Pub Date : 2024-03-04DOI: 10.3389/fnbot.2024.1382406
Wei Wang, Zhaowei Shang, Chengxing Li
Data augmentation is an effective technique for automatically expanding training data in deep learning. Brain-inspired methods are approaches that draw inspiration from the functionality and structure of the human brain and apply these mechanisms and principles to artificial intelligence and computer science. When there is a large style difference between training data and testing data, common data augmentation methods cannot effectively enhance the generalization performance of the deep model. To solve this problem, we improve modeling Domain Shifts with Uncertainty (DSU) and propose a new brain-inspired computer vision image data augmentation method which consists of two key components, namely, using Robust statistics and controlling the Coefficient of variance for DSU (RCDSU) and Feature Data Augmentation (FeatureDA). RCDSU calculates feature statistics (mean and standard deviation) with robust statistics to weaken the influence of outliers, making the statistics close to the real values and improving the robustness of deep learning models. By controlling the coefficient of variance, RCDSU makes the feature statistics shift with semantic preservation and increases shift range. FeatureDA controls the coefficient of variance similarly to generate the augmented features with semantics unchanged and increase the coverage of augmented features. RCDSU and FeatureDA are proposed to perform style transfer and content transfer in the feature space, and improve the generalization ability of the model at the style and content level respectively. On Photo, Art Painting, Cartoon, and Sketch (PACS) multi-style classification task, RCDSU plus FeatureDA achieves competitive accuracy. After adding Gaussian noise to PACS dataset, RCDSU plus FeatureDA shows strong robustness against outliers. FeatureDA achieves excellent results on CIFAR-100 image classification task. RCDSU plus FeatureDA can be applied as a novel brain-inspired semantic data augmentation method with implicit robot automation which is suitable for datasets with large style differences between training and testing data.
{"title":"Brain-inspired semantic data augmentation for multi-style images","authors":"Wei Wang, Zhaowei Shang, Chengxing Li","doi":"10.3389/fnbot.2024.1382406","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1382406","url":null,"abstract":"<p>Data augmentation is an effective technique for automatically expanding training data in deep learning. Brain-inspired methods are approaches that draw inspiration from the functionality and structure of the human brain and apply these mechanisms and principles to artificial intelligence and computer science. When there is a large style difference between training data and testing data, common data augmentation methods cannot effectively enhance the generalization performance of the deep model. To solve this problem, we improve modeling Domain Shifts with Uncertainty (DSU) and propose a new brain-inspired computer vision image data augmentation method which consists of two key components, namely, <italic>using Robust statistics and controlling the Coefficient of variance for DSU</italic> (RCDSU) and <italic>Feature Data Augmentation</italic> (FeatureDA). RCDSU calculates feature statistics (mean and standard deviation) with robust statistics to weaken the influence of outliers, making the statistics close to the real values and improving the robustness of deep learning models. By controlling the coefficient of variance, RCDSU makes the feature statistics shift with semantic preservation and increases shift range. FeatureDA controls the coefficient of variance similarly to generate the augmented features with semantics unchanged and increase the coverage of augmented features. RCDSU and FeatureDA are proposed to perform style transfer and content transfer in the feature space, and improve the generalization ability of the model at the style and content level respectively. On Photo, Art Painting, Cartoon, and Sketch (PACS) multi-style classification task, RCDSU plus FeatureDA achieves competitive accuracy. After adding Gaussian noise to PACS dataset, RCDSU plus FeatureDA shows strong robustness against outliers. FeatureDA achieves excellent results on CIFAR-100 image classification task. RCDSU plus FeatureDA can be applied as a novel brain-inspired semantic data augmentation method with implicit robot automation which is suitable for datasets with large style differences between training and testing data.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.3389/fnbot.2024.1340462
Zhonglin Ye, Yanlong Tang, Haixing Zhao, Zhaoyang Wang, Ying Ji
The existing network representation learning algorithms mainly model the relationship between network nodes based on the structural features of the network, or use text features, hierarchical features and other external attributes to realize the network joint representation learning. Capturing global features of the network allows the obtained node vectors to retain more comprehensive feature information during training, thereby enhancing the quality of embeddings. In order to preserve the global structural features of the network in the training results, we employed a multi-channel learning approach to perform high-order feature modeling on the network. We proposed a novel algorithm for multi-channel high-order network representation learning, referred to as the Multi-Channel High-Order Network Representation (MHNR) algorithm. This algorithm initially constructs high-order network features from the original network structure, thereby transforming the single-channel network representation learning process into a multi-channel high-order network representation learning process. Then, for each single-channel network representation learning process, the novel graph assimilation mechanism is introduced in the algorithm, so as to realize the high-order network structure modeling mechanism in the single-channel network representation learning. Finally, the algorithm integrates the multi-channel and single-channel mechanism of high-order network structure joint modeling, realizing the efficient use of network structure features and sufficient modeling. Experimental results show that the node classification performance of the proposed MHNR algorithm reaches a good order on Citeseer, Cora, and DBLP data, and its node classification performance is better than that of the comparison algorithm used in this paper. In addition, when the vector length is optimized, the average classification accuracy of nodes of the proposed algorithm is up to 12.24% higher than that of the DeepWalk algorithm. Therefore, the node classification performance of the proposed algorithm can reach the current optimal order only based on the structural features of the network under the condition of no external feature supplementary modeling.
{"title":"Multi-channel high-order network representation learning research","authors":"Zhonglin Ye, Yanlong Tang, Haixing Zhao, Zhaoyang Wang, Ying Ji","doi":"10.3389/fnbot.2024.1340462","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1340462","url":null,"abstract":"The existing network representation learning algorithms mainly model the relationship between network nodes based on the structural features of the network, or use text features, hierarchical features and other external attributes to realize the network joint representation learning. Capturing global features of the network allows the obtained node vectors to retain more comprehensive feature information during training, thereby enhancing the quality of embeddings. In order to preserve the global structural features of the network in the training results, we employed a multi-channel learning approach to perform high-order feature modeling on the network. We proposed a novel algorithm for multi-channel high-order network representation learning, referred to as the Multi-Channel High-Order Network Representation (MHNR) algorithm. This algorithm initially constructs high-order network features from the original network structure, thereby transforming the single-channel network representation learning process into a multi-channel high-order network representation learning process. Then, for each single-channel network representation learning process, the novel graph assimilation mechanism is introduced in the algorithm, so as to realize the high-order network structure modeling mechanism in the single-channel network representation learning. Finally, the algorithm integrates the multi-channel and single-channel mechanism of high-order network structure joint modeling, realizing the efficient use of network structure features and sufficient modeling. Experimental results show that the node classification performance of the proposed MHNR algorithm reaches a good order on Citeseer, Cora, and DBLP data, and its node classification performance is better than that of the comparison algorithm used in this paper. In addition, when the vector length is optimized, the average classification accuracy of nodes of the proposed algorithm is up to 12.24% higher than that of the DeepWalk algorithm. Therefore, the node classification performance of the proposed algorithm can reach the current optimal order only based on the structural features of the network under the condition of no external feature supplementary modeling.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"52 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140006199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.3389/fnbot.2024.1349752
Shaowen Cheng, Yongbin Jin, Hongtao Wang
Humanoid grasping is a critical ability for anthropomorphic hand, and plays a significant role in the development of humanoid robots. In this article, we present a deep learning-based control framework for humanoid grasping, incorporating the dynamic contact process among the anthropomorphic hand, the object, and the environment. This method efficiently eliminates the constraints imposed by inaccessible grasping points on both the contact surface of the object and the table surface. To mimic human-like grasping movements, an underactuated anthropomorphic hand is utilized, which is designed based on human hand data. The utilization of hand gestures, rather than controlling each motor separately, has significantly decreased the control dimensionality. Additionally, a deep learning framework is used to select gestures and grasp actions. Our methodology, proven both in simulation and on real robot, exceeds the performance of static analysis-based methods, as measured by the standard grasp metric Q1. It expands the range of objects the system can handle, effectively grasping thin items such as cards on tables, a task beyond the capabilities of previous methodologies.
{"title":"Deep learning-based control framework for dynamic contact processes in humanoid grasping","authors":"Shaowen Cheng, Yongbin Jin, Hongtao Wang","doi":"10.3389/fnbot.2024.1349752","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1349752","url":null,"abstract":"Humanoid grasping is a critical ability for anthropomorphic hand, and plays a significant role in the development of humanoid robots. In this article, we present a deep learning-based control framework for humanoid grasping, incorporating the dynamic contact process among the anthropomorphic hand, the object, and the environment. This method efficiently eliminates the constraints imposed by inaccessible grasping points on both the contact surface of the object and the table surface. To mimic human-like grasping movements, an underactuated anthropomorphic hand is utilized, which is designed based on human hand data. The utilization of hand gestures, rather than controlling each motor separately, has significantly decreased the control dimensionality. Additionally, a deep learning framework is used to select gestures and grasp actions. Our methodology, proven both in simulation and on real robot, exceeds the performance of static analysis-based methods, as measured by the standard grasp metric <jats:italic>Q</jats:italic><jats:sub>1</jats:sub>. It expands the range of objects the system can handle, effectively grasping thin items such as cards on tables, a task beyond the capabilities of previous methodologies.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"6 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140006200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.3389/fnbot.2024.1382305
Meng Li, Wenyu Bian, Liangxiong Chen, Mei Liu
This paper addresses the limitations of current neural ordinary differential equations (NODEs) in modeling and predicting complex dynamics by introducing a novel framework called higher-order-derivative-supervised (HiDeS) NODE. This method extends traditional NODE frameworks by incorporating higher-order derivatives and their interactions into the modeling process, thereby enabling the capture of intricate system behaviors. In addition, the HiDeS NODE employs both the state vector and its higher-order derivatives as supervised signals, which is different from conventional NODEs that utilize only the state vector as a supervised signal. This approach is designed to enhance the predicting capability of NODEs. Through extensive experiments in the complex fields of multi-robot systems and opinion dynamics, the HiDeS NODE demonstrates improved modeling and predicting capabilities over existing models. This research not only proposes an expressive and predictive framework for dynamic systems but also marks the first application of NODEs to the fields of multi-robot systems and opinion dynamics, suggesting broad potential for future interdisciplinary work. The code is available at https://github.com/MengLi-Thea/HiDeS-A-Higher-Order-Derivative-Supervised-Neural-Ordinary-Differential-Equation.
{"title":"HiDeS: a higher-order-derivative-supervised neural ordinary differential equation for multi-robot systems and opinion dynamics","authors":"Meng Li, Wenyu Bian, Liangxiong Chen, Mei Liu","doi":"10.3389/fnbot.2024.1382305","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1382305","url":null,"abstract":"<p>This paper addresses the limitations of current neural ordinary differential equations (NODEs) in modeling and predicting complex dynamics by introducing a novel framework called higher-order-derivative-supervised (HiDeS) NODE. This method extends traditional NODE frameworks by incorporating higher-order derivatives and their interactions into the modeling process, thereby enabling the capture of intricate system behaviors. In addition, the HiDeS NODE employs both the state vector and its higher-order derivatives as supervised signals, which is different from conventional NODEs that utilize only the state vector as a supervised signal. This approach is designed to enhance the predicting capability of NODEs. Through extensive experiments in the complex fields of multi-robot systems and opinion dynamics, the HiDeS NODE demonstrates improved modeling and predicting capabilities over existing models. This research not only proposes an expressive and predictive framework for dynamic systems but also marks the first application of NODEs to the fields of multi-robot systems and opinion dynamics, suggesting broad potential for future interdisciplinary work. The code is available at <ext-link ext-link-type=\"uri\" xlink:href=\"https://github.com/MengLi-Thea/HiDeS-A-Higher-Order-Derivative-Supervised-Neural-Ordinary-Differential-Equation\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">https://github.com/MengLi-Thea/HiDeS-A-Higher-Order-Derivative-Supervised-Neural-Ordinary-Differential-Equation</ext-link>.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"93 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140108081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.3389/fnbot.2024.1380430
Liuyi Wen, Zhengtai Xie
The research on acceleration-level visual servoing of manipulators is crucial yet insufficient, which restricts the potential application range of visual servoing. To address this issue, this paper proposes a quadratic programming-based acceleration-level image-based visual servoing (AIVS) scheme, which considers joint constraints. Besides, aiming to address the unknown problems in visual servoing systems, a data-driven learning algorithm is proposed to facilitate estimating structural information. Building upon this foundation, a data-driven acceleration-level image-based visual servoing (DAIVS) scheme is proposed, integrating learning and control capabilities. Subsequently, a recurrent neural network (RNN) is developed to tackle the DAIVS scheme, followed by theoretical analyses substantiating its stability. Afterwards, simulations and experiments on a Franka Emika Panda manipulator with eye-in-hand structure and comparisons among the existing methods are provided. The obtained results demonstrate the feasibility and practicality of the proposed schemes and highlight the superior learning and control ability of the proposed RNN. This method is particularly well-suited for visual servoing applications of manipulators with unknown structure.
对机械手加速级视觉伺服的研究十分关键,但还不够充分,这限制了视觉伺服的潜在应用范围。针对这一问题,本文提出了一种基于二次编程的加速度级图像视觉伺服(AIVS)方案,该方案考虑了关节约束。此外,为了解决视觉伺服系统中的未知问题,本文还提出了一种数据驱动学习算法,以方便估计结构信息。在此基础上,提出了一种数据驱动的加速级基于图像的视觉伺服(DAIVS)方案,将学习和控制能力融为一体。随后,开发了一种循环神经网络(RNN)来处理 DAIVS 方案,并通过理论分析证实了该方案的稳定性。随后,对具有手眼结构的 Franka Emika Panda 机械手进行了模拟和实验,并对现有方法进行了比较。所得结果证明了所提方案的可行性和实用性,并凸显了所提 RNN 的卓越学习和控制能力。该方法尤其适用于未知结构机械手的视觉伺服应用。
{"title":"A data-driven acceleration-level scheme for image-based visual servoing of manipulators with unknown structure","authors":"Liuyi Wen, Zhengtai Xie","doi":"10.3389/fnbot.2024.1380430","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1380430","url":null,"abstract":"<p>The research on acceleration-level visual servoing of manipulators is crucial yet insufficient, which restricts the potential application range of visual servoing. To address this issue, this paper proposes a quadratic programming-based acceleration-level image-based visual servoing (AIVS) scheme, which considers joint constraints. Besides, aiming to address the unknown problems in visual servoing systems, a data-driven learning algorithm is proposed to facilitate estimating structural information. Building upon this foundation, a data-driven acceleration-level image-based visual servoing (DAIVS) scheme is proposed, integrating learning and control capabilities. Subsequently, a recurrent neural network (RNN) is developed to tackle the DAIVS scheme, followed by theoretical analyses substantiating its stability. Afterwards, simulations and experiments on a Franka Emika Panda manipulator with eye-in-hand structure and comparisons among the existing methods are provided. The obtained results demonstrate the feasibility and practicality of the proposed schemes and highlight the superior learning and control ability of the proposed RNN. This method is particularly well-suited for visual servoing applications of manipulators with unknown structure.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"122 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140170748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20eCollection Date: 2024-01-01DOI: 10.3389/fnbot.2024.1370415
Jing Luo, Chao Zeng, Zhenyu Lu, Wen Qi
{"title":"Editorial: Sensing and control for efficient human-robot collaboration.","authors":"Jing Luo, Chao Zeng, Zhenyu Lu, Wen Qi","doi":"10.3389/fnbot.2024.1370415","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1370415","url":null,"abstract":"","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1370415"},"PeriodicalIF":3.1,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-19DOI: 10.3389/fnbot.2024.1360094
Weijun Pan, Jian Zhang, Yumei Zhang, Peiyuan Jiang, Shuai Han
Introduction
Enhancing the generalization and reliability of speech recognition models in the field of air traffic control (ATC) is a challenging task. This is due to the limited storage, difficulty in acquisition, and high labeling costs of ATC speech data, which may result in data sample bias and class imbalance, leading to uncertainty and inaccuracy in speech recognition results. This study investigates a method for assessing the quality of ATC speech based on accents. Different combinations of data quality categories are selected according to the requirements of different model application scenarios to address the aforementioned issues effectively.
Methods
The impact of accents on the performance of speech recognition models is analyzed, and a fusion feature phoneme recognition model based on prior text information is constructed to identify phonemes of speech uttered by speakers. This model includes an audio encoding module, a prior text encoding module, a feature fusion module, and fully connected layers. The model takes speech and its corresponding prior text as input and outputs a predicted phoneme sequence of the speech. The model recognizes accented speech as phonemes that do not match the transcribed phoneme sequence of the actual speech text and quantitatively evaluates the accents in ATC communication by calculating the differences between the recognized phoneme sequence and the transcribed phoneme sequence of the actual speech text. Additionally, different levels of accents are input into different types of speech recognition models to analyze and compare the recognition accuracy of the models.
Result
Experimental results show that, under the same experimental conditions, the highest impact of different levels of accents on speech recognition accuracy in ATC communication is 26.37%.
Discussion
This further demonstrates that accents affect the accuracy of speech recognition models in ATC communication and can be considered as one of the metrics for evaluating the quality of ATC speech.
{"title":"Assessment and analysis of accents in air traffic control speech: a fusion of deep learning and information theory","authors":"Weijun Pan, Jian Zhang, Yumei Zhang, Peiyuan Jiang, Shuai Han","doi":"10.3389/fnbot.2024.1360094","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1360094","url":null,"abstract":"<sec><title>Introduction</title><p>Enhancing the generalization and reliability of speech recognition models in the field of air traffic control (ATC) is a challenging task. This is due to the limited storage, difficulty in acquisition, and high labeling costs of ATC speech data, which may result in data sample bias and class imbalance, leading to uncertainty and inaccuracy in speech recognition results. This study investigates a method for assessing the quality of ATC speech based on accents. Different combinations of data quality categories are selected according to the requirements of different model application scenarios to address the aforementioned issues effectively.</p></sec><sec><title>Methods</title><p>The impact of accents on the performance of speech recognition models is analyzed, and a fusion feature phoneme recognition model based on prior text information is constructed to identify phonemes of speech uttered by speakers. This model includes an audio encoding module, a prior text encoding module, a feature fusion module, and fully connected layers. The model takes speech and its corresponding prior text as input and outputs a predicted phoneme sequence of the speech. The model recognizes accented speech as phonemes that do not match the transcribed phoneme sequence of the actual speech text and quantitatively evaluates the accents in ATC communication by calculating the differences between the recognized phoneme sequence and the transcribed phoneme sequence of the actual speech text. Additionally, different levels of accents are input into different types of speech recognition models to analyze and compare the recognition accuracy of the models.</p></sec><sec><title>Result</title><p>Experimental results show that, under the same experimental conditions, the highest impact of different levels of accents on speech recognition accuracy in ATC communication is 26.37%.</p></sec><sec><title>Discussion</title><p>This further demonstrates that accents affect the accuracy of speech recognition models in ATC communication and can be considered as one of the metrics for evaluating the quality of ATC speech.</p></sec>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"103 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.3389/fnbot.2024.1339000
Kristel Marmor, Janika Leoste, Mati Heidmets, Katrin Kangur, Martin Rebane, Jaanus Pöial, Tiina Kasuk
IntroductionThe use of various telecommunication tools has grown significantly. However, many of these tools (e.g., computer-based teleconferencing) are problematic in relaying non-verbal human communication. Telepresence robots (TPRs) are seen as telecommunication tools that can support non-verbal communication.MethodsIn this paper, we examine the usability of TPRs, and communication distance related behavioral realism in communication situations between physically present persons and a TPR-mediated person. Twenty-four participants, who played out 36 communication situations with TPRs, were observed and interviewed.ResultsThe results indicate that TPR-mediated people, especially women, choose shorter than normal communication distances. The type of the robot did not influence the choice of communication distance. The participants perceived the use of TPRs positively as a feasible telecommunication method.DiscussionWhen introducing TPRs, situations with greater intrapersonal distances require more practice compared to scenarios where a physically present person communicates with a telepresent individual in the audience. In the latter situation, the robot-mediated person could be perceived as “behaviorally realistic” much faster than in vice versa communication situations.
{"title":"Keeping social distance in a classroom while interacting via a telepresence robot: a pilot study","authors":"Kristel Marmor, Janika Leoste, Mati Heidmets, Katrin Kangur, Martin Rebane, Jaanus Pöial, Tiina Kasuk","doi":"10.3389/fnbot.2024.1339000","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1339000","url":null,"abstract":"IntroductionThe use of various telecommunication tools has grown significantly. However, many of these tools (e.g., computer-based teleconferencing) are problematic in relaying non-verbal human communication. Telepresence robots (TPRs) are seen as telecommunication tools that can support non-verbal communication.MethodsIn this paper, we examine the usability of TPRs, and communication distance related behavioral realism in communication situations between physically present persons and a TPR-mediated person. Twenty-four participants, who played out 36 communication situations with TPRs, were observed and interviewed.ResultsThe results indicate that TPR-mediated people, especially women, choose shorter than normal communication distances. The type of the robot did not influence the choice of communication distance. The participants perceived the use of TPRs positively as a feasible telecommunication method.DiscussionWhen introducing TPRs, situations with greater intrapersonal distances require more practice compared to scenarios where a physically present person communicates with a telepresent individual in the audience. In the latter situation, the robot-mediated person could be perceived as “behaviorally realistic” much faster than in vice versa communication situations.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"38 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139765131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IntroductionFor patients with functional motor disorders of the lower limbs due to brain damage or accidental injury, restoring the ability to stand and walk plays an important role in clinical rehabilitation. Lower limb exoskeleton robots generally require patients to convert themselves to a standing position for use, while being a wearable device with limited movement distance.MethodsThis paper proposes a reconfigurable behavioral assistive robot that integrates the functions of an exoskeleton robot and an assistive standing wheelchair through a novel mechanism. The new mechanism is based on a four-bar linkage, and through simple and stable conformal transformations, the robot can switch between exoskeleton state, sit-to-stand support state, and wheelchair state. This enables the robot to achieve the functions of assisted walking, assisted standing up, supported standing and wheelchair mobility, respectively, thereby meeting the daily activity needs of sit-to-stand transitions and gait training. The configuration transformation module controls seamless switching between different configurations through an industrial computer. Experimental protocols have been developed for wearable testing of robotic prototypes not only for healthy subjects but also for simulated hemiplegic patients.ResultsThe experimental results indicate that the gait tracking effect during robot-assisted walking is satisfactory, and there are no sudden speed changes during the assisted standing up process, providing smooth support to the wearer. Meanwhile, the activation of the main force-generating muscles of the legs and the plantar pressure decreases significantly in healthy subjects and simulated hemiplegic patients wearing the robot for assisted walking and assisted standing-up compared to the situation when the robot is not worn.DiscussionThese experimental findings demonstrate that the reconfigurable behavioral assistive robot prototype of this study is effective, reducing the muscular burden on the wearer during walking and standing up, and provide effective support for the subject's body. The experimental results objectively and comprehensively showcase the effectiveness and potential of the reconfigurable behavioral assistive robot in the realms of behavioral assistance and rehabilitation training.
{"title":"Design and assessment of a reconfigurable behavioral assistive robot: a pilot study","authors":"Enming Shi, Wenzhuo Zhi, Wanxin Chen, Yuhang Han, Bi Zhang, Xingang Zhao","doi":"10.3389/fnbot.2024.1332721","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1332721","url":null,"abstract":"IntroductionFor patients with functional motor disorders of the lower limbs due to brain damage or accidental injury, restoring the ability to stand and walk plays an important role in clinical rehabilitation. Lower limb exoskeleton robots generally require patients to convert themselves to a standing position for use, while being a wearable device with limited movement distance.MethodsThis paper proposes a reconfigurable behavioral assistive robot that integrates the functions of an exoskeleton robot and an assistive standing wheelchair through a novel mechanism. The new mechanism is based on a four-bar linkage, and through simple and stable conformal transformations, the robot can switch between exoskeleton state, sit-to-stand support state, and wheelchair state. This enables the robot to achieve the functions of assisted walking, assisted standing up, supported standing and wheelchair mobility, respectively, thereby meeting the daily activity needs of sit-to-stand transitions and gait training. The configuration transformation module controls seamless switching between different configurations through an industrial computer. Experimental protocols have been developed for wearable testing of robotic prototypes not only for healthy subjects but also for simulated hemiplegic patients.ResultsThe experimental results indicate that the gait tracking effect during robot-assisted walking is satisfactory, and there are no sudden speed changes during the assisted standing up process, providing smooth support to the wearer. Meanwhile, the activation of the main force-generating muscles of the legs and the plantar pressure decreases significantly in healthy subjects and simulated hemiplegic patients wearing the robot for assisted walking and assisted standing-up compared to the situation when the robot is not worn.DiscussionThese experimental findings demonstrate that the reconfigurable behavioral assistive robot prototype of this study is effective, reducing the muscular burden on the wearer during walking and standing up, and provide effective support for the subject's body. The experimental results objectively and comprehensively showcase the effectiveness and potential of the reconfigurable behavioral assistive robot in the realms of behavioral assistance and rehabilitation training.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"5 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139765042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-12DOI: 10.3389/fnbot.2024.1291694
Erich Mielke, Eric Townsend, David Wingate, John L. Salmon, Marc D. Killpack
Human teams are able to easily perform collaborative manipulation tasks. However, simultaneously manipulating a large extended object for a robot and human is a difficult task due to the inherent ambiguity in the desired motion. Our approach in this paper is to leverage data from human-human dyad experiments to determine motion intent for a physical human-robot co-manipulation task. We do this by showing that the human-human dyad data exhibits distinct torque triggers for a lateral movement. As an alternative intent estimation method, we also develop a deep neural network based on motion data from human-human trials to predict future trajectories based on past object motion. We then show how force and motion data can be used to determine robot control in a human-robot dyad. Finally, we compare human-human dyad performance to the performance of two controllers that we developed for human-robot co-manipulation. We evaluate these controllers in three-degree-of-freedom planar motion where determining if the task involves rotation or translation is ambiguous.
{"title":"Human-robot planar co-manipulation of extended objects: data-driven models and control from human-human dyads","authors":"Erich Mielke, Eric Townsend, David Wingate, John L. Salmon, Marc D. Killpack","doi":"10.3389/fnbot.2024.1291694","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1291694","url":null,"abstract":"Human teams are able to easily perform collaborative manipulation tasks. However, simultaneously manipulating a large extended object for a robot and human is a difficult task due to the inherent ambiguity in the desired motion. Our approach in this paper is to leverage data from human-human dyad experiments to determine motion intent for a physical human-robot co-manipulation task. We do this by showing that the human-human dyad data exhibits distinct torque triggers for a lateral movement. As an alternative intent estimation method, we also develop a deep neural network based on motion data from human-human trials to predict future trajectories based on past object motion. We then show how force and motion data can be used to determine robot control in a human-robot dyad. Finally, we compare human-human dyad performance to the performance of two controllers that we developed for human-robot co-manipulation. We evaluate these controllers in three-degree-of-freedom planar motion where determining if the task involves rotation or translation is ambiguous.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"95 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}