首页 > 最新文献

Frontiers in Plant Science最新文献

英文 中文
Lipidomics-based association study reveals genomic signatures of anti-cancer qualities of pigmented rice sprouts.
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI: 10.3389/fpls.2025.1533442
Rhowell Navarro Tiozon, Erstelle Pasion-Uy, Saleh Alseekh, Kristel June D Sartagoda, Shem Gempesaw, Joel H G Tolentino, Alisdair R Fernie, Nese Sreenivasulu

Introduction: The genetic wealth present in pigmented rice varieties offer abundant variation in different sources of antioxidants to meet nutritional security targets among rice-consuming communities. There is limited knowledge of the dynamic changes in the lipidome of rice during germination and the corresponding genes associated with the antioxidant and anti-cancerous properties of lipophilic fractions of pigmented rice sprouts (PRS).

Methods: In this study, we profiled the lipidome of diverse pigmented rice collections of germinated sprouts. Further, we employed Genome-wide association studies (GWAS), gene-set analysis, and targeted association analysis to identify the candidate genes linked to these lipids.

Results: The genetic analyses revealed 72 candidate genes involved in the regulation of these accumulating lipids in PRS. Marker trait associations (MTA) analysis shown that the combination GGTAAC/ACAAGCTGGGCCC was associated with increased levels of unsaturated lipids and carotenoids, which likely underlie these beneficial effects. This superior MTA combination exhibited potent inhibitory activity against HCT116 and A549 cell lines, with average 1/IC50 values of 0.03 and 0.02 (mL/μg), respectively, compared to the inferior MTAs.

Discussion: Collectively, our findings demonstrate that MTAs linked to selected GDSL esterase/lipase (GELP) genes, OsACP1, and lecithin-cholesterol acyltransferase significantly enhance antioxidant and anti-cancer properties, potentially through the mobilization of unsaturated lipids and carotenoids during germination. This study offers valuable insights into the health-promoting potential of germinated rice sprouts as a rich dietary source of antioxidants beneficial to human health.

{"title":"Lipidomics-based association study reveals genomic signatures of anti-cancer qualities of pigmented rice sprouts.","authors":"Rhowell Navarro Tiozon, Erstelle Pasion-Uy, Saleh Alseekh, Kristel June D Sartagoda, Shem Gempesaw, Joel H G Tolentino, Alisdair R Fernie, Nese Sreenivasulu","doi":"10.3389/fpls.2025.1533442","DOIUrl":"10.3389/fpls.2025.1533442","url":null,"abstract":"<p><strong>Introduction: </strong>The genetic wealth present in pigmented rice varieties offer abundant variation in different sources of antioxidants to meet nutritional security targets among rice-consuming communities. There is limited knowledge of the dynamic changes in the lipidome of rice during germination and the corresponding genes associated with the antioxidant and anti-cancerous properties of lipophilic fractions of pigmented rice sprouts (PRS).</p><p><strong>Methods: </strong>In this study, we profiled the lipidome of diverse pigmented rice collections of germinated sprouts. Further, we employed Genome-wide association studies (GWAS), gene-set analysis, and targeted association analysis to identify the candidate genes linked to these lipids.</p><p><strong>Results: </strong>The genetic analyses revealed 72 candidate genes involved in the regulation of these accumulating lipids in PRS. Marker trait associations (MTA) analysis shown that the combination GGTAAC/ACAAGCTGGGCCC was associated with increased levels of unsaturated lipids and carotenoids, which likely underlie these beneficial effects. This superior MTA combination exhibited potent inhibitory activity against HCT116 and A549 cell lines, with average 1/IC50 values of 0.03 and 0.02 (mL/μg), respectively, compared to the inferior MTAs.</p><p><strong>Discussion: </strong>Collectively, our findings demonstrate that MTAs linked to selected GDSL esterase/lipase (GELP) genes, OsACP1, and lecithin-cholesterol acyltransferase significantly enhance antioxidant and anti-cancer properties, potentially through the mobilization of unsaturated lipids and carotenoids during germination. This study offers valuable insights into the health-promoting potential of germinated rice sprouts as a rich dietary source of antioxidants beneficial to human health.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1533442"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flavonoids and anthocyanins in seagrasses: implications for climate change adaptation and resilience.
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1520474
Jana Botes, Xiao Ma, Jiyang Chang, Yves Van de Peer, Dave Kenneth Berger

Seagrasses are a paraphyletic group of marine angiosperms and retain certain adaptations from the ancestors of all embryophytes in the transition to terrestrial environments. Among these adaptations is the production of flavonoids, versatile phenylpropanoid secondary metabolites that participate in a variety of stress responses. Certain features, such as catalytic promiscuity and metabolon interactions, allow flavonoid metabolism to expand to produce novel compounds and respond to a variety of stimuli. As marine environments expose seagrasses to a unique set of stresses, these plants display interesting flavonoid profiles, the functions of which are often not completely clear. Flavonoids will likely prove to be effective and versatile agents in combating the new host of stress conditions introduced to marine environments by anthropogenic climate change, which affects marine environments differently from terrestrial ones. These new stresses include increased sulfate levels, changes in salt concentration, changes in herbivore distributions, and ocean acidification, which all involve flavonoids as stress response mechanisms, though the role of flavonoids in combatting these climate change stresses is seldom discussed directly in the literature. Flavonoids can also be used to assess the health of seagrass meadows through an interplay between flavonoid and simple phenolic levels, which may prove to be useful in monitoring the response of seagrasses to climate change. Studies focusing on the genetics of flavonoid metabolism are limited for this group, but the large chalcone synthase gene families in some species may provide an interesting topic of research. Anthocyanins are typically studied separately from other flavonoids. The phenomenon of reddening in certain seagrass species typically focuses on the importance of anthocyanins as a UV-screening mechanism, while the role of anthocyanins in cold stress is discussed less often. Both of these stress response functions would be useful for adaptation to climate change-induced deviations in tidal patterns and emersion. However, ocean warming will likely lead to a decrease in anthocyanin content, which may impact the performance of intertidal seagrasses. This review highlights the importance of flavonoids in angiosperm stress response and adaptation, examines research on flavonoids in seagrasses, and hypothesizes on the importance of flavonoids in these organisms under climate change.

{"title":"Flavonoids and anthocyanins in seagrasses: implications for climate change adaptation and resilience.","authors":"Jana Botes, Xiao Ma, Jiyang Chang, Yves Van de Peer, Dave Kenneth Berger","doi":"10.3389/fpls.2024.1520474","DOIUrl":"10.3389/fpls.2024.1520474","url":null,"abstract":"<p><p>Seagrasses are a paraphyletic group of marine angiosperms and retain certain adaptations from the ancestors of all embryophytes in the transition to terrestrial environments. Among these adaptations is the production of flavonoids, versatile phenylpropanoid secondary metabolites that participate in a variety of stress responses. Certain features, such as catalytic promiscuity and metabolon interactions, allow flavonoid metabolism to expand to produce novel compounds and respond to a variety of stimuli. As marine environments expose seagrasses to a unique set of stresses, these plants display interesting flavonoid profiles, the functions of which are often not completely clear. Flavonoids will likely prove to be effective and versatile agents in combating the new host of stress conditions introduced to marine environments by anthropogenic climate change, which affects marine environments differently from terrestrial ones. These new stresses include increased sulfate levels, changes in salt concentration, changes in herbivore distributions, and ocean acidification, which all involve flavonoids as stress response mechanisms, though the role of flavonoids in combatting these climate change stresses is seldom discussed directly in the literature. Flavonoids can also be used to assess the health of seagrass meadows through an interplay between flavonoid and simple phenolic levels, which may prove to be useful in monitoring the response of seagrasses to climate change. Studies focusing on the genetics of flavonoid metabolism are limited for this group, but the large chalcone synthase gene families in some species may provide an interesting topic of research. Anthocyanins are typically studied separately from other flavonoids. The phenomenon of reddening in certain seagrass species typically focuses on the importance of anthocyanins as a UV-screening mechanism, while the role of anthocyanins in cold stress is discussed less often. Both of these stress response functions would be useful for adaptation to climate change-induced deviations in tidal patterns and emersion. However, ocean warming will likely lead to a decrease in anthocyanin content, which may impact the performance of intertidal seagrasses. This review highlights the importance of flavonoids in angiosperm stress response and adaptation, examines research on flavonoids in seagrasses, and hypothesizes on the importance of flavonoids in these organisms under climate change.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1520474"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of soil test crop response model for beetroot (Beta vulgaris) grown in ultisols of India.
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1481882
Ramasamy Arulmani, Kuppayevalasu Malayappagounder Sellamuthu, Subramaniam Maragatham, Alargarsamy Senthil, Seenapuram Palaniswami Thamaraiselvi, Palaniappan Malathi, Govindaraja Sridevi

Soil Test Crop Response (STCR), a combined plant nutrient management system that enables to develop fertilizer prescription equations for balanced crop nutrition, higher yield, profitability, and better nutrient efficiency. Field trial was carried out on Typic Haplohmult soil of Nilgiris, Tamil Nadu during 2023-2024 by Implementing an Inductive combined with a targeted yield model. Field trial includes a gradient experiment with a green viz., Chenopodium album; a test crop experiment with beetroot (Hybrid Improved Crystal) and a validation experiment with beetroot. First, the fertility gradient was ensured by the biomass yield and soil fertility. Then, test crop experiment with beet root were conducted in the same field to derive the basic parameters viz., Nutrient Requirement (NR), contribution of nutrients from fertilizers (Cf), contribution of nutrients from soil (Cs) and contribution of nutrients from the Farm Yard manure (Cfym). Using the basic parameters, fertilizer prescription equations were developed based on Integrated Plant Nutrition System and validated. We found that 0.38, 0.29, and 0.46 kg of N, P2O5, and K2O, respectively, were required for producing one quintal of beetroot tuber under the integrated approach. Readily customized of fertilizer nutrient doses was developed for varying soil test values and desired yield targets of beetroot, for both inorganic (NPK) alone and NPK + Farm Yard Manure (FYM). The model was validated in the same soil series with the achievement of 40 and 45 tonnes of beetroot ha-1 with 100.9% and 96.9% of yield achievement, respectively. The Soil analysis crop response - combined Plant Nutrition System model proved that beetroot yield can be increased by 34.74%, in relation to the generally recommended dose This inductive method could save 37, 26 and 34 kg of Nitrogen, Phosphorus and Potassium, respectively when Nitrogen, Phosphorus, Potassium fertilizers are combined with 12.5 t ha-1 FYM as per soil test and targeted yield of beetroot.

{"title":"Development and validation of soil test crop response model for beetroot (<i>Beta vulgaris</i>) grown in ultisols of India.","authors":"Ramasamy Arulmani, Kuppayevalasu Malayappagounder Sellamuthu, Subramaniam Maragatham, Alargarsamy Senthil, Seenapuram Palaniswami Thamaraiselvi, Palaniappan Malathi, Govindaraja Sridevi","doi":"10.3389/fpls.2024.1481882","DOIUrl":"https://doi.org/10.3389/fpls.2024.1481882","url":null,"abstract":"<p><p>Soil Test Crop Response (STCR), a combined plant nutrient management system that enables to develop fertilizer prescription equations for balanced crop nutrition, higher yield, profitability, and better nutrient efficiency. Field trial was carried out on Typic Haplohmult soil of Nilgiris, Tamil Nadu during 2023-2024 by Implementing an Inductive combined with a targeted yield model. Field trial includes a gradient experiment with a green viz., <i>Chenopodium album</i>; a test crop experiment with beetroot (Hybrid Improved Crystal) and a validation experiment with beetroot. First, the fertility gradient was ensured by the biomass yield and soil fertility. Then, test crop experiment with beet root were conducted in the same field to derive the basic parameters viz., Nutrient Requirement (NR), contribution of nutrients from fertilizers (C<sub>f</sub>), contribution of nutrients from soil (C<sub>s</sub>) and contribution of nutrients from the Farm Yard manure (C<sub>fym</sub>). Using the basic parameters, fertilizer prescription equations were developed based on Integrated Plant Nutrition System and validated. We found that 0.38, 0.29, and 0.46 kg of N, P<sub>2</sub>O5, and K<sub>2</sub>O, respectively, were required for producing one quintal of beetroot tuber under the integrated approach. Readily customized of fertilizer nutrient doses was developed for varying soil test values and desired yield targets of beetroot, for both inorganic (NPK) alone and NPK + Farm Yard Manure (FYM). The model was validated in the same soil series with the achievement of 40 and 45 tonnes of beetroot ha<sup>-1</sup> with 100.9% and 96.9% of yield achievement, respectively. The Soil analysis crop response - combined Plant Nutrition System model proved that beetroot yield can be increased by 34.74%, in relation to the generally recommended dose This inductive method could save 37, 26 and 34 kg of Nitrogen, Phosphorus and Potassium, respectively when Nitrogen, Phosphorus, Potassium fertilizers are combined with 12.5 t ha<sup>-1</sup> FYM as per soil test and targeted yield of beetroot.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1481882"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810886/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DPD-YOLO: dense pineapple fruit target detection algorithm in complex environments based on YOLOv8 combined with attention mechanism.
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI: 10.3389/fpls.2025.1523552
Cong Lin, Wencheng Jiang, Weiye Zhao, Lilan Zou, Zhong Xue

With the development of deep learning technology and the widespread application of drones in the agricultural sector, the use of computer vision technology for target detection of pineapples has gradually been recognized as one of the key methods for estimating pineapple yield. When images of pineapple fields are captured by drones, the fruits are often obscured by the pineapple leaf crowns due to their appearance and planting characteristics. Additionally, the background in pineapple fields is relatively complex, and current mainstream target detection algorithms are known to perform poorly in detecting small targets under occlusion conditions in such complex backgrounds. To address these issues, an improved YOLOv8 target detection algorithm, named DPD-YOLO (Dense-Pineapple-Detection YOU Only Look Once), has been proposed for the detection of pineapples in complex environments. The DPD-YOLO model is based on YOLOv8 and introduces the attention mechanism (Coordinate Attention) to enhance the network's ability to extract features of pineapples in complex backgrounds. Furthermore, the small target detection layer has been fused with BiFPN (Bi-directional Feature Pyramid Network) to strengthen the integration of multi-scale features and enrich the extraction of semantic features. At the same time, the original YOLOv8 detection head has been replaced by the RT-DETR detection head, which incorporates Cross-Attention and Self-Attention mechanisms that improve the model's detection accuracy. Additionally, Focaler-IoU has been employed to improve CIoU, allowing the network to focus more on small targets. Finally, high-resolution images of the pineapple fields were captured using drones to create a dataset, and extensive experiments were conducted. The results indicate that, compared to existing mainstream target detection models, the proposed DPD-YOLO demonstrated superior detection performance for pineapples in situations where the background is complex and the targets are occluded. The mAP@0.5 reached 62.0%, representing an improvement of 6.6% over the original YOLOv8 algorithm, Precision increased by 2.7%, Recall improved by 13%, and F1-score rose by 10.3%.

{"title":"DPD-YOLO: dense pineapple fruit target detection algorithm in complex environments based on YOLOv8 combined with attention mechanism.","authors":"Cong Lin, Wencheng Jiang, Weiye Zhao, Lilan Zou, Zhong Xue","doi":"10.3389/fpls.2025.1523552","DOIUrl":"10.3389/fpls.2025.1523552","url":null,"abstract":"<p><p>With the development of deep learning technology and the widespread application of drones in the agricultural sector, the use of computer vision technology for target detection of pineapples has gradually been recognized as one of the key methods for estimating pineapple yield. When images of pineapple fields are captured by drones, the fruits are often obscured by the pineapple leaf crowns due to their appearance and planting characteristics. Additionally, the background in pineapple fields is relatively complex, and current mainstream target detection algorithms are known to perform poorly in detecting small targets under occlusion conditions in such complex backgrounds. To address these issues, an improved YOLOv8 target detection algorithm, named DPD-YOLO (Dense-Pineapple-Detection YOU Only Look Once), has been proposed for the detection of pineapples in complex environments. The DPD-YOLO model is based on YOLOv8 and introduces the attention mechanism (Coordinate Attention) to enhance the network's ability to extract features of pineapples in complex backgrounds. Furthermore, the small target detection layer has been fused with BiFPN (Bi-directional Feature Pyramid Network) to strengthen the integration of multi-scale features and enrich the extraction of semantic features. At the same time, the original YOLOv8 detection head has been replaced by the RT-DETR detection head, which incorporates Cross-Attention and Self-Attention mechanisms that improve the model's detection accuracy. Additionally, Focaler-IoU has been employed to improve CIoU, allowing the network to focus more on small targets. Finally, high-resolution images of the pineapple fields were captured using drones to create a dataset, and extensive experiments were conducted. The results indicate that, compared to existing mainstream target detection models, the proposed DPD-YOLO demonstrated superior detection performance for pineapples in situations where the background is complex and the targets are occluded. The mAP@0.5 reached 62.0%, representing an improvement of 6.6% over the original YOLOv8 algorithm, Precision increased by 2.7%, Recall improved by 13%, and F1-score rose by 10.3%.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1523552"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen fixation rates and aerial root production among maize landraces.
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI: 10.3389/fpls.2025.1502884
Layne N Connolly, Nicola Lorenz, Keyvan Maleki, Noah Kayafas, Richard P Dick, Kristin L Mercer

In Mexico, the center of maize origin (Zea mays ssp. mays), there are landraces from the highlands that develop extensive aerial root systems which secrete a carbohydrate-rich mucilage. This mucilage produces a favorable environment for nitrogenase activity by diazotrophs. This plant-microbial interaction enables the fixation of nitrogen (N) from the atmosphere, reducing the required N that otherwise must come from the soil and/or fertilizers. The objective of this research was to investigate the degree to which other landraces of maize and nutrient management affect aerial root growth and the ability of maize to perform and benefit from N2 fixation. In two replicated field experiments in Columbus, Ohio, USA in 2019 and 2020, we planted 21 maize landraces and three improved varieties with and without fertilizer to measure their growth, production of aerial roots, and rate of atmospheric N2 fixation using the 15N natural abundance method. Maize accessions varied in the growth rate and number of nodes with aerial roots. Up to 36% of plant N was derived from the atmosphere, with values varying by accession, the reference plant used, and the fertilizer level. Moreover, there was a positive relationship between early growth parameters and numbers of nodes with aerial roots, which, in turn, predicted the amount of N derived from the atmosphere. Thus, larger seedlings may experience enhanced root growth and thereby benefit more from N fixation. By phenotyping a diverse set of maize accessions with and without fertilizer, this study explores both environmental and quantitative genetic variation in the traits involved in N fixation capacity, clarifying that N fixation found in the Sierra Mixe landrace is more broadly distributed than previously thought. In sum, farmers stewarding genetic diversity in a crop center of origin have preserved traits essential for biological symbioses that contribute to maize's nutrient requirements. These traits may enable maize crops grown by Mexican farmers, and farmers globally, to benefit from N fixation from the atmosphere.

{"title":"Nitrogen fixation rates and aerial root production among maize landraces.","authors":"Layne N Connolly, Nicola Lorenz, Keyvan Maleki, Noah Kayafas, Richard P Dick, Kristin L Mercer","doi":"10.3389/fpls.2025.1502884","DOIUrl":"10.3389/fpls.2025.1502884","url":null,"abstract":"<p><p>In Mexico, the center of maize origin (<i>Zea mays</i> ssp. <i>mays</i>), there are landraces from the highlands that develop extensive aerial root systems which secrete a carbohydrate-rich mucilage. This mucilage produces a favorable environment for nitrogenase activity by diazotrophs. This plant-microbial interaction enables the fixation of nitrogen (N) from the atmosphere, reducing the required N that otherwise must come from the soil and/or fertilizers. The objective of this research was to investigate the degree to which other landraces of maize and nutrient management affect aerial root growth and the ability of maize to perform and benefit from N<sub>2</sub> fixation. In two replicated field experiments in Columbus, Ohio, USA in 2019 and 2020, we planted 21 maize landraces and three improved varieties with and without fertilizer to measure their growth, production of aerial roots, and rate of atmospheric N<sub>2</sub> fixation using the <sup>15</sup>N natural abundance method. Maize accessions varied in the growth rate and number of nodes with aerial roots. Up to 36% of plant N was derived from the atmosphere, with values varying by accession, the reference plant used, and the fertilizer level. Moreover, there was a positive relationship between early growth parameters and numbers of nodes with aerial roots, which, in turn, predicted the amount of N derived from the atmosphere. Thus, larger seedlings may experience enhanced root growth and thereby benefit more from N fixation. By phenotyping a diverse set of maize accessions with and without fertilizer, this study explores both environmental and quantitative genetic variation in the traits involved in N fixation capacity, clarifying that N fixation found in the Sierra Mixe landrace is more broadly distributed than previously thought. In sum, farmers stewarding genetic diversity in a crop center of origin have preserved traits essential for biological symbioses that contribute to maize's nutrient requirements. These traits may enable maize crops grown by Mexican farmers, and farmers globally, to benefit from N fixation from the atmosphere.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1502884"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trade-off strategies between growth and defense of spring ephemeral plants in early spring. 早春昙花一现植物在生长和防御之间的权衡策略
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI: 10.3389/fpls.2025.1503169
Liben Pan, Tianqi Wang, Vladimir L Gavrikov, Xiaorui Guo, Liqiang Mu, Zhonghua Tang

Introduction: Spring ephemeral plants represent a unique ecological category of herbaceous plants, characterized by early blooming and vivid flowers with significant ornamental value. Understanding the adaptive strategies of spring ephemerals is crucial for the introduction and cultivation of early spring plants, as well as for optimizing light energy utilization and nutrient cycling within ecosystems.

Methods: We evaluated 26 functional traits across four spring ephemerals and four spring non-ephemeral plants along an elevation gradient. By establishing a plant functional trait network, we examined the adaptation strategies of early spring plants at different elevations and compared the differences in adaptation strategies between two types of plants.

Results: Spring ephemerals exhibited higher concentrations of carbon and nitrogen, lower concentrations of carbohydrates, higher edge density and modularity in trait networks, and stronger linkages between defense traits. Plants at higher elevations demonstrated higher leaf dry matter content and leaf total flavonoid concentration, and lower nitrogen concentration, influenced by temperature, precipitation, and soil nutrients.

Discussion: These results demonstrated that spring ephemerals have a strong nutrient uptake capacity, and adopt resource competition strategies to rapidly accumulate nutrients and reproduce. The plants at higher elevations adopt more conservative strategies, with trait networks showing increased modularity, edge density, and closer correlations among traits to enhance resource utilization. This study provides new insights into the adaptive strategies of spring ephemerals by demonstrating how plants allocate resources for growth and defense through the regulation of trait variation and correlations among traits.

{"title":"Trade-off strategies between growth and defense of spring ephemeral plants in early spring.","authors":"Liben Pan, Tianqi Wang, Vladimir L Gavrikov, Xiaorui Guo, Liqiang Mu, Zhonghua Tang","doi":"10.3389/fpls.2025.1503169","DOIUrl":"10.3389/fpls.2025.1503169","url":null,"abstract":"<p><strong>Introduction: </strong>Spring ephemeral plants represent a unique ecological category of herbaceous plants, characterized by early blooming and vivid flowers with significant ornamental value. Understanding the adaptive strategies of spring ephemerals is crucial for the introduction and cultivation of early spring plants, as well as for optimizing light energy utilization and nutrient cycling within ecosystems.</p><p><strong>Methods: </strong>We evaluated 26 functional traits across four spring ephemerals and four spring non-ephemeral plants along an elevation gradient. By establishing a plant functional trait network, we examined the adaptation strategies of early spring plants at different elevations and compared the differences in adaptation strategies between two types of plants.</p><p><strong>Results: </strong>Spring ephemerals exhibited higher concentrations of carbon and nitrogen, lower concentrations of carbohydrates, higher edge density and modularity in trait networks, and stronger linkages between defense traits. Plants at higher elevations demonstrated higher leaf dry matter content and leaf total flavonoid concentration, and lower nitrogen concentration, influenced by temperature, precipitation, and soil nutrients.</p><p><strong>Discussion: </strong>These results demonstrated that spring ephemerals have a strong nutrient uptake capacity, and adopt resource competition strategies to rapidly accumulate nutrients and reproduce. The plants at higher elevations adopt more conservative strategies, with trait networks showing increased modularity, edge density, and closer correlations among traits to enhance resource utilization. This study provides new insights into the adaptive strategies of spring ephemerals by demonstrating how plants allocate resources for growth and defense through the regulation of trait variation and correlations among traits.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1503169"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of molybdenum supply on crop performance through rhizosphere soil microbial diversity and metabolite variation.
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1519540
Muhammad Shoaib Rana, Dikhnah Alshehri, Rui-Long Wang, Muhammad Imran, Yousif Abdelrahman Yousif Abdellah, Faiz Ur Rahman, Marfat Alatawy, Hanaa Ghabban, Amany H A Abeed, Cheng-Xiao Hu

Molybdenum (Mo) deficiency is a global problem in acidic soils, limiting plant growth, development, and nutrient availability. To address this, we carried out a field study with two treatments, i.e., Mo applied (+Mo) and without Mo (-Mo) treatment to explore the effects of Mo application on crop growth and development, microbial diversity, and metabolite variations in maize and soybean cropping systems. Our results indicated that the nutrient availability (N, P, K) was higher under Mo supply leading to improved biological yield and nutrient uptake efficiency in both crops. Microbial community analysis revealed that Proteobacteria and Acidobacteria were the dominant phyla in Mo treated (+Mo) soils for both maize and soybean. Both these phyla accounted together 39.43% and 57.74% in -Mo and +Mo, respectively, in soybean rhizosphere soil, while they accounted for 44.51% and 46.64% in maize rhizosphere soil. This indicates more variations among the treatments in soybean soil compared to maize soil. At a lower taxonomic level, the diverse responses of the genera indicated the specific bacterial community adaptations to fertilization. Candidatus Koribacter and Kaistobacter were commonly significantly higher in both crops under Mo-applied conditions in both cropping systems. These taxa, sharing similar functions, could serve as potential markers for nutrient availability and soil fertility. Metabolite profiling revealed 8 and 10 significantly differential metabolites in maize and soybean, respectively, under +Mo treatment, highlighting the critical role of Mo in metabolite variation. Overall, these findings emphasize the importance of Mo in shaping soil microbial diversity by altering metabolite composition, which in turn may enhance the nutrient availability, nutrient uptake, and plant performance.

{"title":"Effect of molybdenum supply on crop performance through rhizosphere soil microbial diversity and metabolite variation.","authors":"Muhammad Shoaib Rana, Dikhnah Alshehri, Rui-Long Wang, Muhammad Imran, Yousif Abdelrahman Yousif Abdellah, Faiz Ur Rahman, Marfat Alatawy, Hanaa Ghabban, Amany H A Abeed, Cheng-Xiao Hu","doi":"10.3389/fpls.2024.1519540","DOIUrl":"10.3389/fpls.2024.1519540","url":null,"abstract":"<p><p>Molybdenum (Mo) deficiency is a global problem in acidic soils, limiting plant growth, development, and nutrient availability. To address this, we carried out a field study with two treatments, i.e., Mo applied (+Mo) and without Mo (-Mo) treatment to explore the effects of Mo application on crop growth and development, microbial diversity, and metabolite variations in maize and soybean cropping systems. Our results indicated that the nutrient availability (N, P, K) was higher under Mo supply leading to improved biological yield and nutrient uptake efficiency in both crops. Microbial community analysis revealed that <i>Proteobacteria</i> and <i>Acidobacteria</i> were the dominant phyla in Mo treated (+Mo) soils for both maize and soybean. Both these phyla accounted together 39.43% and 57.74% in -Mo and +Mo, respectively, in soybean rhizosphere soil, while they accounted for 44.51% and 46.64% in maize rhizosphere soil. This indicates more variations among the treatments in soybean soil compared to maize soil. At a lower taxonomic level, the diverse responses of the genera indicated the specific bacterial community adaptations to fertilization. <i>Candidatus Koribacter</i> and <i>Kaistobacter</i> were commonly significantly higher in both crops under Mo-applied conditions in both cropping systems. These taxa, sharing similar functions, could serve as potential markers for nutrient availability and soil fertility. Metabolite profiling revealed 8 and 10 significantly differential metabolites in maize and soybean, respectively, under +Mo treatment, highlighting the critical role of Mo in metabolite variation. Overall, these findings emphasize the importance of Mo in shaping soil microbial diversity by altering metabolite composition, which in turn may enhance the nutrient availability, nutrient uptake, and plant performance.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1519540"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association scan and candidate gene analysis for seed coat color in sesame (Sesamum indicum L.).
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI: 10.3389/fpls.2025.1541656
Mohammed Elsafy, Wafa Badawi, Ahmed Ibrahim, Elamin Hafiz Baillo, Prabin Bajgain, Tilal Sayed Abdelhalim, Mahbubjon Rahmatov

Introduction: Seed coat color in sesame is a crucial trait for breeding programs as it is closely associated with important characteristics such as oil content, protein levels, and disease resistance, which directly influence seed quality and market value.

Methods: This study investigates the genetic basis of seed coat color in 200 Sudanese sesame genotypes grown for two consecutive years through comprehensive phenotyping, genomic diversity analysis, genome-wide association studies (GWAS), and candidate gene discovery.

Results and discussion: Phenotypic analysis across two growing seasons revealed high heritability and significant correlations among color parameters (L*, a*, and b*), indicating strong genetic control over seed coat color. The genomic analysis identified distinct clusters among sesame accessions, with rapid linkage disequilibrium decay suggesting a high level of recombination. GWAS identified significant SNPs associated with seed coat color traits, revealing key genomic regions on chromosomes 3, 6, 9, 12, and 13. Candidate gene analysis highlighted several genes, including DOF zinc finger proteins and WRKY transcription factors, which may play essential roles in pigment biosynthesis pathways. These findings provide valuable insights for breeding programs to enhance desirable seed coat color traits in sesame.

{"title":"Genome-wide association scan and candidate gene analysis for seed coat color in sesame (<i>Sesamum indicum</i> L.).","authors":"Mohammed Elsafy, Wafa Badawi, Ahmed Ibrahim, Elamin Hafiz Baillo, Prabin Bajgain, Tilal Sayed Abdelhalim, Mahbubjon Rahmatov","doi":"10.3389/fpls.2025.1541656","DOIUrl":"10.3389/fpls.2025.1541656","url":null,"abstract":"<p><strong>Introduction: </strong>Seed coat color in sesame is a crucial trait for breeding programs as it is closely associated with important characteristics such as oil content, protein levels, and disease resistance, which directly influence seed quality and market value.</p><p><strong>Methods: </strong>This study investigates the genetic basis of seed coat color in 200 Sudanese sesame genotypes grown for two consecutive years through comprehensive phenotyping, genomic diversity analysis, genome-wide association studies (GWAS), and candidate gene discovery.</p><p><strong>Results and discussion: </strong>Phenotypic analysis across two growing seasons revealed high heritability and significant correlations among color parameters (L*, a*, and b*), indicating strong genetic control over seed coat color. The genomic analysis identified distinct clusters among sesame accessions, with rapid linkage disequilibrium decay suggesting a high level of recombination. GWAS identified significant SNPs associated with seed coat color traits, revealing key genomic regions on chromosomes 3, 6, 9, 12, and 13. Candidate gene analysis highlighted several genes, including <i>DOF</i> zinc finger proteins and <i>WRKY</i> transcription factors, which may play essential roles in pigment biosynthesis pathways. These findings provide valuable insights for breeding programs to enhance desirable seed coat color traits in sesame.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1541656"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of new powdery mildew resistant lines in garden pea (Pisum sativum L.) using induced mutagenesis and validation of resistance for the er1 and er2 gene through molecular markers.
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2024-01-01 DOI: 10.3389/fpls.2024.1501661
Akhilesh Sharma, Devinder Kumar Banyal, Vinod Janardan Dhole, Bansuli, Ranbir Singh Rana, Rajesh Kumar, Prabhat Kumar, Nimit Kumar, Srishti, Arshia Prashar, Vivek Singh, Anoushka Sharma

Powdery mildew (PM) caused by Erysiphie pisi Syd. is the most devastating disease of pea, affecting fresh pea production as well as the quality of the marketable harvest worldwide. The efforts were made to develop PM-resistant mutants of popular pea varieties "Lincoln" and "Azad P-1" through induced mutations by following gamma irradiation (300, 400, 500, and 600 Gy) and chemical mutagenesis, i.e., ethyl methane sulfonate (EMS) (0.3% and 0.4%). The screening of 13,868 M2 progenies at Kukumseri (summer season) followed by M3 generation at Palampur (winter season) resulted in the isolation of six putative PM-resistant mutants. The rigorous evaluation of these progenies under in vivo (field screening) and in vitro (artificial screening under greenhouse conditions and using the detached leaf assay method) conditions over the years resulted in the isolation of three PM-resistant mutants, viz., L-40-1014, L-0.3-139, and AP-0.3-129. SSR markers "PSMPSAD60 d" and "PSMPA5 c" linked to the er-1 gene indicated the presence of the "er1" gene in the mutant L-0.3-139 while the er-2 gene-linked SCAR marker "ScX171400" and SSR marker "AD141" indicated the probability of the "er-2" gene in mutant L-40-1014. The known markers linked to PM resistance genes could not be validated in the mutant AP-0.3-129, suggested to identify new markers linked to PM resistance. These PM-resistant mutants can be promising candidates as the new source of resistance for future pea breeding programs.

{"title":"Development of new powdery mildew resistant lines in garden pea (<i>Pisum sativum</i> L.) using induced mutagenesis and validation of resistance for the <i>er1</i> and <i>er2</i> gene through molecular markers.","authors":"Akhilesh Sharma, Devinder Kumar Banyal, Vinod Janardan Dhole, Bansuli, Ranbir Singh Rana, Rajesh Kumar, Prabhat Kumar, Nimit Kumar, Srishti, Arshia Prashar, Vivek Singh, Anoushka Sharma","doi":"10.3389/fpls.2024.1501661","DOIUrl":"10.3389/fpls.2024.1501661","url":null,"abstract":"<p><p>Powdery mildew (PM) caused by <i>Erysiphie pisi</i> Syd. is the most devastating disease of pea, affecting fresh pea production as well as the quality of the marketable harvest worldwide. The efforts were made to develop PM-resistant mutants of popular pea varieties \"Lincoln\" and \"Azad P-1\" through induced mutations by following gamma irradiation (300, 400, 500, and 600 Gy) and chemical mutagenesis, i.e., ethyl methane sulfonate (EMS) (0.3% and 0.4%). The screening of 13,868 M<sub>2</sub> progenies at Kukumseri (summer season) followed by M<sub>3</sub> generation at Palampur (winter season) resulted in the isolation of six putative PM-resistant mutants. The rigorous evaluation of these progenies under <i>in vivo</i> (field screening) and <i>in vitro</i> (artificial screening under greenhouse conditions and using the detached leaf assay method) conditions over the years resulted in the isolation of three PM-resistant mutants, viz., L-40-1014, L-0.3-139, and AP-0.3-129. SSR markers \"PSMPSAD60 d\" and \"PSMPA5 c\" linked to the <i>er-1</i> gene indicated the presence of the \"<i>er1</i>\" gene in the mutant L-0.3-139 while the <i>er-2</i> gene-linked SCAR marker \"ScX171400\" and SSR marker \"AD141\" indicated the probability of the \"<i>er-2</i>\" gene in mutant L-40-1014. The known markers linked to PM resistance genes could not be validated in the mutant AP-0.3-129, suggested to identify new markers linked to PM resistance. These PM-resistant mutants can be promising candidates as the new source of resistance for future pea breeding programs.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1501661"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maize transcriptome profiling reveals low temperatures affect photosynthesis during the emergence stage.
IF 4.1 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI: 10.3389/fpls.2025.1527447
Manja Božić, Dragana Ignjatović Micić, Violeta Anđelković, Nenad Delić, Ana Nikolić

Introduction: Earlier sowing is a promising strategy of ensuring sufficiently high maize yields in the face of negative environmental factors caused by climate change. However, it leads to the low temperature exposure of maize plants during emergence, warranting a better understanding of their response and acclimation to suboptimal temperatures.

Materials and methods: To achieve this goal, whole transcriptome sequencing was performed on two maize inbred lines - tolerant/susceptible to low temperatures, at the 5-day-old seedling stage. Sampling was performed after 6h and 24h of treatment (10/8°C). The data was filtered, mapped, and the identified mRNAs, lncRNAs, and circRNAs were quantified. Expression patterns of the RNAs, as well as the interactions between them, were analyzed to reveal the ones important for low-temperature response.

Results and discussion: Genes involved in different steps of photosynthesis were downregulated in both genotypes: psa, psb, lhc, and cab genes important for photosystem I and II functioning, as well as rca, prk, rbcx1 genes necessary for the Calvin cycle. The difference in low-temperature tolerance between genotypes appeared to arise from their ability to mitigate damage caused by photoinhibition: ctpa2, grx, elip, UF3GT genes showed higher expression in the tolerant genotype. Certain identified lncRNAs also targeted these genes, creating an interaction network induced by the treatment (XLOC_016169-rca; XLOC_002167-XLOC_006091-elip2). These findings shed light on the potential mechanisms of low-temperature acclimation during emergence and lay the groundwork for subsequent analyses across diverse maize genotypes and developmental stages. As such, it offers valuable guidance for future research directions in the molecular breeding of low-temperature tolerant maize.

{"title":"Maize transcriptome profiling reveals low temperatures affect photosynthesis during the emergence stage.","authors":"Manja Božić, Dragana Ignjatović Micić, Violeta Anđelković, Nenad Delić, Ana Nikolić","doi":"10.3389/fpls.2025.1527447","DOIUrl":"10.3389/fpls.2025.1527447","url":null,"abstract":"<p><strong>Introduction: </strong>Earlier sowing is a promising strategy of ensuring sufficiently high maize yields in the face of negative environmental factors caused by climate change. However, it leads to the low temperature exposure of maize plants during emergence, warranting a better understanding of their response and acclimation to suboptimal temperatures.</p><p><strong>Materials and methods: </strong>To achieve this goal, whole transcriptome sequencing was performed on two maize inbred lines - tolerant/susceptible to low temperatures, at the 5-day-old seedling stage. Sampling was performed after 6h and 24h of treatment (10/8°C). The data was filtered, mapped, and the identified mRNAs, lncRNAs, and circRNAs were quantified. Expression patterns of the RNAs, as well as the interactions between them, were analyzed to reveal the ones important for low-temperature response.</p><p><strong>Results and discussion: </strong>Genes involved in different steps of photosynthesis were downregulated in both genotypes: <i>psa, psb, lhc</i>, and <i>cab</i> genes important for photosystem I and II functioning, as well as <i>rca, prk, rbcx1</i> genes necessary for the Calvin cycle. The difference in low-temperature tolerance between genotypes appeared to arise from their ability to mitigate damage caused by photoinhibition: <i>ctpa2, grx, elip, UF3GT</i> genes showed higher expression in the tolerant genotype. Certain identified lncRNAs also targeted these genes, creating an interaction network induced by the treatment (XLOC_016169-<i>rca</i>; XLOC_002167-XLOC_006091-<i>elip2</i>). These findings shed light on the potential mechanisms of low-temperature acclimation during emergence and lay the groundwork for subsequent analyses across diverse maize genotypes and developmental stages. As such, it offers valuable guidance for future research directions in the molecular breeding of low-temperature tolerant maize.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1527447"},"PeriodicalIF":4.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Plant Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1