首页 > 最新文献

Frontiers in Human Neuroscience最新文献

英文 中文
The population based cognitive testing in subjects with SARS-CoV-2 (POPCOV2) study: longitudinal investigation of remote cognitive and fatigue screening in PCR-positive cases and negative controls. 基于人群的 SARS-CoV-2 患者认知测试 (POPCOV2) 研究:对 PCR 阳性病例和阴性对照组进行远程认知和疲劳筛查的纵向调查。
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1468204
Alina von Etzdorf, Maja Harzen, Hannah Heinrichs, Henning Seifert, Stefan J Groiß, Carolin Balloff, Torsten Feldt, Björn-Erik Ole Jensen, Tom Lüdde, Michael Bernhard, Alfons Schnitzler, Klaus Goebels, Jörg Kraus, Sven G Meuth, Saskia Elben, Philipp Albrecht

Background: The majority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) only show mild respiratory symptoms. However, some patients with SARS-CoV-2 display neurological symptoms. Data on the exact prevalence and course of cognitive symptoms are often limited to patient reported outcomes or studies recruited at specialized centers.

Methods: For this prospective, non-interventional population based POPCOV2 study, 156 subjects who performed SARS-CoV-2 testing in the Düsseldorf metropolitan area at public test centers between December 2020 and February 2022 were recruited by handouts. SARS-CoV-2-positive and negatively tested subjects were included within the first seven days after the PCR test results. Cognitive testing was performed at baseline during home quarantine and after 4-6 as well as 12-14 weeks of follow-up. Individuals were examined remotely by videocalls using the Symbol Digit Modalities Test (SDMT) and the Montreal Cognitive Assessment (MoCA) in addition to the Brief Fatigue Inventory (BFI) and the Beck Depression Inventory-Fast Screen (BDI-FS).

Results: At baseline, the SARS-CoV-2-positive group presented with higher levels of fatigue in the BFI. In both the SARS-CoV-2-positive and SARS-CoV-2-negative groups, some subjects presented attention and memory deficits, defined as a z-score < -1,65 on the SDMT or < 26 points on the MoCA (SDMT: 22.9% in the positive and 8.8% in the negative group, p = 0.024; MoCA: 35.6% in the positive and 27.3% in the negative group, p = 0.313). MoCA and SDMT improved over time in both groups. For MoCA scores, a significant difference between the two groups was only seen at the first follow-up. SDMT z-scores did not differ at any time between the groups.

Conclusion: These results support previous evidence that mild SARS-CoV-2 infections are associated with increased fatigue. However, we found relevant rates of cognitive impairment not only in the infected but also in the control group. This underlines the importance of including a control group in such investigations.

背景:大多数严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)感染者仅表现出轻微的呼吸道症状。然而,一些 SARS-CoV-2 患者会出现神经系统症状。有关认知症状的确切发病率和病程的数据通常仅限于患者报告的结果或在专业中心进行的研究:在这项基于人群的前瞻性、非干预性 POPCOV2 研究中,通过发放问卷的方式招募了 2020 年 12 月至 2022 年 2 月期间在杜塞尔多夫大都会区公共检测中心进行 SARS-CoV-2 检测的 156 名受试者。SARS-CoV-2阳性和阴性受试者在PCR检测结果出来后的头七天内被纳入其中。在家庭隔离期间的基线、4-6 周和 12-14 周的随访后进行认知测试。除了简易疲劳量表(BFI)和贝克抑郁量表-快速筛查(BDI-FS)外,还使用符号数字模型测试(SDMT)和蒙特利尔认知评估(MoCA)通过视频电话对受试者进行了远程检查:基线时,SARS-CoV-2 阳性组在 BFI 中的疲劳程度较高。在SARS-CoV-2阳性组和SARS-CoV-2阴性组中,一些受试者出现了注意力和记忆力缺陷(定义为z-score p = 0.024;MoCA:阳性组为35.6%,阴性组为27.3%,p = 0.313)。随着时间的推移,两组患者的 MoCA 和 SDMT 均有所改善。就 MoCA 分数而言,两组之间仅在首次随访时存在显著差异。SDMT的z-scores在任何时候在两组之间都没有差异:这些结果支持之前的证据,即轻度 SARS-CoV-2 感染与疲劳增加有关。然而,我们发现不仅在感染组中,在对照组中也存在认知障碍。这强调了在此类调查中加入对照组的重要性。
{"title":"The population based cognitive testing in subjects with SARS-CoV-2 (POPCOV2) study: longitudinal investigation of remote cognitive and fatigue screening in PCR-positive cases and negative controls.","authors":"Alina von Etzdorf, Maja Harzen, Hannah Heinrichs, Henning Seifert, Stefan J Groiß, Carolin Balloff, Torsten Feldt, Björn-Erik Ole Jensen, Tom Lüdde, Michael Bernhard, Alfons Schnitzler, Klaus Goebels, Jörg Kraus, Sven G Meuth, Saskia Elben, Philipp Albrecht","doi":"10.3389/fnhum.2024.1468204","DOIUrl":"10.3389/fnhum.2024.1468204","url":null,"abstract":"<p><strong>Background: </strong>The majority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) only show mild respiratory symptoms. However, some patients with SARS-CoV-2 display neurological symptoms. Data on the exact prevalence and course of cognitive symptoms are often limited to patient reported outcomes or studies recruited at specialized centers.</p><p><strong>Methods: </strong>For this prospective, non-interventional population based POPCOV2 study, 156 subjects who performed SARS-CoV-2 testing in the Düsseldorf metropolitan area at public test centers between December 2020 and February 2022 were recruited by handouts. SARS-CoV-2-positive and negatively tested subjects were included within the first seven days after the PCR test results. Cognitive testing was performed at baseline during home quarantine and after 4-6 as well as 12-14 weeks of follow-up. Individuals were examined remotely by videocalls using the Symbol Digit Modalities Test (SDMT) and the Montreal Cognitive Assessment (MoCA) in addition to the Brief Fatigue Inventory (BFI) and the Beck Depression Inventory-Fast Screen (BDI-FS).</p><p><strong>Results: </strong>At baseline, the SARS-CoV-2-positive group presented with higher levels of fatigue in the BFI. In both the SARS-CoV-2-positive and SARS-CoV-2-negative groups, some subjects presented attention and memory deficits, defined as a z-score < -1,65 on the SDMT or < 26 points on the MoCA (SDMT: 22.9% in the positive and 8.8% in the negative group, <i>p</i> = 0.024; MoCA: 35.6% in the positive and 27.3% in the negative group, <i>p</i> = 0.313). MoCA and SDMT improved over time in both groups. For MoCA scores, a significant difference between the two groups was only seen at the first follow-up. SDMT z-scores did not differ at any time between the groups.</p><p><strong>Conclusion: </strong>These results support previous evidence that mild SARS-CoV-2 infections are associated with increased fatigue. However, we found relevant rates of cognitive impairment not only in the infected but also in the control group. This underlines the importance of including a control group in such investigations.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1468204"},"PeriodicalIF":2.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vitamin D and focal brain atrophy in PD with non-dementia: a VBM study.
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1474148
Yingying Xu, Erlei Wang, Qilin Zhang, Jing Liu, Weifeng Luo

Background: The status of vitamin D has been proposed to have an impact on cognition. Gray matter volume (GMV) is a potential marker of cognitive function. We investigated whether lower serum 25-hydroxyvitamin D level was associated with reduced cerebral GMV in Parkinson's disease with non-dementia (PDND) patients.

Methods: Baseline neuropsychiatric performance and serum 25-hydroxyvitamin D levels were examined in 24 PDND patients and 24 healthy controls (HCs). A set of cognitive scales were used to evaluate the cognition. Voxel-based morphometry (VBM) was performed to calculate each PDND patient's GMV, based on structural magnetic resonance imaging data. Associations between serum 25-hydroxyvitamin D levels, cognition, and GMV were evaluated.

Results: The serum 25-hydroxyvitamin D levels of the PDND group were significantly lower than those of the HC group. The simple linear regression analyses between serum 25-hydroxyvitamin D levels and the scores of subtests that analyzed cognitive function showed that serum 25-hydroxyvitamin D levels were negatively correlated with Trail Making Test-A scores and positively correlated with Symbol Digit Modalities Test and Auditory Verbal Learning Test scores. Multiple regression analyses revealed a positive correlation between the right fusiform gyrus GMV and serum 25-hydroxyvitamin D levels.

Conclusion: We hypothesized that the lower serum 25-hydroxyvitamin D level in patients with PDND might affect auditory word learning and spatial cognition ability by reducing the gray matter volume of the right fusiform gyrus, thereby leading to deterioration of semantic understanding and memory function.

背景:维生素 D 的状况被认为会对认知能力产生影响。灰质体积(GMV)是认知功能的潜在标志。我们研究了血清25-羟基维生素D水平较低是否与帕金森病伴非痴呆症(PDND)患者脑灰质体积减少有关:方法:对24名帕金森病伴非痴呆症(PDND)患者和24名健康对照者(HCs)的基线神经精神表现和血清25-羟维生素D水平进行了研究。一套认知量表用于评估认知能力。根据结构性磁共振成像数据,采用体素形态计量法(VBM)计算每位PDND患者的GMV。评估了血清25-羟维生素D水平、认知能力和GMV之间的关联:结果:PDND 组的血清 25- 羟维生素 D 水平明显低于 HC 组。血清 25- 羟维生素 D 水平与分析认知功能的子测验分数之间的简单线性回归分析表明,血清 25- 羟维生素 D 水平与路径制作测验-A 分数呈负相关,与符号数字模型测验和听觉言语学习测验分数呈正相关。多元回归分析表明,右侧纺锤形回 GMV 与血清 25- 羟维生素 D 水平呈正相关:我们推测,PDND 患者血清 25- 羟维生素 D 水平较低,可能会通过降低右侧纺锤形回灰质体积影响听觉文字学习和空间认知能力,从而导致语义理解和记忆功能退化。
{"title":"Vitamin D and focal brain atrophy in PD with non-dementia: a VBM study.","authors":"Yingying Xu, Erlei Wang, Qilin Zhang, Jing Liu, Weifeng Luo","doi":"10.3389/fnhum.2024.1474148","DOIUrl":"10.3389/fnhum.2024.1474148","url":null,"abstract":"<p><strong>Background: </strong>The status of vitamin D has been proposed to have an impact on cognition. Gray matter volume (GMV) is a potential marker of cognitive function. We investigated whether lower serum 25-hydroxyvitamin D level was associated with reduced cerebral GMV in Parkinson's disease with non-dementia (PDND) patients.</p><p><strong>Methods: </strong>Baseline neuropsychiatric performance and serum 25-hydroxyvitamin D levels were examined in 24 PDND patients and 24 healthy controls (HCs). A set of cognitive scales were used to evaluate the cognition. Voxel-based morphometry (VBM) was performed to calculate each PDND patient's GMV, based on structural magnetic resonance imaging data. Associations between serum 25-hydroxyvitamin D levels, cognition, and GMV were evaluated.</p><p><strong>Results: </strong>The serum 25-hydroxyvitamin D levels of the PDND group were significantly lower than those of the HC group. The simple linear regression analyses between serum 25-hydroxyvitamin D levels and the scores of subtests that analyzed cognitive function showed that serum 25-hydroxyvitamin D levels were negatively correlated with Trail Making Test-A scores and positively correlated with Symbol Digit Modalities Test and Auditory Verbal Learning Test scores. Multiple regression analyses revealed a positive correlation between the right fusiform gyrus GMV and serum 25-hydroxyvitamin D levels.</p><p><strong>Conclusion: </strong>We hypothesized that the lower serum 25-hydroxyvitamin D level in patients with PDND might affect auditory word learning and spatial cognition ability by reducing the gray matter volume of the right fusiform gyrus, thereby leading to deterioration of semantic understanding and memory function.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1474148"},"PeriodicalIF":2.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638236/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The origins of light-independent magnetoreception in humans. 人类与光无关的磁感应的起源。
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1482872
Takashi Shibata, Noriaki Hattori, Hisao Nishijo, Satoshi Kuroda, Kaoru Takakusaki

The Earth's abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field-even in deep-sea environments-through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth's formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection.

地球上丰富的铁元素在产生地磁场和促进早期生命发展方面都发挥了至关重要的作用。在远古海洋中,铁离子,尤其是深海热液喷口周围的铁离子,可能催化了大分子的形成,导致了生命和最后一个宇宙共同祖先的出现。铁继续影响催化、新陈代谢和分子进化,导致趋磁细菌中磁小体基因簇的产生,使这些单细胞生物能够探测地磁场。虽然人类缺乏明确的地磁感应器官,但许多生命形式已经通过传统五感以外的机制适应了地磁场--甚至在深海环境中。研究表明,斑马鱼的后脑对磁场很敏感,鸽子的半圆管通过电磁感应对微弱的电位变化做出反应,人类的脑电波在黑暗中也对磁场做出反应。这表明,整合多模态磁信息的三叉脑干核和前庭核可能在地磁处理中发挥作用。从铁基代谢系统到神经元的磁感应,生命的进化反映了对地磁场的不断适应。然而,由于细胞膜内磁铁矿激活的、基于转矩的离子通道尚未被发现,像半规管这样的专门感官结构可能仍然是探测地磁方位所必需的。这篇微型综述探讨了从地球形成到不依赖光的人类磁感应的生命进化,研究了作为人类地磁探测潜在机制的磁铁矿假说和电磁感应假说。
{"title":"The origins of light-independent magnetoreception in humans.","authors":"Takashi Shibata, Noriaki Hattori, Hisao Nishijo, Satoshi Kuroda, Kaoru Takakusaki","doi":"10.3389/fnhum.2024.1482872","DOIUrl":"10.3389/fnhum.2024.1482872","url":null,"abstract":"<p><p>The Earth's abundance of iron has played a crucial role in both generating its geomagnetic field and contributing to the development of early life. In ancient oceans, iron ions, particularly around deep-sea hydrothermal vents, might have catalyzed the formation of macromolecules, leading to the emergence of life and the Last Universal Common Ancestor. Iron continued to influence catalysis, metabolism, and molecular evolution, resulting in the creation of magnetosome gene clusters in magnetotactic bacteria, which enabled these unicellular organisms to detect geomagnetic field. Although humans lack a clearly identified organ for geomagnetic sensing, many life forms have adapted to geomagnetic field-even in deep-sea environments-through mechanisms beyond the conventional five senses. Research indicates that zebrafish hindbrains are sensitive to magnetic fields, the semicircular canals of pigeons respond to weak potential changes through electromagnetic induction, and human brainwaves respond to magnetic fields in darkness. This suggests that the trigeminal brainstem nucleus and vestibular nuclei, which integrate multimodal magnetic information, might play a role in geomagnetic processing. From iron-based metabolic systems to magnetic sensing in neurons, the evolution of life reflects ongoing adaptation to geomagnetic field. However, since magnetite-activated, torque-based ion channels within cell membranes have not yet been identified, specialized sensory structures like the semicircular canals might still be necessary for detecting geomagnetic orientation. This mini-review explores the evolution of life from Earth's formation to light-independent human magnetoreception, examining both the magnetite hypothesis and the electromagnetic induction hypothesis as potential mechanisms for human geomagnetic detection.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1482872"},"PeriodicalIF":2.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in non-invasive brain stimulation: enhancing sports performance function and insights into exercise science.
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1477111
Shuo Qi, Jinglun Yu, Li Li, Chen Dong, Zhe Ji, Lei Cao, Zhen Wei, Zhiqiang Liang

The cerebral cortex, as the pinnacle of human complexity, poses formidable challenges to contemporary neuroscience. Recent advancements in non-invasive brain stimulation have been pivotal in enhancing human locomotor functions, a burgeoning area of interest in exercise science. Techniques such as transcranial direct current stimulation, transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial magnetic stimulation are widely recognized for their neuromodulator capabilities. Despite their broad applications, these methods are not without limitations, notably in spatial and temporal resolution and their inability to target deep brain structures effectively. The advent of innovative non-invasive brain stimulation modalities, including transcranial focused ultrasound stimulation and temporal interference stimulation technology, heralds a new era in neuromodulation. These approaches offer superior spatial and temporal precision, promising to elevate athletic performance, accelerate sport science research, and enhance recovery from sports-related injuries and neurological conditions. This comprehensive review delves into the principles, applications, and future prospects of non-invasive brain stimulation in the realm of exercise science. By elucidating the mechanisms of action and potential benefits, this study aims to arm researchers with the tools necessary to modulate targeted brain regions, thereby deepening our understanding of the intricate interplay between brain function and human behavior.

大脑皮层作为人类复杂性的顶峰,给当代神经科学带来了严峻的挑战。非侵入性脑部刺激技术的最新进展在增强人体运动功能方面发挥了关键作用,而这正是运动科学中一个蓬勃发展的领域。经颅直流电刺激、经颅交流电刺激、经颅随机噪声刺激和经颅磁刺激等技术因其神经调节功能而得到广泛认可。尽管应用广泛,但这些方法并非没有局限性,尤其是在空间和时间分辨率方面,以及无法有效针对大脑深层结构方面。包括经颅聚焦超声刺激和颞叶干扰刺激技术在内的创新性非侵入性脑刺激模式的出现,预示着神经调控技术进入了一个新时代。这些方法具有卓越的空间和时间精确性,有望提高运动成绩,加速体育科学研究,促进运动相关损伤和神经系统疾病的恢复。本综述深入探讨了非侵入性脑部刺激在运动科学领域的原理、应用和未来前景。通过阐明作用机制和潜在益处,本研究旨在为研究人员提供调节目标脑区所需的工具,从而加深我们对大脑功能与人类行为之间错综复杂的相互作用的理解。
{"title":"Advances in non-invasive brain stimulation: enhancing sports performance function and insights into exercise science.","authors":"Shuo Qi, Jinglun Yu, Li Li, Chen Dong, Zhe Ji, Lei Cao, Zhen Wei, Zhiqiang Liang","doi":"10.3389/fnhum.2024.1477111","DOIUrl":"10.3389/fnhum.2024.1477111","url":null,"abstract":"<p><p>The cerebral cortex, as the pinnacle of human complexity, poses formidable challenges to contemporary neuroscience. Recent advancements in non-invasive brain stimulation have been pivotal in enhancing human locomotor functions, a burgeoning area of interest in exercise science. Techniques such as transcranial direct current stimulation, transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial magnetic stimulation are widely recognized for their neuromodulator capabilities. Despite their broad applications, these methods are not without limitations, notably in spatial and temporal resolution and their inability to target deep brain structures effectively. The advent of innovative non-invasive brain stimulation modalities, including transcranial focused ultrasound stimulation and temporal interference stimulation technology, heralds a new era in neuromodulation. These approaches offer superior spatial and temporal precision, promising to elevate athletic performance, accelerate sport science research, and enhance recovery from sports-related injuries and neurological conditions. This comprehensive review delves into the principles, applications, and future prospects of non-invasive brain stimulation in the realm of exercise science. By elucidating the mechanisms of action and potential benefits, this study aims to arm researchers with the tools necessary to modulate targeted brain regions, thereby deepening our understanding of the intricate interplay between brain function and human behavior.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1477111"},"PeriodicalIF":2.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olfactory neurofeedback: current state and possibilities for further development.
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1419552
Ivan Ninenko, Alexandra Medvedeva, Victoria L Efimova, Daria F Kleeva, Marina Morozova, Mikhail A Lebedev

This perspective considers the novel concept of olfactory neurofeedback (O-NFB) within the framework of brain-computer interfaces (BCIs), where olfactory stimuli are integrated in various BCI control loops. In particular, electroencephalography (EEG)-based O-NFB systems are capable of incorporating different components of complex olfactory processing - from simple discrimination tasks to using olfactory stimuli for rehabilitation of neurological disorders. In our own work, EEG theta and alpha rhythms were probed as control variables for O-NFB. Additionaly, we developed an olfactory-based instructed-delay task. We suggest that the unique functions of olfaction offer numerous medical and consumer applications where O-NFB is combined with sensory inputs of other modalities within a BCI framework to engage brain plasticity. We discuss the ways O-NFB could be implemented, including the integration of different types of olfactory displays in the experiment set-up and EEG features to be utilized. We emphasize the importance of synchronizing O-NFB with respiratory rhythms, which are known to influence EEG patterns and cognitive processing. Overall, we expect that O-NFB systems will contribute to both practical applications in the clinical world and the basic neuroscience of olfaction.

本视角在脑机接口(BCI)的框架内考虑了嗅觉神经反馈(O-NFB)的新概念,将嗅觉刺激集成到各种 BCI 控制环路中。特别是,基于脑电图(EEG)的 O-NFB 系统能够整合复杂嗅觉处理的不同组成部分,从简单的辨别任务到将嗅觉刺激用于神经系统疾病的康复。在我们自己的工作中,脑电图的θ和α节律被探测为 O-NFB 的控制变量。此外,我们还开发了一种基于嗅觉的指令延迟任务。我们认为,嗅觉的独特功能提供了大量医疗和消费应用,在 BCI 框架内将 O-NFB 与其他模式的感官输入相结合,可以促进大脑的可塑性。我们讨论了实现 O-NFB 的方法,包括在实验设置中整合不同类型的嗅觉显示和要利用的脑电图特征。我们强调 O-NFB 与呼吸节奏同步的重要性,众所周知,呼吸节奏会影响脑电图模式和认知处理。总之,我们希望 O-NFB 系统能为临床实际应用和嗅觉基础神经科学做出贡献。
{"title":"Olfactory neurofeedback: current state and possibilities for further development.","authors":"Ivan Ninenko, Alexandra Medvedeva, Victoria L Efimova, Daria F Kleeva, Marina Morozova, Mikhail A Lebedev","doi":"10.3389/fnhum.2024.1419552","DOIUrl":"10.3389/fnhum.2024.1419552","url":null,"abstract":"<p><p>This perspective considers the novel concept of olfactory neurofeedback (O-NFB) within the framework of brain-computer interfaces (BCIs), where olfactory stimuli are integrated in various BCI control loops. In particular, electroencephalography (EEG)-based O-NFB systems are capable of incorporating different components of complex olfactory processing - from simple discrimination tasks to using olfactory stimuli for rehabilitation of neurological disorders. In our own work, EEG theta and alpha rhythms were probed as control variables for O-NFB. Additionaly, we developed an olfactory-based instructed-delay task. We suggest that the unique functions of olfaction offer numerous medical and consumer applications where O-NFB is combined with sensory inputs of other modalities within a BCI framework to engage brain plasticity. We discuss the ways O-NFB could be implemented, including the integration of different types of olfactory displays in the experiment set-up and EEG features to be utilized. We emphasize the importance of synchronizing O-NFB with respiratory rhythms, which are known to influence EEG patterns and cognitive processing. Overall, we expect that O-NFB systems will contribute to both practical applications in the clinical world and the basic neuroscience of olfaction.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1419552"},"PeriodicalIF":2.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain structure and function differences across varying levels of endurance training: a cross-sectional study.
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1503094
Keying Zhang, Chunmei Cao, Yaxue Wang, Dong Zhang

Background: Although previous studies have shown that athletes engaged in endurance sports exhibit unique characteristics of brain plasticity, there has been no systematic investigation into the structural and functional brain characteristics of endurance athletes with varying training levels.

Methods: Utilizing the "expert-novice paradigm" design, we employed functional magnetic resonance imaging (fMRI) to obtain images of brain structure and functional activity. We compared differences in gray matter volume (GMV), fractional amplitude of low-frequency fluctuations (fALFF), and degree centrality (DC) among high-level endurance athletes, moderate-level endurance athletes, and non-athlete controls.

Results: (1) High-level endurance athletes exhibited significantly greater GMV in the left parahippocampal gyrus, bilateral thalamus, right temporal lobe, and bilateral cerebellum compared to both moderate-level endurance athletes and controls. The GMV in these regions showed an increasing trend with more years of endurance training and higher endurance capacity. Additionally, these athletes had significantly higher fALFF in the left superior medial frontal gyrus and right precuneus, as well as higher DC in the right lateral occipital lobe compared to moderate-level endurance athletes. They also had significantly higher DC in the right precuneus and cerebellum compared to the control group. (2) Moderate-level endurance athletes demonstrated significantly greater GMV in the right prefrontal cortex, bilateral medial frontal lobe, right temporal pole, right striatum, and bilateral insula compared to high-level endurance athletes. They also had significantly higher fALFF in the left posterior cingulate gyrus compared to high-level endurance athletes. (3) Control group showed significantly greater GMV in the right amygdala, higher fALFF in the left medial frontal lobe, and greater DC in the left lateral occipital lobe compared to moderate-level endurance athletes.

Conclusion: Adaptive benefits exhibit different characteristics across different endurance levels. High-level endurance athletes exhibit pronounced enhancements in gray matter volume and functional activity in regions associated with memory, motor control, and sensory processing. While moderate-level athletes demonstrate distinct functional reorganization in the default mode network and cerebellum.

{"title":"Brain structure and function differences across varying levels of endurance training: a cross-sectional study.","authors":"Keying Zhang, Chunmei Cao, Yaxue Wang, Dong Zhang","doi":"10.3389/fnhum.2024.1503094","DOIUrl":"10.3389/fnhum.2024.1503094","url":null,"abstract":"<p><strong>Background: </strong>Although previous studies have shown that athletes engaged in endurance sports exhibit unique characteristics of brain plasticity, there has been no systematic investigation into the structural and functional brain characteristics of endurance athletes with varying training levels.</p><p><strong>Methods: </strong>Utilizing the \"expert-novice paradigm\" design, we employed functional magnetic resonance imaging (fMRI) to obtain images of brain structure and functional activity. We compared differences in gray matter volume (GMV), fractional amplitude of low-frequency fluctuations (fALFF), and degree centrality (DC) among high-level endurance athletes, moderate-level endurance athletes, and non-athlete controls.</p><p><strong>Results: </strong>(1) High-level endurance athletes exhibited significantly greater GMV in the left parahippocampal gyrus, bilateral thalamus, right temporal lobe, and bilateral cerebellum compared to both moderate-level endurance athletes and controls. The GMV in these regions showed an increasing trend with more years of endurance training and higher endurance capacity. Additionally, these athletes had significantly higher fALFF in the left superior medial frontal gyrus and right precuneus, as well as higher DC in the right lateral occipital lobe compared to moderate-level endurance athletes. They also had significantly higher DC in the right precuneus and cerebellum compared to the control group. (2) Moderate-level endurance athletes demonstrated significantly greater GMV in the right prefrontal cortex, bilateral medial frontal lobe, right temporal pole, right striatum, and bilateral insula compared to high-level endurance athletes. They also had significantly higher fALFF in the left posterior cingulate gyrus compared to high-level endurance athletes. (3) Control group showed significantly greater GMV in the right amygdala, higher fALFF in the left medial frontal lobe, and greater DC in the left lateral occipital lobe compared to moderate-level endurance athletes.</p><p><strong>Conclusion: </strong>Adaptive benefits exhibit different characteristics across different endurance levels. High-level endurance athletes exhibit pronounced enhancements in gray matter volume and functional activity in regions associated with memory, motor control, and sensory processing. While moderate-level athletes demonstrate distinct functional reorganization in the default mode network and cerebellum.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1503094"},"PeriodicalIF":2.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The safety and efficacy of applying a high-current temporal interference electrical stimulation in humans.
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1484593
Yan Wang, Ginger Qinghong Zeng, Mengmeng Wang, Mingsong Zhang, Chuangchuang Chang, Qiongwei Liu, Keqing Wang, Ru Ma, Ying Wang, Xiaochu Zhang

Background: Temporal interference electrical stimulation (TI) is promise in targeting deep brain regions focally. However, limited electric field intensity challenges its efficacy.

Objective: This study aimed to introduce a high-current TI electrical stimulation protocol to enhance its intensity and evaluate its safety and efficacy when applied to the primary motor cortex (M1) in the human brain.

Methods: Safety assessments included a battery of biochemical and neuropsychological tests (NSE, MoCA, PPT, VAMS-R, and SAS measurements), 5-min resting-state electroencephalography (EEG) recordings before and after 30-min high-current TI electrical stimulation sessions (20 Hz, 70 Hz, sham). Adverse reactions were also documented post-stimulation. Efficacy evaluations involved two motor tasks, the simple reaction time (SRT) task and the one-increment task, to investigate the distinct contributions of beta (20 Hz) and gamma (70 Hz) oscillations to motor functions.

Results: Biochemical and neuropsychological tests revealed no significant differences between the groups. Additionally, no epileptic activities were detected in the EEG recordings. In the one-increment task, 20 Hz stimulation delayed participants' reaction time compared to the 70 Hz and sham groups. Conversely, in the SRT task, 70 Hz stimulation exhibited a tendency to enhance participants' performance relative to the sham group.

Conclusion: The proposed high-current TI electrical stimulation is both safe and effective for stimulating the human brain. Moreover, the distinct effects observed in motor tasks underscore the dissociative roles of beta and gamma oscillations in motor functions, offering valuable insights into the potential applications of high-current TI electrical stimulation in brain stimulation research.

{"title":"The safety and efficacy of applying a high-current temporal interference electrical stimulation in humans.","authors":"Yan Wang, Ginger Qinghong Zeng, Mengmeng Wang, Mingsong Zhang, Chuangchuang Chang, Qiongwei Liu, Keqing Wang, Ru Ma, Ying Wang, Xiaochu Zhang","doi":"10.3389/fnhum.2024.1484593","DOIUrl":"10.3389/fnhum.2024.1484593","url":null,"abstract":"<p><strong>Background: </strong>Temporal interference electrical stimulation (TI) is promise in targeting deep brain regions focally. However, limited electric field intensity challenges its efficacy.</p><p><strong>Objective: </strong>This study aimed to introduce a high-current TI electrical stimulation protocol to enhance its intensity and evaluate its safety and efficacy when applied to the primary motor cortex (M1) in the human brain.</p><p><strong>Methods: </strong>Safety assessments included a battery of biochemical and neuropsychological tests (NSE, MoCA, PPT, VAMS-R, and SAS measurements), 5-min resting-state electroencephalography (EEG) recordings before and after 30-min high-current TI electrical stimulation sessions (20 Hz, 70 Hz, sham). Adverse reactions were also documented post-stimulation. Efficacy evaluations involved two motor tasks, the simple reaction time (SRT) task and the one-increment task, to investigate the distinct contributions of beta (20 Hz) and gamma (70 Hz) oscillations to motor functions.</p><p><strong>Results: </strong>Biochemical and neuropsychological tests revealed no significant differences between the groups. Additionally, no epileptic activities were detected in the EEG recordings. In the one-increment task, 20 Hz stimulation delayed participants' reaction time compared to the 70 Hz and sham groups. Conversely, in the SRT task, 70 Hz stimulation exhibited a tendency to enhance participants' performance relative to the sham group.</p><p><strong>Conclusion: </strong>The proposed high-current TI electrical stimulation is both safe and effective for stimulating the human brain. Moreover, the distinct effects observed in motor tasks underscore the dissociative roles of beta and gamma oscillations in motor functions, offering valuable insights into the potential applications of high-current TI electrical stimulation in brain stimulation research.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1484593"},"PeriodicalIF":2.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mirrors and toothaches: commonplace manipulations of non-auditory feedback availability change perceived speech intelligibility.
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1462922
Elizabeth D Casserly, Francesca R Marino

This paper investigates the impact of two non-technical speech feedback perturbations outside the auditory modality: topical application of commercially-available benzocaine to reduce somatosensory feedback from speakers' lips and tongue tip, and the presence of a mirror to provide fully-detailed visual self-feedback. In experiment 1, speakers were recorded under normal quiet conditions (i.e., baseline), then again with benzocaine application plus auditory degradation, and finally with the addition of mirror feedback. Speech produced under normal and both feedback-altered conditions was assessed via naïve listeners' intelligibility discrimination judgments. Listeners judged speech produced under bisensory degradation to be less intelligible than speech from the un-degraded baseline, and with a greater degree of difference than previously observed with auditory-only degradation. The introduction of mirror feedback, however, did not result in relative improvements in intelligibility. Experiment 2, therefore, assessed the effect of a mirror on speech intelligibility in isolation with no other sensory feedback manipulations. Speech was recorded at baseline and then again in front of a mirror, and relative intelligibility was discriminated by naïve listeners. Speech produced with mirror feedback was judged as less intelligible than baseline tokens, indicating a negative impact of visual self-feedback in the absence of other sensory manipulations. The results of both experiments demonstrate that relatively accessible manipulations of non-auditory sensory feedback can produce speech-relevant effects, and that those effects are perceptible to naïve listeners.

{"title":"Mirrors and toothaches: commonplace manipulations of non-auditory feedback availability change perceived speech intelligibility.","authors":"Elizabeth D Casserly, Francesca R Marino","doi":"10.3389/fnhum.2024.1462922","DOIUrl":"10.3389/fnhum.2024.1462922","url":null,"abstract":"<p><p>This paper investigates the impact of two non-technical speech feedback perturbations outside the auditory modality: topical application of commercially-available benzocaine to reduce somatosensory feedback from speakers' lips and tongue tip, and the presence of a mirror to provide fully-detailed visual self-feedback. In experiment 1, speakers were recorded under normal quiet conditions (i.e., baseline), then again with benzocaine application plus auditory degradation, and finally with the addition of mirror feedback. Speech produced under normal and both feedback-altered conditions was assessed via naïve listeners' intelligibility discrimination judgments. Listeners judged speech produced under bisensory degradation to be less intelligible than speech from the un-degraded baseline, and with a greater degree of difference than previously observed with auditory-only degradation. The introduction of mirror feedback, however, did not result in relative improvements in intelligibility. Experiment 2, therefore, assessed the effect of a mirror on speech intelligibility in isolation with no other sensory feedback manipulations. Speech was recorded at baseline and then again in front of a mirror, and relative intelligibility was discriminated by naïve listeners. Speech produced with mirror feedback was judged as less intelligible than baseline tokens, indicating a negative impact of visual self-feedback in the absence of other sensory manipulations. The results of both experiments demonstrate that relatively accessible manipulations of non-auditory sensory feedback can produce speech-relevant effects, and that those effects are perceptible to naïve listeners.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1462922"},"PeriodicalIF":2.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
25-year neuroimaging research on spoken language processing: a bibliometric analysis.
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1461505
Yuxuan Zheng, Boning Zhang

Introduction: Spoken language processing is of huge interest to cognitive and neural scientists, as it is the dominant channel for everyday verbal communication. The aim of this study is to depict the dynamics of publications in the field of neuroimaging research on spoken language processing between 2000 and 2024.

Methods: A bibliometric analysis was conducted to probe this particular subject matter based on data retrieved from Web of Science. A total of 8,085 articles were found, which were analyzed together with their authors, journals of publication, citations and countries of origin.

Results: Results showed a steady increase of publication volume and a relatively high academic visibility of this research field indexed by total citations in the first 25 years of the 21st century. Maps of frequent keywords, institutional collaboration network show that cooperations mainly happen between institutions in the United States, the United Kingdom and Germany. Future trends based on burst detection predict that classification, Alzheimer's disease and oscillations are potential hot topics.

Discussion: Possible reasons for the result include the aging of the population in developed countries, and the rapid growth of artificial intelligence in the past decade. Finally, specific research avenues were proposed which might benefit future studies.

简介由于口语是日常语言交流的主要渠道,因此认知和神经科学家对口语处理非常感兴趣。本研究旨在描绘 2000 年至 2024 年期间神经影像学研究领域有关口语处理的出版物动态:方法:我们根据从科学网(Web of Science)检索到的数据进行了文献计量分析,以探究这一特定主题。共找到 8085 篇文章,并对这些文章的作者、发表期刊、引用次数和来源国进行了分析:结果表明,在 21 世纪的前 25 年中,该研究领域的发表量稳步增长,学术知名度相对较高,以总引用次数为索引。频繁出现的关键词地图和机构合作网络显示,合作主要发生在美国、英国和德国的机构之间。基于突发检测的未来趋势预测,分类、阿尔茨海默病和振荡是潜在的热门话题:造成这一结果的可能原因包括发达国家的人口老龄化以及人工智能在过去十年的快速发展。最后,还提出了可能有利于未来研究的具体研究途径。
{"title":"25-year neuroimaging research on spoken language processing: a bibliometric analysis.","authors":"Yuxuan Zheng, Boning Zhang","doi":"10.3389/fnhum.2024.1461505","DOIUrl":"10.3389/fnhum.2024.1461505","url":null,"abstract":"<p><strong>Introduction: </strong>Spoken language processing is of huge interest to cognitive and neural scientists, as it is the dominant channel for everyday verbal communication. The aim of this study is to depict the dynamics of publications in the field of neuroimaging research on spoken language processing between 2000 and 2024.</p><p><strong>Methods: </strong>A bibliometric analysis was conducted to probe this particular subject matter based on data retrieved from Web of Science. A total of 8,085 articles were found, which were analyzed together with their authors, journals of publication, citations and countries of origin.</p><p><strong>Results: </strong>Results showed a steady increase of publication volume and a relatively high academic visibility of this research field indexed by total citations in the first 25 years of the 21st century. Maps of frequent keywords, institutional collaboration network show that cooperations mainly happen between institutions in the United States, the United Kingdom and Germany. Future trends based on burst detection predict that classification, Alzheimer's disease and oscillations are potential hot topics.</p><p><strong>Discussion: </strong>Possible reasons for the result include the aging of the population in developed countries, and the rapid growth of artificial intelligence in the past decade. Finally, specific research avenues were proposed which might benefit future studies.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1461505"},"PeriodicalIF":2.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrahigh-resolution 7-Tesla anatomic magnetic resonance imaging and diffusion tensor imaging of ex vivo formalin-fixed human brainstem-cerebellum complex.
IF 2.4 3区 医学 Q3 NEUROSCIENCES Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI: 10.3389/fnhum.2024.1484431
Sahin Hanalioglu, Siyar Bahadir, Ahmet C Ozak, Kivanc Yangi, Giancarlo Mignucci-Jiménez, Muhammet Enes Gurses, Alberto Fuentes, Ethan Mathew, Dakota T Graham, Muhammed Yakup Altug, Egemen Gok, Gregory H Turner, Michael T Lawton, Mark C Preul

Introduction: Brain cross-sectional images, tractography, and segmentation are valuable resources for neuroanatomical education and research but are also crucial for neurosurgical planning that may improve outcomes in cerebellar and brainstem interventions. Although ultrahigh-resolution 7-Tesla (7T) magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) reveal such structural brain details in living or fresh unpreserved brain tissue, imaging standard formalin-preserved cadaveric brain specimens often used for neurosurgical anatomic studies has proven difficult. This study sought to develop a practical protocol to provide anatomic information and tractography results of an ex vivo human brainstem-cerebellum specimen.

Materials and methods: A protocol was developed for specimen preparation and 7T MRI with image postprocessing on a combined brainstem-cerebellum specimen obtained from an 85-year-old male cadaver with a postmortem interval of 1 week that was stored in formalin for 6 months. Anatomic image series were acquired for detailed views and diffusion tractography to map neural pathways and segment major anatomic structures within the brainstem and cerebellum.

Results: Complex white matter tracts were visualized with high-precision segmentation of crucial brainstem structures, delineating the brainstem-cerebellum and mesencephalic-dentate connectivity, including the Guillain-Mollaret triangle. Tractography and fractional anisotropy mapping revealed the complexities of white matter fiber pathways, including the superior, middle, and inferior cerebellar peduncles and visible decussating fibers. 3-dimensional (3D) reconstruction and quantitative and qualitative analyses verified the anatomical precision of the imaging relative to a standard brain space.

Discussion: This novel imaging protocol successfully captured the intricate 3D architecture of the brainstem-cerebellum network. The protocol, unique in several respects (including tissue preservation and rehydration times, choice of solutions, preferred sequences, voxel sizes, and diffusion directions) aimed to balance high resolution and practical scan times. This approach provided detailed neuroanatomical imaging while avoiding impractically long scan times. The extended postmortem and fixation intervals did not compromise the diffusion imaging quality. Moreover, the combination of time efficiency and ultrahigh-resolution imaging results makes this protocol a strong candidate for optimal use in detailed neuroanatomical studies, particularly in presurgical trajectory planning.

{"title":"Ultrahigh-resolution 7-Tesla anatomic magnetic resonance imaging and diffusion tensor imaging of <i>ex vivo</i> formalin-fixed human brainstem-cerebellum complex.","authors":"Sahin Hanalioglu, Siyar Bahadir, Ahmet C Ozak, Kivanc Yangi, Giancarlo Mignucci-Jiménez, Muhammet Enes Gurses, Alberto Fuentes, Ethan Mathew, Dakota T Graham, Muhammed Yakup Altug, Egemen Gok, Gregory H Turner, Michael T Lawton, Mark C Preul","doi":"10.3389/fnhum.2024.1484431","DOIUrl":"10.3389/fnhum.2024.1484431","url":null,"abstract":"<p><strong>Introduction: </strong>Brain cross-sectional images, tractography, and segmentation are valuable resources for neuroanatomical education and research but are also crucial for neurosurgical planning that may improve outcomes in cerebellar and brainstem interventions. Although ultrahigh-resolution 7-Tesla (7T) magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) reveal such structural brain details in living or fresh unpreserved brain tissue, imaging standard formalin-preserved cadaveric brain specimens often used for neurosurgical anatomic studies has proven difficult. This study sought to develop a practical protocol to provide anatomic information and tractography results of an <i>ex vivo</i> human brainstem-cerebellum specimen.</p><p><strong>Materials and methods: </strong>A protocol was developed for specimen preparation and 7T MRI with image postprocessing on a combined brainstem-cerebellum specimen obtained from an 85-year-old male cadaver with a postmortem interval of 1 week that was stored in formalin for 6 months. Anatomic image series were acquired for detailed views and diffusion tractography to map neural pathways and segment major anatomic structures within the brainstem and cerebellum.</p><p><strong>Results: </strong>Complex white matter tracts were visualized with high-precision segmentation of crucial brainstem structures, delineating the brainstem-cerebellum and mesencephalic-dentate connectivity, including the Guillain-Mollaret triangle. Tractography and fractional anisotropy mapping revealed the complexities of white matter fiber pathways, including the superior, middle, and inferior cerebellar peduncles and visible decussating fibers. 3-dimensional (3D) reconstruction and quantitative and qualitative analyses verified the anatomical precision of the imaging relative to a standard brain space.</p><p><strong>Discussion: </strong>This novel imaging protocol successfully captured the intricate 3D architecture of the brainstem-cerebellum network. The protocol, unique in several respects (including tissue preservation and rehydration times, choice of solutions, preferred sequences, voxel sizes, and diffusion directions) aimed to balance high resolution and practical scan times. This approach provided detailed neuroanatomical imaging while avoiding impractically long scan times. The extended postmortem and fixation intervals did not compromise the diffusion imaging quality. Moreover, the combination of time efficiency and ultrahigh-resolution imaging results makes this protocol a strong candidate for optimal use in detailed neuroanatomical studies, particularly in presurgical trajectory planning.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1484431"},"PeriodicalIF":2.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Human Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1