Pub Date : 2023-10-16DOI: 10.1142/s1793604723400283
Fatemeh Mollaamin, Majid Monajjemi
Al–Ga surface doped with chromium (Cr) is theoretically studied using first-principles density functional theory (DFT) at the CAM-B3LYP/EPR-III, LANL2DZ, 6-31+G(d,p) level of theory to explore the chemical adsorption and corrosion inhibition of organic carbenes through coating process. Crystal structure of Cr–(Al–Ga) surface was coated by S–&N–heterocyclic carbenes of benzotriazole (BTA), 2-mercaptobenzothiazole (2MBT), 8-hydroxyquinoline (8HQ) and 3-amino-1,2,4-triazole-5-thiol (ATR). The NMR spectroscopy of the adsorption of BTA, 2MBT, 8HQ, and ATR on the Cr-doped Al–Ga nanoalloy surface represents that this surface can be employed as the magnetic S–&N–heterocyclic carbene sensors. In fact, Cr site in Cr–(Al–Ga) nanoalloy surface has bigger interaction energy amount from Van der Waals’ forces with BTA, 2MBT, 8HQ, and ATR that might cause them large stable towards coating data on the nanosurface. It has been estimated that the criterion for choosing the surface linkage of S and N atoms in BTA, 2MBT, 8HQ, and ATR in adsorption sites can be impacted by the existence of close atoms of aluminum and gallium in the Cr–(Al–Ga) surface. The fluctuation of NQR has estimated the inhibiting role of BTA, 2MBT, 8HQ, and ATR for Cr -doped Al–Ga alloy nanosheet due to S and N atoms in the benzene cycle of heterocyclic carbenes being near the monolayer surface of ternary Cr–(Al–Ga) nanoalloy. Moreover, IR spectroscopy has exhibited that Cr-doped Al–Ga alloy nanosheet with the fluctuation in the frequency of intra-atomic interaction leads us to the most considerable influence in the vicinage elements generated due to inter-atomic interaction. Comparison to [Formula: see text]G[Formula: see text][Formula: see text] amounts versus dipole moment has illustrated a proper accord among measured parameters based on the rightness of the chosen isotherm for the adsorption steps of the formation of BTA @ Cr–(Al–Ga), 2MBT @ Cr–(Al–Ga), 8HQ @ Cr–(Al–Ga), and ATR @ Cr–(Al–Ga) complexes. Thus, the interval between sulfur, nitrogen, and oxygen atoms in BTA, 2MBT, 8HQ, and ATR during interaction with transition metal of Cr in Cr–(Al–Ga) nanoalloy, (N[Formula: see text] Cr, O[Formula: see text] Cr, S[Formula: see text] Cr), has been estimated with relation coefficient of [Formula: see text] = 0.9509. Thus, this paper exhibits the influence of Cr doped on the “Al–Ga” surface for adsorption of S–&N–heterocyclic carbenes of BTA, 2MBT, 8HQ, and ATR by using theoretical methods. Furthermore, the partial electron density or PDOS has estimated a certain charge assembly between Cr–(Al–Ga) and S–&N–heterocycles of BTA, 2MBT, 8HQ, and ATR which can remark that the complex dominant of metallic features and an exact degree of covalent traits can describe the augmenting of the sensitivity of Cr–(Al–Ga) surface as a potent sensor for adsorption of BTA, 2MBT, 8HQ, and ATR heterocycles. This work investigates the characteristics, band structure, and projected density of state (P
{"title":"Molecular Simulation of (Al-Ga) Surface Garnished with Chromium Metal for Organic Material Detecting: A DFT Study","authors":"Fatemeh Mollaamin, Majid Monajjemi","doi":"10.1142/s1793604723400283","DOIUrl":"https://doi.org/10.1142/s1793604723400283","url":null,"abstract":"Al–Ga surface doped with chromium (Cr) is theoretically studied using first-principles density functional theory (DFT) at the CAM-B3LYP/EPR-III, LANL2DZ, 6-31+G(d,p) level of theory to explore the chemical adsorption and corrosion inhibition of organic carbenes through coating process. Crystal structure of Cr–(Al–Ga) surface was coated by S–&N–heterocyclic carbenes of benzotriazole (BTA), 2-mercaptobenzothiazole (2MBT), 8-hydroxyquinoline (8HQ) and 3-amino-1,2,4-triazole-5-thiol (ATR). The NMR spectroscopy of the adsorption of BTA, 2MBT, 8HQ, and ATR on the Cr-doped Al–Ga nanoalloy surface represents that this surface can be employed as the magnetic S–&N–heterocyclic carbene sensors. In fact, Cr site in Cr–(Al–Ga) nanoalloy surface has bigger interaction energy amount from Van der Waals’ forces with BTA, 2MBT, 8HQ, and ATR that might cause them large stable towards coating data on the nanosurface. It has been estimated that the criterion for choosing the surface linkage of S and N atoms in BTA, 2MBT, 8HQ, and ATR in adsorption sites can be impacted by the existence of close atoms of aluminum and gallium in the Cr–(Al–Ga) surface. The fluctuation of NQR has estimated the inhibiting role of BTA, 2MBT, 8HQ, and ATR for Cr -doped Al–Ga alloy nanosheet due to S and N atoms in the benzene cycle of heterocyclic carbenes being near the monolayer surface of ternary Cr–(Al–Ga) nanoalloy. Moreover, IR spectroscopy has exhibited that Cr-doped Al–Ga alloy nanosheet with the fluctuation in the frequency of intra-atomic interaction leads us to the most considerable influence in the vicinage elements generated due to inter-atomic interaction. Comparison to [Formula: see text]G[Formula: see text][Formula: see text] amounts versus dipole moment has illustrated a proper accord among measured parameters based on the rightness of the chosen isotherm for the adsorption steps of the formation of BTA @ Cr–(Al–Ga), 2MBT @ Cr–(Al–Ga), 8HQ @ Cr–(Al–Ga), and ATR @ Cr–(Al–Ga) complexes. Thus, the interval between sulfur, nitrogen, and oxygen atoms in BTA, 2MBT, 8HQ, and ATR during interaction with transition metal of Cr in Cr–(Al–Ga) nanoalloy, (N[Formula: see text] Cr, O[Formula: see text] Cr, S[Formula: see text] Cr), has been estimated with relation coefficient of [Formula: see text] = 0.9509. Thus, this paper exhibits the influence of Cr doped on the “Al–Ga” surface for adsorption of S–&N–heterocyclic carbenes of BTA, 2MBT, 8HQ, and ATR by using theoretical methods. Furthermore, the partial electron density or PDOS has estimated a certain charge assembly between Cr–(Al–Ga) and S–&N–heterocycles of BTA, 2MBT, 8HQ, and ATR which can remark that the complex dominant of metallic features and an exact degree of covalent traits can describe the augmenting of the sensitivity of Cr–(Al–Ga) surface as a potent sensor for adsorption of BTA, 2MBT, 8HQ, and ATR heterocycles. This work investigates the characteristics, band structure, and projected density of state (P","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1142/s1793604723400325
Zengbao Sun, Xin Liu, Shengnian Tie, Changan Wang
In this paper, carbon particles with micro-and nano-particle size were synthesized through a hydrothermal reaction of glucose, namely C-1(123.1 nm), C-2(229.2 nm), C-3(335.1 nm), C-4(456.2 nm) and C-5(534.0 nm) with distinct sizes. We utilized five size carbon particles as individual fillers into the EHS matrix materials to prepare composite eutectic phase change materials (C/EHS PCMs) by melt blending technique. The impact of carbon particle size on the dispersion stability and thermal properties of Na2SO4 · 10H2O-Na2HPO4 · 12H2O (EHS) phase change materials was investigated. It is shown that adding 0.2wt% C-2 can decrease the supercooling degree of EHS to 1.5 ?C. The cyclic stability of C/EHS varies significantly depending on the size of carbon particles. The results of differential scanning calorimetry reveal that the incorporation of C-1, C-2, C-3, and C-4 into EHS lead to an enhancement of latent heat. The latent heat capacity of EHS with 0.2wt% C-2 is 243.4 J*g-1, and after undergoing 500 cycles of solid-liquid phase transition, the latent heat remained above 200 J*g-1. The C-2/EHS composite phase change material holds significant potential for advancing building insulation and solar energy storage technologies.
{"title":"Effect size of carbon micro-nanoparticles on cyclic stability and thermal performance of Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O-Na<sub>2</sub>HPO<sub>4</sub>·12H<sub>2</sub>O phase change materials","authors":"Zengbao Sun, Xin Liu, Shengnian Tie, Changan Wang","doi":"10.1142/s1793604723400325","DOIUrl":"https://doi.org/10.1142/s1793604723400325","url":null,"abstract":"In this paper, carbon particles with micro-and nano-particle size were synthesized through a hydrothermal reaction of glucose, namely C-1(123.1 nm), C-2(229.2 nm), C-3(335.1 nm), C-4(456.2 nm) and C-5(534.0 nm) with distinct sizes. We utilized five size carbon particles as individual fillers into the EHS matrix materials to prepare composite eutectic phase change materials (C/EHS PCMs) by melt blending technique. The impact of carbon particle size on the dispersion stability and thermal properties of Na2SO4 · 10H2O-Na2HPO4 · 12H2O (EHS) phase change materials was investigated. It is shown that adding 0.2wt% C-2 can decrease the supercooling degree of EHS to 1.5 ?C. The cyclic stability of C/EHS varies significantly depending on the size of carbon particles. The results of differential scanning calorimetry reveal that the incorporation of C-1, C-2, C-3, and C-4 into EHS lead to an enhancement of latent heat. The latent heat capacity of EHS with 0.2wt% C-2 is 243.4 J*g-1, and after undergoing 500 cycles of solid-liquid phase transition, the latent heat remained above 200 J*g-1. The C-2/EHS composite phase change material holds significant potential for advancing building insulation and solar energy storage technologies.","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135483456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.1142/s1793604723400271
Z. W. Dlamini, W. Setlalentoa, S. Vallabhapurapu, T. S. Mahule, V. S. Vallabhapurapu, O. A. Daramola, P. Tseki, Xavier Siwe Nondou, R. Krause
{"title":"Resistive Switching Properties of CdTe/CdSe Core-Shell Quantum Dots incorporated Organic Cow Milk for Memory Application","authors":"Z. W. Dlamini, W. Setlalentoa, S. Vallabhapurapu, T. S. Mahule, V. S. Vallabhapurapu, O. A. Daramola, P. Tseki, Xavier Siwe Nondou, R. Krause","doi":"10.1142/s1793604723400271","DOIUrl":"https://doi.org/10.1142/s1793604723400271","url":null,"abstract":"","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"4 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82262754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.1142/s1793604723510219
Jiawei Ji, H. Cui
{"title":"High electrochemical performance of cobalt ions-doped Ni3Se4 boosted by its highly conductive hierarchical framework","authors":"Jiawei Ji, H. Cui","doi":"10.1142/s1793604723510219","DOIUrl":"https://doi.org/10.1142/s1793604723510219","url":null,"abstract":"","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"6 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75656652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-11DOI: 10.1142/s1793604723510207
R. García-Estrada, A. Hernández-Palomares, Yadira G. Maldonado, J. Manríquez, F. Espejel Ayala
{"title":"Preparation of Ag/SAPO-34 zeolite photocatalyst","authors":"R. García-Estrada, A. Hernández-Palomares, Yadira G. Maldonado, J. Manríquez, F. Espejel Ayala","doi":"10.1142/s1793604723510207","DOIUrl":"https://doi.org/10.1142/s1793604723510207","url":null,"abstract":"","PeriodicalId":12701,"journal":{"name":"Functional Materials Letters","volume":"89 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75418896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}