulation of Gansu alpine fine-wool sheep. In summary, this study expands the existing miRNAs database and provides new information for studying the regulation of wool development in Gansu alpine fine wool sheep.
{"title":"MicroRNA expression profiles reveal wool development and fineness regulation in Gansu alpine fine-wool sheep","authors":"Zhaohua He, Hongxian Sun, Fangfang Zhao, Longxia Ma, Jiqing Wang, Xiu Liu, Mingna Li, Zhiyun Hao, Shaobin Li","doi":"10.1016/j.ygeno.2024.110922","DOIUrl":"10.1016/j.ygeno.2024.110922","url":null,"abstract":"<div><p>The development of wool has a complex regulatory mechanism both influenced by genetic and environmental factors. MicroRNAs (miRNA) were involved in various biological processes of animals, and may play an important role in the regulation of wool development. In this study, we comprehensively analyzed and identified the histological parameters of hair follicles, as well as the miRNAs, target genes, pathways, and Gene Ontology terms related to wool fineness regulation and wool growth and development using HE staining and RNA-Seqs methods. Both coarse (group C, mean fiber diameter (MFD) = 22.26 ± 0.69 μm, <em>n</em> = 6) and fine (group F, MFD = 16.91 ± 0.29 μm, n = 6) of Gansu alpine fine-wool sheep with different wool fineness were used in this study. The results showed that the primary follicle diameter and secondary wool fiber diameter in group C were significantly higher than those in group F (<em>P</em> < 0.05). And the number of primary and secondary hair follicles in group C was significantly lower than that in group F (<em>P</em> < 0.05). Furthermore, a total of 67 DE miRNAs and 290 potential DE miRNAs target genes were screened in the skin tissues of sheep from groups F and C, and some potential target genes related to wool fineness regulation were screened, such as <em>CDH2</em>, <em>KRT82</em>, <em>FOXN1</em>, <em>LOC101106296</em>, <em>KRT20</em>, <em>MCOLN3</em>, <em>KRT71</em>, and <em>TERT</em>. These genes were closely related to Glutathione metabolism, epidermal cell differentiation, keratinization, and regulation of hair cycle. Moreover, the regulatory network of miRNAs-mRNAs suggested that miRNAs (miR-129-x, novel m0079-3p, miR-2484-z, novel m0025-5P, etc.) may play a key role in the wool development and wool fineness regulation of Gansu alpine fine-wool sheep. In summary, this study expands the existing miRNAs database and provides new information for studying the regulation of wool development in Gansu alpine fine wool sheep.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110922"},"PeriodicalIF":3.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001435/pdfft?md5=d52c6cc00e316e7e84cd854f3ce2867a&pid=1-s2.0-S0888754324001435-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.ygeno.2024.110926
Huifang Song , Mingyang Wang , Jie Shen , Xi Wang , Cheng Qin , Peipei Wei , Yaojun Niu , Jiahong Ren , Xiaoxue Pan , Ake Liu
During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.
{"title":"Physiological and transcriptomic profiles reveal key regulatory pathways involved in cold resistance in sunflower seedlings","authors":"Huifang Song , Mingyang Wang , Jie Shen , Xi Wang , Cheng Qin , Peipei Wei , Yaojun Niu , Jiahong Ren , Xiaoxue Pan , Ake Liu","doi":"10.1016/j.ygeno.2024.110926","DOIUrl":"10.1016/j.ygeno.2024.110926","url":null,"abstract":"<div><p>During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of <em>MYB44a</em>, <em>MYB44b</em>, <em>MYB12</em>, <em>bZIP2</em> and <em>bZIP4</em> continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110926"},"PeriodicalIF":3.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001472/pdfft?md5=fd87e3f397e18adf773f34575064b96b&pid=1-s2.0-S0888754324001472-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.ygeno.2024.110921
Lingying Kong , Chao Yuan , Tingting Guo , Lixia Sun , Jianbin Liu , Zengkui Lu
Skeletal muscle quality and yield are important production traits in livestock, and improving skeletal muscle quality while increasing its yield is an important goal of economic breeding. The proliferation and differentiation process of sheep myoblasts directly affects the growth and development of their muscles, thereby affecting the yield of mutton. Myomesin 3 (Myom3), as a functional gene related to muscle growth, currently lacks research on its function in myoblasts. This study aims to investigate the effect of the Myom3 gene on the proliferation and differentiation of sheep myoblasts and its potential molecular mechanisms. The results showed that inhibitor of Myom3 in the proliferation phase of myoblasts resulted in significant downregulation of the proliferation marker gene paired box 7 (Pax7) and myogenic regulatory factors (MRFs; Myf5, Myod1, Myog, P < 0.01), a significant decrease in the EdU-positive cell rate (P < 0.05), and a significant increase in the cell apoptosis rate (P < 0.01), which inhibited the proliferation of myoblasts and promoted their apoptosis. During the differentiation phase of myoblasts, the inhibitor of Myom3 resulted in significant downregulation of the Pax7 gene, upregulation of MRFs (Myod1, Myog, P < 0.05), and a significant increase in fusion index (P < 0.05), promoting the differentiation of myoblasts. Further transcriptome sequencing revealed that differentially expressed genes in the Myom3 interference group were mainly enriched in the MAPK signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. In summary, the inhibitor of Myom3 inhibits myoblast proliferation and promotes myoblast differentiation. Therefore, Myom3 has a potential regulatory effect on the growth and development of sheep muscles, and in-depth functional research can be used for molecular breeding practices in sheep.
{"title":"Inhibitor of Myom3 inhibits proliferation and promotes differentiation of sheep myoblasts","authors":"Lingying Kong , Chao Yuan , Tingting Guo , Lixia Sun , Jianbin Liu , Zengkui Lu","doi":"10.1016/j.ygeno.2024.110921","DOIUrl":"10.1016/j.ygeno.2024.110921","url":null,"abstract":"<div><p>Skeletal muscle quality and yield are important production traits in livestock, and improving skeletal muscle quality while increasing its yield is an important goal of economic breeding. The proliferation and differentiation process of sheep myoblasts directly affects the growth and development of their muscles, thereby affecting the yield of mutton. Myomesin 3 (<em>Myom3</em>), as a functional gene related to muscle growth, currently lacks research on its function in myoblasts. This study aims to investigate the effect of the <em>Myom3</em> gene on the proliferation and differentiation of sheep myoblasts and its potential molecular mechanisms. The results showed that inhibitor of <em>Myom3</em> in the proliferation phase of myoblasts resulted in significant downregulation of the proliferation marker gene paired box 7 (<em>Pax7)</em> and myogenic regulatory factors (<em>MRFs</em>; <em>Myf5</em>, <em>Myod1</em>, <em>Myog</em>, <em>P</em> < 0.01), a significant decrease in the EdU-positive cell rate (<em>P</em> < 0.05), and a significant increase in the cell apoptosis rate (<em>P</em> < 0.01), which inhibited the proliferation of myoblasts and promoted their apoptosis. During the differentiation phase of myoblasts, the inhibitor of <em>Myom3</em> resulted in significant downregulation of the <em>Pax7</em> gene, upregulation of <em>MRFs</em> (<em>Myod1</em>, <em>Myog</em>, <em>P</em> < 0.05), and a significant increase in fusion index (<em>P</em> < 0.05), promoting the differentiation of myoblasts. Further transcriptome sequencing revealed that differentially expressed genes in the <em>Myom3</em> interference group were mainly enriched in the MAPK signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. In summary, the inhibitor of <em>Myom3</em> inhibits myoblast proliferation and promotes myoblast differentiation. Therefore, <em>Myom3</em> has a potential regulatory effect on the growth and development of sheep muscles, and in-depth functional research can be used for molecular breeding practices in sheep.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110921"},"PeriodicalIF":3.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001423/pdfft?md5=a14a915a5259ef50bb5e524868d3e749&pid=1-s2.0-S0888754324001423-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.ygeno.2024.110924
Ti-Qiang Chen , Xiao-Lan Xu , Chi Yang , Lin Yang , Zheng-He Ying , Xiao-Kun Shi , Meng-Guang Ding
The first dikaryotic genome of Ganoderma cultivar Zizhi S2 (56.76 Mb, 16,681 genes) has been sequenced recently. 98.15% of complete BUSCOs were recovered in this genome assembly and high-confidence annotation rate improved to 91.41%. Collinearity analysis displayed the nuclear genome were 80.2% and 93.84% similar to reference genome of G. sinense at nucleotide and amino acid levels, which presented 8,521 core genes and 880 unique orthologous gene groups. Among that, at least six functional genes (tef1-α, β-tubulin, rpb2, CaM, Mn-SOD and VeA) and a newly discovered fip gene were highly similar 99.27% ∼100% to those in reference genome. And the mt-LSU, mt-SSU and 13 PCGs in their mitogenome were also highly conserved with 99.27%–99.87% and 99.08%–100% identity, respectively. So that, this cultivar Zizhi S2 is confirmed conspecific with Ganoderma sinense (NCBI: txid1077348). The new fip gene (MN635280.1_336bp) existing a novel mutation which can be reflected on the phylogenetic tree and 3-dimensional model topology structure.
{"title":"Comparative genomics reveals ample evidence to Ganoderma sinense cultivars for molecular identification and new FIP exploration","authors":"Ti-Qiang Chen , Xiao-Lan Xu , Chi Yang , Lin Yang , Zheng-He Ying , Xiao-Kun Shi , Meng-Guang Ding","doi":"10.1016/j.ygeno.2024.110924","DOIUrl":"10.1016/j.ygeno.2024.110924","url":null,"abstract":"<div><p>The first dikaryotic genome of <em>Ganoderma</em> cultivar Zizhi S2 (56.76 Mb, 16,681 genes) has been sequenced recently. 98.15% of complete BUSCOs were recovered in this genome assembly and high-confidence annotation rate improved to 91.41%. Collinearity analysis displayed the nuclear genome were 80.2% and 93.84% similar to reference genome of <em>G. sinense</em> at nucleotide and amino acid levels, which presented 8,521 core genes and 880 unique orthologous gene groups. Among that, at least six functional genes (tef1-α, β-tubulin, rpb2, CaM, Mn-SOD and VeA) and a newly discovered <em>fip</em> gene were highly similar 99.27% ∼100% to those in reference genome. And the mt-LSU, mt-SSU and 13 PCGs in their mitogenome were also highly conserved with 99.27%–99.87% and 99.08%–100% identity, respectively. So that, this cultivar Zizhi S2 is confirmed conspecific with <em>Ganoderma sinense</em> (NCBI: txid1077348). The new <em>fip</em> gene (MN635280.1_336bp) existing a novel mutation which can be reflected on the phylogenetic tree and 3-dimensional model topology structure.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110924"},"PeriodicalIF":3.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001459/pdfft?md5=7c44cefc6e4e824d8aaca73a7fbf9b3d&pid=1-s2.0-S0888754324001459-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.ygeno.2024.110913
Peng Wang , Miao Ma , Haichun Chen , Haiyan Sun , Di Wu , Qiao He , Danlong Jing , Qigao Guo , Jiangbo Dang , Guolu Liang
Aneuploidy generally has severe phenotypic consequences. However, the molecular basis for this has been focused on single chromosomal dosage changes. It is not clear how the karyotype of complex aneuploidies affects gene expression. Here, we identified six different double-trisomy loquat strains from Q24 progenies of triploid loquat. The differences and similarities of the transcriptional responses of different double trisomy loquat strains were studied systematically via RNA-seq. The global modulation of gene expression indicated that both cis and trans-effects coordinately regulated gene expression in aneuploid loquat to some extent, and this coordinated regulation was determined by different gene functional groups. Aneuploidy can induce specific transcriptional responses on loquat chromosomes. The differentially expressed genes exhibited regional gene expression dysregulation domains along chromosomes. Furthermore, Aneuploidy could also promote the expression of genes with moderate and high in loquats. Our results provide new insights into the genome-wide transcriptional effects of karyotypes with complex aneuploidies.
{"title":"Global analysis of gene expression in response to double trisomy loquat (Eriobotrya japonica)","authors":"Peng Wang , Miao Ma , Haichun Chen , Haiyan Sun , Di Wu , Qiao He , Danlong Jing , Qigao Guo , Jiangbo Dang , Guolu Liang","doi":"10.1016/j.ygeno.2024.110913","DOIUrl":"10.1016/j.ygeno.2024.110913","url":null,"abstract":"<div><p>Aneuploidy generally has severe phenotypic consequences. However, the molecular basis for this has been focused on single chromosomal dosage changes. It is not clear how the karyotype of complex aneuploidies affects gene expression. Here, we identified six different double-trisomy loquat strains from Q24 progenies of triploid loquat. The differences and similarities of the transcriptional responses of different double trisomy loquat strains were studied systematically via RNA-seq. The global modulation of gene expression indicated that both cis and trans-effects coordinately regulated gene expression in aneuploid loquat to some extent, and this coordinated regulation was determined by different gene functional groups. Aneuploidy can induce specific transcriptional responses on loquat chromosomes. The differentially expressed genes exhibited regional gene expression dysregulation domains along chromosomes. Furthermore, Aneuploidy could also promote the expression of genes with moderate and high in loquats. Our results provide new insights into the genome-wide transcriptional effects of karyotypes with complex aneuploidies.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110913"},"PeriodicalIF":3.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001344/pdfft?md5=96cd8ebf46daab6eac738de4659d7127&pid=1-s2.0-S0888754324001344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.ygeno.2024.110920
Yangguang Liu , Fan Xie , Huibin Zhang , Haibo Ye , Haoyu Wen , Mengyao Qiu , Yueyun Ding , Xianrui Zheng , Zongjun Yin , Xiaodong Zhang
Background
Follicles are fundamental units of the ovary, regulated intricately during development. Exosomes and ovarian granulosa cells (OGCs) play pivotal roles in follicular development, yet the regulatory mechanisms governing exosomes remain elusive.
Results
High-throughput sequencing was employed to evaluate the complete transcript expression profiles of six samples (three porcine ovarian granulosa cells-exosome co-culture samples (GCE) and three porcine ovarian granulosa cells (POGCs) samples). Differential expression analysis revealed 924 lncRNAs, 35 circRNAs, 49 miRNAs, and 9823 mRNAs in the GCE group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated enrichment of differentially expressed transcripts in pathways related to cell proliferation and apoptosis. Furthermore, a ceRNA regulatory network comprising 43 lncRNAs, 6 circRNAs, 11 miRNAs, and 126 mRNAs was constructed based on intergene co-expression correlations. Seven miRNAs associated with cell proliferation and apoptosis regulation were identified within this network, encompassing 92 subnet pairs as candidate genes for further exploration of exosome regulatory mechanisms. Additionally, preliminary verification at the cellular level demonstrated that exosomal miR-200b enhances the viability of POGCs.
Conclusions
Transcriptome analysis unveiled a pivotal candidate ceRNA network potentially implicated in exosome-mediated regulation of granulosa cell proliferation and apoptosis, thereby influencing porcine follicular development. These findings offer insights into the molecular mechanisms of follicular fluid exosome regulation, encompassing both coding and non-coding RNA perspectives.
{"title":"Preliminary construction of non-coding RNAs and ceRNA regulatory networks mediated by exosomes in porcine follicular fluid","authors":"Yangguang Liu , Fan Xie , Huibin Zhang , Haibo Ye , Haoyu Wen , Mengyao Qiu , Yueyun Ding , Xianrui Zheng , Zongjun Yin , Xiaodong Zhang","doi":"10.1016/j.ygeno.2024.110920","DOIUrl":"10.1016/j.ygeno.2024.110920","url":null,"abstract":"<div><h3>Background</h3><p>Follicles are fundamental units of the ovary, regulated intricately during development. Exosomes and ovarian granulosa cells (OGCs) play pivotal roles in follicular development, yet the regulatory mechanisms governing exosomes remain elusive.</p></div><div><h3>Results</h3><p>High-throughput sequencing was employed to evaluate the complete transcript expression profiles of six samples (three porcine ovarian granulosa cells-exosome co-culture samples (GCE) and three porcine ovarian granulosa cells (POGCs) samples). Differential expression analysis revealed 924 lncRNAs, 35 circRNAs, 49 miRNAs, and 9823 mRNAs in the GCE group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated enrichment of differentially expressed transcripts in pathways related to cell proliferation and apoptosis. Furthermore, a ceRNA regulatory network comprising 43 lncRNAs, 6 circRNAs, 11 miRNAs, and 126 mRNAs was constructed based on intergene co-expression correlations. Seven miRNAs associated with cell proliferation and apoptosis regulation were identified within this network, encompassing 92 subnet pairs as candidate genes for further exploration of exosome regulatory mechanisms. Additionally, preliminary verification at the cellular level demonstrated that exosomal miR-200b enhances the viability of POGCs.</p></div><div><h3>Conclusions</h3><p>Transcriptome analysis unveiled a pivotal candidate ceRNA network potentially implicated in exosome-mediated regulation of granulosa cell proliferation and apoptosis, thereby influencing porcine follicular development. These findings offer insights into the molecular mechanisms of follicular fluid exosome regulation, encompassing both coding and non-coding RNA perspectives.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 5","pages":"Article 110920"},"PeriodicalIF":3.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001411/pdfft?md5=29d06600427a7c2aae64234a3b062d59&pid=1-s2.0-S0888754324001411-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}