首页 > 最新文献

Genetic Epidemiology最新文献

英文 中文
Bayesian multivariant fine mapping using the Laplace prior 利用拉普拉斯先验的贝叶斯多变量精细映射
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-02-05 DOI: 10.1002/gepi.22517
Kevin Walters, Hannuun Yaacob

Currently, the only effect size prior that is routinely implemented in a Bayesian fine-mapping multi-single-nucleotide polymorphism (SNP) analysis is the Gaussian prior. Here, we show how the Laplace prior can be deployed in Bayesian multi-SNP fine mapping studies. We compare the ranking performance of the posterior inclusion probability (PIP) using a Laplace prior with the ranking performance of the corresponding Gaussian prior and FINEMAP. Our results indicate that, for the simulation scenarios we consider here, the Laplace prior can lead to higher PIPs than either the Gaussian prior or FINEMAP, particularly for moderately sized fine-mapping studies. The Laplace prior also appears to have better worst-case scenario properties. We reanalyse the iCOGS case–control data from the CASP8 region on Chromosome 2. Even though this study has a total sample size of nearly 90,000 individuals, there are still some differences in the top few ranked SNPs if the Laplace prior is used rather than the Gaussian prior. R code to implement the Laplace (and Gaussian) prior is available at https://github.com/Kevin-walters/lapmapr.

目前,在贝叶斯精细映射多单核苷酸多态性(SNP)分析中常规实现的唯一效应大小先验是高斯先验。在这里,我们展示了如何在贝叶斯多snp精细映射研究中部署拉普拉斯先验。我们比较了使用拉普拉斯先验的后验包含概率(PIP)的排序性能与相应的高斯先验和FINEMAP的排序性能。我们的结果表明,对于我们在这里考虑的模拟场景,拉普拉斯先验可以导致比高斯先验或FINEMAP更高的pip,特别是对于中等规模的精细映射研究。拉普拉斯先验似乎也有更好的最坏情况性质。我们重新分析了来自2号染色体CASP8区域的iCOGS病例对照数据。尽管这项研究的总样本量接近9万人,但如果使用拉普拉斯先验而不是高斯先验,那么排名前几位的snp仍然存在一些差异。R代码实现拉普拉斯(和高斯)先验可在https://github.com/Kevin-walters/lapmapr。
{"title":"Bayesian multivariant fine mapping using the Laplace prior","authors":"Kevin Walters,&nbsp;Hannuun Yaacob","doi":"10.1002/gepi.22517","DOIUrl":"10.1002/gepi.22517","url":null,"abstract":"<p>Currently, the only effect size prior that is routinely implemented in a Bayesian fine-mapping multi-single-nucleotide polymorphism (SNP) analysis is the Gaussian prior. Here, we show how the Laplace prior can be deployed in Bayesian multi-SNP fine mapping studies. We compare the ranking performance of the posterior inclusion probability (PIP) using a Laplace prior with the ranking performance of the corresponding Gaussian prior and FINEMAP. Our results indicate that, for the simulation scenarios we consider here, the Laplace prior can lead to higher PIPs than either the Gaussian prior or FINEMAP, particularly for moderately sized fine-mapping studies. The Laplace prior also appears to have better worst-case scenario properties. We reanalyse the iCOGS case–control data from the CASP8 region on Chromosome 2. Even though this study has a total sample size of nearly 90,000 individuals, there are still some differences in the top few ranked SNPs if the Laplace prior is used rather than the Gaussian prior. R code to implement the Laplace (and Gaussian) prior is available at https://github.com/Kevin-walters/lapmapr.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 3","pages":"249-260"},"PeriodicalIF":2.1,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22517","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9120129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of effect modifiers of genetically predicted CETP reduction 基因预测CETP降低效应修饰因子的研究
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-01-26 DOI: 10.1002/gepi.22514
Marc-André Legault, Amina Barhdadi, Isabel Gamache, Audrey Lemaçon, Louis-Philippe Lemieux Perreault, Jean-Christophe Grenier, Marie-Pierre Sylvestre, Julie G. Hussin, David Rhainds, Jean-Claude Tardif, Marie-Pierre Dubé

Genetic variants in drug targets can be used to predict the long-term, on-target effect of drugs. Here, we extend this principle to assess how sex and body mass index may modify the effect of genetically predicted lower CETP levels on biomarkers and cardiovascular outcomes. We found sex and body mass index (BMI) to be modifiers of the association between genetically predicted lower CETP and lipid biomarkers in UK Biobank participants. Female sex and lower BMI were associated with higher high-density lipoprotein cholesterol and lower low-density lipoprotein cholesterol for the same genetically predicted reduction in CETP concentration. We found that sex also modulated the effect of genetically lower CETP on cholesterol efflux capacity in samples from the Montreal Heart Institute Biobank. However, these modifying effects did not extend to sex differences in cardiovascular outcomes in our data. Our results provide insight into the clinical effects of CETP inhibitors in the presence of effect modification based on genetic data. The approach can support precision medicine applications and help assess the external validity of clinical trials.

药物靶点的遗传变异可用于预测药物的长期靶向效应。在这里,我们扩展了这一原则,以评估性别和体重指数如何改变基因预测的较低CETP水平对生物标志物和心血管结局的影响。我们发现性别和体重指数(BMI)是英国生物银行参与者中遗传预测的较低CETP和脂质生物标志物之间关联的修饰因子。女性和较低的身体质量指数与较高的高密度脂蛋白胆固醇和较低的低密度脂蛋白胆固醇相关,同样的基因预测CETP浓度降低。我们在蒙特利尔心脏研究所生物银行的样本中发现,性别也调节了遗传性CETP较低对胆固醇外排能力的影响。然而,在我们的数据中,这些修饰效应并没有扩展到心血管结局的性别差异。我们的研究结果为CETP抑制剂的临床效果提供了基于遗传数据的效应修饰。该方法可以支持精准医学应用,并有助于评估临床试验的外部有效性。
{"title":"Study of effect modifiers of genetically predicted CETP reduction","authors":"Marc-André Legault,&nbsp;Amina Barhdadi,&nbsp;Isabel Gamache,&nbsp;Audrey Lemaçon,&nbsp;Louis-Philippe Lemieux Perreault,&nbsp;Jean-Christophe Grenier,&nbsp;Marie-Pierre Sylvestre,&nbsp;Julie G. Hussin,&nbsp;David Rhainds,&nbsp;Jean-Claude Tardif,&nbsp;Marie-Pierre Dubé","doi":"10.1002/gepi.22514","DOIUrl":"10.1002/gepi.22514","url":null,"abstract":"<p>Genetic variants in drug targets can be used to predict the long-term, on-target effect of drugs. Here, we extend this principle to assess how sex and body mass index may modify the effect of genetically predicted lower CETP levels on biomarkers and cardiovascular outcomes. We found sex and body mass index (BMI) to be modifiers of the association between genetically predicted lower CETP and lipid biomarkers in UK Biobank participants. Female sex and lower BMI were associated with higher high-density lipoprotein cholesterol and lower low-density lipoprotein cholesterol for the same genetically predicted reduction in CETP concentration. We found that sex also modulated the effect of genetically lower CETP on cholesterol efflux capacity in samples from the Montreal Heart Institute Biobank. However, these modifying effects did not extend to sex differences in cardiovascular outcomes in our data. Our results provide insight into the clinical effects of CETP inhibitors in the presence of effect modification based on genetic data. The approach can support precision medicine applications and help assess the external validity of clinical trials.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 2","pages":"198-212"},"PeriodicalIF":2.1,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22514","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9406442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint analysis of multiple phenotypes for extremely unbalanced case-control association studies 对极端不平衡病例-对照关联研究的多种表型进行联合分析
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-01-24 DOI: 10.1002/gepi.22513
Hongjing Xie, Xuewei Cao, Shuanglin Zhang, Qiuying Sha

In genome-wide association studies (GWAS) for thousands of phenotypes in biobanks, most binary phenotypes have substantially fewer cases than controls. Many widely used approaches for joint analysis of multiple phenotypes produce inflated type I error rates for such extremely unbalanced case-control phenotypes. In this research, we develop a method to jointly analyze multiple unbalanced case-control phenotypes to circumvent this issue. We first group multiple phenotypes into different clusters based on a hierarchical clustering method, then we merge phenotypes in each cluster into a single phenotype. In each cluster, we use the saddlepoint approximation to estimate the p value of an association test between the merged phenotype and a single nucleotide polymorphism (SNP) which eliminates the issue of inflated type I error rate of the test for extremely unbalanced case-control phenotypes. Finally, we use the Cauchy combination method to obtain an integrated p value for all clusters to test the association between multiple phenotypes and a SNP. We use extensive simulation studies to evaluate the performance of the proposed approach. The results show that the proposed approach can control type I error rate very well and is more powerful than other available methods. We also apply the proposed approach to phenotypes in category IX (diseases of the circulatory system) in the UK Biobank. We find that the proposed approach can identify more significant SNPs than the other viable methods we compared with.

在生物库中数千种表型的全基因组关联研究(GWAS)中,大多数二元表型的病例比对照组少得多。许多广泛使用的多种表型联合分析方法对这种极不平衡的病例对照表型产生了膨胀的I型错误率。在本研究中,我们开发了一种方法来联合分析多个不平衡的病例-对照表型来规避这一问题。我们首先基于分层聚类方法将多个表型分成不同的簇,然后将每个簇中的表型合并为单个表型。在每个聚类中,我们使用鞍点近似来估计合并表型和单核苷酸多态性(SNP)之间的关联检验的p值,这消除了极端不平衡病例对照表型检验的I型错误率过高的问题。最后,我们使用柯西组合方法获得所有群集的综合p值,以测试多个表型与SNP之间的关联。我们使用广泛的仿真研究来评估所提出方法的性能。结果表明,该方法可以很好地控制I类错误率,比现有的方法更强大。我们还将提出的方法应用于英国生物银行第九类(循环系统疾病)的表型。我们发现,与我们比较的其他可行方法相比,所提出的方法可以识别出更重要的snp。
{"title":"Joint analysis of multiple phenotypes for extremely unbalanced case-control association studies","authors":"Hongjing Xie,&nbsp;Xuewei Cao,&nbsp;Shuanglin Zhang,&nbsp;Qiuying Sha","doi":"10.1002/gepi.22513","DOIUrl":"10.1002/gepi.22513","url":null,"abstract":"<p>In genome-wide association studies (GWAS) for thousands of phenotypes in biobanks, most binary phenotypes have substantially fewer cases than controls. Many widely used approaches for joint analysis of multiple phenotypes produce inflated type I error rates for such extremely unbalanced case-control phenotypes. In this research, we develop a method to jointly analyze multiple unbalanced case-control phenotypes to circumvent this issue. We first group multiple phenotypes into different clusters based on a hierarchical clustering method, then we merge phenotypes in each cluster into a single phenotype. In each cluster, we use the saddlepoint approximation to estimate the <i>p</i> value of an association test between the merged phenotype and a single nucleotide polymorphism (SNP) which eliminates the issue of inflated type I error rate of the test for extremely unbalanced case-control phenotypes. Finally, we use the Cauchy combination method to obtain an integrated <i>p</i> value for all clusters to test the association between multiple phenotypes and a SNP. We use extensive simulation studies to evaluate the performance of the proposed approach. The results show that the proposed approach can control type I error rate very well and is more powerful than other available methods. We also apply the proposed approach to phenotypes in category IX (diseases of the circulatory system) in the UK Biobank. We find that the proposed approach can identify more significant SNPs than the other viable methods we compared with.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 2","pages":"185-197"},"PeriodicalIF":2.1,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9906667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deep learning identified genetic variants for COVID-19-related mortality among 28,097 affected cases in UK Biobank 深度学习在英国生物银行(UK Biobank)的28,097例受影响病例中发现了与covid -19相关死亡率的遗传变异
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-01-24 DOI: 10.1002/gepi.22515
Zihuan Liu, Wei Dai, Shiying Wang, Yisha Yao, Heping Zhang

Analysis of host genetic components provides insights into the susceptibility and response to viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). To reveal genetic determinants of susceptibility to COVID-19 related mortality, we train a deep learning model to identify groups of genetic variants and their interactions that contribute to the COVID-19 related mortality risk using the UK Biobank data (28,097 affected cases and 1656 deaths). We refer to such groups of variants as super variants. We identify 15 super variants with various levels of significance as susceptibility loci for COVID-19 mortality. Specifically, we identify a super variant (odds ratio [OR] = 1.594, p = 5.47 × 10−9) on Chromosome 7 that consists of the minor allele of rs76398985, rs6943608, rs2052130, 7:150989011_CT_C, rs118033050, and rs12540488. We also discover a super variant (OR = 1.353, p = 2.87 × 10−8) on Chromosome 5 that contains rs12517344, rs72733036, rs190052994, rs34723029, rs72734818, 5:9305797_GTA_G, and rs180899355.

对宿主遗传成分的分析可以深入了解对病毒感染的易感性和反应,例如导致2019冠状病毒病(COVID-19)的严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)。为了揭示COVID-19相关死亡率易感性的遗传决定因素,我们训练了一个深度学习模型,利用英国生物银行(UK Biobank)的数据(28,097例受影响病例和1656例死亡)来识别导致COVID-19相关死亡率风险的遗传变异组及其相互作用。我们把这样的变体组称为超级变体。我们确定了15个具有不同程度显著性的超级变异,作为COVID-19死亡率的易感性位点。具体来说,我们在7号染色体上发现了一个超级变异(优势比[OR] = 1.594, p = 5.47 × 10−9),由rs76398985、rs6943608、rs2052130、7:150989011_CT_C、rs118033050和rs12540488等小等位基因组成。我们还在5号染色体上发现了一个超级变异(OR = 1.353, p = 2.87 × 10−8),包含rs12517344、rs72733036、rs190052994、rs34723029、rs72734818、5:9305797_GTA_G和rs180899355。
{"title":"Deep learning identified genetic variants for COVID-19-related mortality among 28,097 affected cases in UK Biobank","authors":"Zihuan Liu,&nbsp;Wei Dai,&nbsp;Shiying Wang,&nbsp;Yisha Yao,&nbsp;Heping Zhang","doi":"10.1002/gepi.22515","DOIUrl":"10.1002/gepi.22515","url":null,"abstract":"<p>Analysis of host genetic components provides insights into the susceptibility and response to viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). To reveal genetic determinants of susceptibility to COVID-19 related mortality, we train a deep learning model to identify groups of genetic variants and their interactions that contribute to the COVID-19 related mortality risk using the UK Biobank data (28,097 affected cases and 1656 deaths). We refer to such groups of variants as super variants. We identify 15 super variants with various levels of significance as susceptibility loci for COVID-19 mortality. Specifically, we identify a super variant (odds ratio [OR] = 1.594, <i>p</i> = 5.47 × 10<sup>−9</sup>) on Chromosome 7 that consists of the minor allele of rs76398985, rs6943608, rs2052130, 7:150989011_CT_C, rs118033050, and rs12540488. We also discover a super variant (OR = 1.353, <i>p</i> = 2.87 × 10<sup>−8</sup>) on Chromosome 5 that contains rs12517344, rs72733036, rs190052994, rs34723029, rs72734818, 5:9305797_GTA_G, and rs180899355.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 3","pages":"215-230"},"PeriodicalIF":2.1,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22515","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9184940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weak and pleiotropy robust sex-stratified Mendelian randomization in the one sample and two sample settings 弱和多效性稳健性别分层孟德尔随机化在一个样本和两个样本设置
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2023-01-22 DOI: 10.1002/gepi.22512
Vasilios Karageorgiou, Jess Tyrrell, Trevelyan J. Mckinley, Jack Bowden

Background

Mendelian randomization (MR) leverages genetic data as an instrumental variable to provide estimates for the causal effect of an exposure X on a health outcome Y that is robust to confounding. Unfortunately, horizontal pleiotropy—the direct association of a genetic variant with multiple phenotypes—is highly prevalent and can easily render a genetic variant an invalid instrument.

Methods

Building on existing work, we propose a simple method for leveraging sex-specific genetic associations to perform weak and pleiotropy-robust MR analysis. This is achieved by constructing an MR estimator in which pleiotropy is perfectly removed by cancellation, while placing it within the powerful machinery of the robust adjusted profile score (MR-RAPS) method. Pleiotropy cancellation has the attractive property that it removes heterogeneity and therefore justifies a statistically efficient fixed effects model. We extend the method from the typical two-sample summary-data MR setting to the one-sample setting by adapting the technique of Collider-Correction. Simulation studies and applied examples are used to assess how the sex-stratified MR-RAPS estimator performs against other common approaches.

Results

The sex-stratified MR-RAPS method is shown to be robust to pleiotropy even in cases where all genetic variants violated the standard Instrument Strength Independent of Direct Effect assumption. In some cases where the strength of the pleiotropic effect additionally varied by sex (and so perfect cancellation was not achieved), over-dispersed MR-RAPS implementations can still consistently estimate the true causal effect. In applied analyses, we investigate the causal effect of waist-hip ratio (WHR), an important marker of central obesity, on a range of downstream traits. While the conventional approaches suggested paradoxical links between WHR and height and body mass index, the sex-stratified approach obtained a more realistic null effect. Nonzero effects were also detected for systolic and diastolic blood pressure as well as high-density and low-density lipoprotein cholesterol.

Discussion

We provide a simple but attractive method for weak and pleiotropy robust causal estimation of sexually dimorphic traits on downstream outcomes, by combining several existing approaches in a novel fashion.

孟德尔随机化(MR)利用遗传数据作为工具变量,对暴露X对健康结果Y的因果效应进行估计,该结果对混杂因素具有稳稳性。不幸的是,水平多效性——一种遗传变异与多种表型的直接关联——非常普遍,很容易使一种遗传变异成为无效的检测手段。方法在现有工作的基础上,我们提出了一种利用性别特异性遗传关联进行弱和多效性稳健MR分析的简单方法。这是通过构建一个MR估计器来实现的,其中多效性通过抵消完全去除,同时将其置于强大的鲁棒调整剖面评分(MR- raps)方法中。多效性消除具有吸引人的特性,它消除了异质性,因此证明了统计上有效的固定效应模型。我们采用碰撞校正技术,将该方法从典型的两样本汇总数据MR设置扩展到单样本设置。模拟研究和应用实例用于评估性别分层MR-RAPS估计器与其他常见方法相比的性能。结果性别分层MR-RAPS方法即使在所有遗传变异违反标准仪器强度独立于直接效应假设的情况下,也显示出对多效性的鲁棒性。在某些情况下,多效性效应的强度因性别而异(因此不能完全消除),过度分散的MR-RAPS实施仍然可以一致地估计真正的因果效应。在应用分析中,我们研究了腰臀比(WHR)对一系列下游性状的因果影响,WHR是中心性肥胖的重要标志。虽然传统的方法表明腰宽比与身高和体重指数之间存在矛盾的联系,但性别分层方法获得了更现实的零效应。对收缩压和舒张压以及高密度和低密度脂蛋白胆固醇也检测到非零影响。我们以一种新颖的方式结合几种现有的方法,提供了一种简单但有吸引力的方法,用于对两性二态性状对下游结果的弱和多效性稳健因果估计。
{"title":"Weak and pleiotropy robust sex-stratified Mendelian randomization in the one sample and two sample settings","authors":"Vasilios Karageorgiou,&nbsp;Jess Tyrrell,&nbsp;Trevelyan J. Mckinley,&nbsp;Jack Bowden","doi":"10.1002/gepi.22512","DOIUrl":"10.1002/gepi.22512","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Mendelian randomization (MR) leverages genetic data as an instrumental variable to provide estimates for the causal effect of an exposure <i>X</i> on a health outcome <i>Y</i> that is robust to confounding. Unfortunately, horizontal pleiotropy—the direct association of a genetic variant with multiple phenotypes—is highly prevalent and can easily render a genetic variant an invalid instrument.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Building on existing work, we propose a simple method for leveraging sex-specific genetic associations to perform weak and pleiotropy-robust MR analysis. This is achieved by constructing an MR estimator in which pleiotropy is perfectly removed by cancellation, while placing it within the powerful machinery of the robust adjusted profile score (MR-RAPS) method. Pleiotropy cancellation has the attractive property that it removes heterogeneity and therefore justifies a statistically efficient fixed effects model. We extend the method from the typical two-sample summary-data MR setting to the one-sample setting by adapting the technique of Collider-Correction. Simulation studies and applied examples are used to assess how the sex-stratified MR-RAPS estimator performs against other common approaches.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The sex-stratified MR-RAPS method is shown to be robust to pleiotropy even in cases where all genetic variants violated the standard Instrument Strength Independent of Direct Effect assumption. In some cases where the strength of the pleiotropic effect additionally varied by sex (and so perfect cancellation was not achieved), over-dispersed MR-RAPS implementations can still consistently estimate the true causal effect. In applied analyses, we investigate the causal effect of waist-hip ratio (WHR), an important marker of central obesity, on a range of downstream traits. While the conventional approaches suggested paradoxical links between WHR and height and body mass index, the sex-stratified approach obtained a more realistic null effect. Nonzero effects were also detected for systolic and diastolic blood pressure as well as high-density and low-density lipoprotein cholesterol.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Discussion</h3>\u0000 \u0000 <p>We provide a simple but attractive method for weak and pleiotropy robust causal estimation of sexually dimorphic traits on downstream outcomes, by combining several existing approaches in a novel fashion.</p>\u0000 </section>\u0000 </div>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 2","pages":"135-151"},"PeriodicalIF":2.1,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10816122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improved two-step testing of genome-wide gene–environment interactions 改进了全基因组基因-环境相互作用的两步检测
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2022-12-26 DOI: 10.1002/gepi.22509
Eric S. Kawaguchi, Andre E. Kim, Juan Pablo Lewinger, W. James Gauderman

Two-step tests for gene–environment (G� � ×� � E $Gtimes E$) interactions exploit marginal single-nucleotide polymorphism (SNP) effects to improve the power of a genome-wide interaction scan. They combine a screening step based on marginal effects used to “bin” SNPs for weighted hypothesis testing in the second step to deliver greater power over single-step tests while preserving the genome-wide Type I error. However, the presence of many SNPs with detectable marginal effects on the trait of interest can reduce power by “displacing” true interactions with weaker marginal effects and by adding to the number of tests that need to be corrected for multiple testing. We introduce a new significance-based allocation into bins for Step-2 G� � ×� � E $Gtimes E$ testing that overcomes the displacement issue and propose a computationally efficient approach to account for multiple testing within bins. Simulation results demonstrate that these simple improvements can provide substantially greater power than current methods under several scenarios. An application to a multistudy collaboration for understanding colorectal cancer reveals a G × Sex interaction located near the SMAD7 gene.

基因-环境(G × E$ G乘以E$)相互作用的两步测试利用边际单核苷酸多态性(SNP)效应来提高全基因组相互作用扫描的能力。他们在第二步中结合了基于边际效应的筛选步骤,用于“bin”snp加权假设检验,以提供比单步检验更大的能力,同时保留全基因组I型误差。然而,许多snp的存在对感兴趣的性状具有可检测到的边际效应,可以通过用较弱的边际效应"取代"真正的相互作用,以及通过增加需要为多次测试纠正的测试数量,从而降低功率。我们在步骤2 G × E$ G × E$测试中引入了一种新的基于显著性的分配方法,克服了位移问题,并提出了一种计算效率高的方法来解释箱内的多个测试。仿真结果表明,在几种情况下,这些简单的改进可以提供比当前方法更大的功率。一项用于了解结直肠癌的多研究合作应用揭示了位于SMAD7基因附近的G × Sex相互作用。
{"title":"Improved two-step testing of genome-wide gene–environment interactions","authors":"Eric S. Kawaguchi,&nbsp;Andre E. Kim,&nbsp;Juan Pablo Lewinger,&nbsp;W. James Gauderman","doi":"10.1002/gepi.22509","DOIUrl":"10.1002/gepi.22509","url":null,"abstract":"<p>Two-step tests for gene–environment (<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <mi>E</mi>\u0000 </mrow>\u0000 <annotation> $Gtimes E$</annotation>\u0000 </semantics></math>) interactions exploit marginal single-nucleotide polymorphism (SNP) effects to improve the power of a genome-wide interaction scan. They combine a screening step based on marginal effects used to “bin” SNPs for weighted hypothesis testing in the second step to deliver greater power over single-step tests while preserving the genome-wide Type I error. However, the presence of many SNPs with detectable marginal effects on the trait of interest can reduce power by “displacing” true interactions with weaker marginal effects and by adding to the number of tests that need to be corrected for multiple testing. We introduce a new significance-based allocation into bins for Step-2 <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 \u0000 <mo>×</mo>\u0000 \u0000 <mi>E</mi>\u0000 </mrow>\u0000 <annotation> $Gtimes E$</annotation>\u0000 </semantics></math> testing that overcomes the displacement issue and propose a computationally efficient approach to account for multiple testing within bins. Simulation results demonstrate that these simple improvements can provide substantially greater power than current methods under several scenarios. An application to a multistudy collaboration for understanding colorectal cancer reveals a <i>G</i> × Sex interaction located near the SMAD7 gene.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 2","pages":"152-166"},"PeriodicalIF":2.1,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10811874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient identification of trait-associated loss-of-function variants in the UK Biobank cohort by exome-sequencing based genotype imputation 通过基于外显子组测序的基因型插补,有效识别英国生物银行队列中与性状相关的功能丧失变异
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2022-12-09 DOI: 10.1002/gepi.22511
Wen-Yuan Yu, Shan-Shan Yan, Shu-Han Zhang, Jing-Jing Ni,  Bin-Li, Yu-Fang Pei, Lei Zhang

The large-scale open access whole-exome sequencing (WES) data of the UK Biobank ~200,000 participants is accelerating a new wave of genetic association studies aiming to identify rare and functional loss-of-function (LoF) variants associated with complex traits and diseases. We proposed to merge the WES genotypes and the genome-wide genotyping (GWAS) genotypes of 167,000 UKB homogeneous European participants into a combined reference panel, and then to impute 241,911 UKB homogeneous European participants who had the GWAS genotypes only. We then used the imputed data to replicate association identified in the discovery WES sample. The average imputation accuracy measure r2 is modest to high for LoF variants at all minor allele frequency intervals: 0.942 at MAF interval (0.01, 0.5), 0.807 at (1.0 × 10−3, 0.01), 0.805 at (1.0 × 10−4, 1.0 × 10−3), 0.664 at (1.0 × 10−5, 1.0 × 10−4) and 0.410 at (0, 1.0 × 10−5). As applications, we studied associations of LoF variants with estimated heel BMD and four lipid traits. In addition to replicating dozens of previously reported genes, we also identified three novel associations, two genes PLIN1 and ANGPTL3 for high-density-lipoprotein cholesterol and one gene PDE3B for triglycerides. Our results highlighted the strength of WES based genotype imputation as well as provided useful imputed data within the UKB cohort.

英国生物银行(UK Biobank)约20万参与者的大规模开放获取全外显子组测序(WES)数据正在加速新一轮的遗传关联研究,旨在识别与复杂性状和疾病相关的罕见和功能性功能丧失(LoF)变异。我们建议将167,000名UKB同质欧洲参与者的WES基因型和GWAS基因型合并为一个联合参考面板,然后推算出241,911名只有GWAS基因型的UKB同质欧洲参与者。然后,我们使用输入的数据来复制发现WES样本中确定的关联。在所有次要等位基因频率区间,LoF变异的平均输入精度测量r2从中等到高:在MAF区间(0.01,0.5)0.942,在(1.0 × 10−3,0.01)0.807,在(1.0 × 10−4,1.0 × 10−3)0.805,在(1.0 × 10−5,1.0 × 10−4)0.664,在(0,1.0 × 10−5)0.410。作为应用,我们研究了LoF变异与估计的足跟骨密度和四种脂质性状的关系。除了复制数十个先前报道的基因外,我们还发现了三个新的关联,两个基因PLIN1和ANGPTL3与高密度脂蛋白胆固醇有关,一个基因PDE3B与甘油三酯有关。我们的结果强调了基于WES的基因型估算的强度,并在UKB队列中提供了有用的估算数据。
{"title":"Efficient identification of trait-associated loss-of-function variants in the UK Biobank cohort by exome-sequencing based genotype imputation","authors":"Wen-Yuan Yu,&nbsp;Shan-Shan Yan,&nbsp;Shu-Han Zhang,&nbsp;Jing-Jing Ni,&nbsp; Bin-Li,&nbsp;Yu-Fang Pei,&nbsp;Lei Zhang","doi":"10.1002/gepi.22511","DOIUrl":"10.1002/gepi.22511","url":null,"abstract":"<p>The large-scale open access whole-exome sequencing (WES) data of the UK Biobank ~200,000 participants is accelerating a new wave of genetic association studies aiming to identify rare and functional loss-of-function (LoF) variants associated with complex traits and diseases. We proposed to merge the WES genotypes and the genome-wide genotyping (GWAS) genotypes of 167,000 UKB homogeneous European participants into a combined reference panel, and then to impute 241,911 UKB homogeneous European participants who had the GWAS genotypes only. We then used the imputed data to replicate association identified in the discovery WES sample. The average imputation accuracy measure <i>r</i><sup>2</sup> is modest to high for LoF variants at all minor allele frequency intervals: 0.942 at MAF interval (0.01, 0.5), 0.807 at (1.0 × 10<sup>−3</sup>, 0.01), 0.805 at (1.0 × 10<sup>−4</sup>, 1.0 × 10<sup>−3</sup>), 0.664 at (1.0 × 10<sup>−5</sup>, 1.0 × 10<sup>−4</sup>) and 0.410 at (0, 1.0 × 10<sup>−5</sup>). As applications, we studied associations of LoF variants with estimated heel BMD and four lipid traits. In addition to replicating dozens of previously reported genes, we also identified three novel associations, two genes <i>PLIN1</i> and <i>ANGPTL3</i> for high-density-lipoprotein cholesterol and one gene <i>PDE3B</i> for triglycerides. Our results highlighted the strength of WES based genotype imputation as well as provided useful imputed data within the UKB cohort.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 2","pages":"121-134"},"PeriodicalIF":2.1,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10854554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Methods for large-scale single mediator hypothesis testing: Possible choices and comparisons 大规模单一中介假设检验的方法:可能的选择和比较
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2022-12-05 DOI: 10.1002/gepi.22510
Jiacong Du, Xiang Zhou, Dylan Clark-Boucher, Wei Hao, Yongmei Liu, Jennifer A. Smith, Bhramar Mukherjee
<p>Mediation hypothesis testing for a large number of mediators is challenging due to the composite structure of the null hypothesis, <math> <semantics> <mrow> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>:</mo> <mi>α</mi> <mi>β</mi> <mo>=</mo> <mn>0</mn> </mrow> <annotation> ${H}_{0}:alpha beta =0$</annotation> </semantics></math> (<math> <semantics> <mrow> <mi>α</mi> </mrow> <annotation> $alpha $</annotation> </semantics></math>: effect of the exposure on the mediator after adjusting for confounders; <math> <semantics> <mrow> <mi>β</mi> </mrow> <annotation> $beta $</annotation> </semantics></math>: effect of the mediator on the outcome after adjusting for exposure and confounders). In this paper, we reviewed three classes of methods for large-scale one at a time mediation hypothesis testing. These methods are commonly used for continuous outcomes and continuous mediators assuming there is no exposure-mediator interaction so that the product <math> <semantics> <mrow> <mi>α</mi> <mi>β</mi> </mrow> <annotation> $alpha beta $</annotation> </semantics></math> has a causal interpretation as the indirect effect. The first class of methods ignores the impact of different structures under the composite null hypothesis, namely, (1) <math> <semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>β</mi> <mo>≠</mo> <mn>0</mn> </mrow> <annotation> $alpha =0,beta ne 0$</annotation> </semantics></math>; (2) <math> <semantics> <mrow> <mi>α</mi> <mo>≠</mo> <mn>0</mn> <mo>,</mo> <mi>β</mi> <mo>=</mo> <mn>0</mn> </mrow>
由于零假设h0的复合结构,对大量中介的中介假设检验具有挑战性:α β = 0 ${H}_{0}:alpha beta =0$ (α $alpha $:调整混杂因素后暴露对介质的影响;β $beta $:调整暴露和混杂因素后,介质对结果的影响)。在本文中,我们回顾了大规模一次中介假设检验的三种方法。这些方法通常用于连续结果和连续介质,假设没有暴露-介质相互作用,因此产品α β $alpha beta $作为间接效应具有因果解释。第一类方法忽略了复合零假设下不同结构的影响,即(1)α = 0;β≠0 $alpha =0,beta ne 0$;(2) α≠0,β = 0 $alpha ne 0,beta =0$;(3) α = β = 0 $alpha =beta =0$。第二类方法对每一种情况下的引用分布进行加权,形成混合引用分布。第三类利用在每一种null情况下得到的三个p值构造一个复合检验统计量,使复合统计量的参考分布近似为U (0);1) $U(0,1)$。在这些现有方法的基础上,我们开发了Sobel-comp方法,属于第二类,它使用一个修正的Sobel检验统计量的混合参考分布。我们进行了广泛的模拟研究,以比较属于这三种类别的所有六种方法在零假设下的假阳性率(fpr)和替代假设下的真阳性率。我们发现,在零假设下,使用混合参考分布的第二类方法可以最好地将fpr保持在名义水平上,并且在备择假设下具有最大的真阳性率。我们使用来自多种族动脉粥样硬化研究(MESA)的数据,应用所有方法研究DNA甲基化位点在成人社会经济地位到糖化血红蛋白水平通路中的中介机制。我们提供了在实践中选择最佳中介假设检验方法的指南,并在CRAN上开发了一个R包medScan,用于实现所有六种方法。
{"title":"Methods for large-scale single mediator hypothesis testing: Possible choices and comparisons","authors":"Jiacong Du,&nbsp;Xiang Zhou,&nbsp;Dylan Clark-Boucher,&nbsp;Wei Hao,&nbsp;Yongmei Liu,&nbsp;Jennifer A. Smith,&nbsp;Bhramar Mukherjee","doi":"10.1002/gepi.22510","DOIUrl":"10.1002/gepi.22510","url":null,"abstract":"&lt;p&gt;Mediation hypothesis testing for a large number of mediators is challenging due to the composite structure of the null hypothesis, &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 \u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; ${H}_{0}:alpha beta =0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $alpha $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;: effect of the exposure on the mediator after adjusting for confounders; &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $beta $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;: effect of the mediator on the outcome after adjusting for exposure and confounders). In this paper, we reviewed three classes of methods for large-scale one at a time mediation hypothesis testing. These methods are commonly used for continuous outcomes and continuous mediators assuming there is no exposure-mediator interaction so that the product &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 \u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $alpha beta $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; has a causal interpretation as the indirect effect. The first class of methods ignores the impact of different structures under the composite null hypothesis, namely, (1) &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;≠&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $alpha =0,beta ne 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;; (2) &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;≠&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 \u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 \u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 \u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 \u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 ","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 2","pages":"167-184"},"PeriodicalIF":2.1,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9762740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Adaptive Bayesian variable clustering via structural learning of breast cancer data 基于乳腺癌数据结构学习的自适应贝叶斯变量聚类
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2022-11-15 DOI: 10.1002/gepi.22507
Riddhi Pratim Ghosh, Arnab K. Maity, Mohsen Pourahmadi, Bani K. Mallick

The clustering of proteins is of interest in cancer cell biology. This article proposes a hierarchical Bayesian model for protein (variable) clustering hinging on correlation structure. Starting from a multivariate normal likelihood, we enforce the clustering through prior modeling using angle-based unconstrained reparameterization of correlations and assume a truncated Poisson distribution (to penalize a large number of clusters) as prior on the number of clusters. The posterior distributions of the parameters are not in explicit form and we use a reversible jump Markov chain Monte Carlo based technique is used to simulate the parameters from the posteriors. The end products of the proposed method are estimated cluster configuration of the proteins (variables) along with the number of clusters. The Bayesian method is flexible enough to cluster the proteins as well as estimate the number of clusters. The performance of the proposed method has been substantiated with extensive simulation studies and one protein expression data with a hereditary disposition in breast cancer where the proteins are coming from different pathways.

蛋白质的聚类在癌细胞生物学中引起了人们的兴趣。本文提出了一种基于相关结构的蛋白质(变量)聚类的层次贝叶斯模型。从多元正态似然开始,我们通过使用基于角度的无约束相关性重新参数化的先验建模来强制聚类,并假设截断泊松分布(惩罚大量聚类)作为聚类数量的先验。参数的后验分布不是显式的,我们使用可逆跳跃马尔可夫链蒙特卡罗技术从后验模拟参数。该方法的最终产物是蛋白质(变量)的估计簇配置以及簇的数量。贝叶斯方法足够灵活,可以对蛋白质进行聚类,也可以估计聚类的数量。所提出的方法的性能已经证实了广泛的模拟研究和一个蛋白质表达数据与乳腺癌的遗传倾向,其中蛋白质来自不同的途径。
{"title":"Adaptive Bayesian variable clustering via structural learning of breast cancer data","authors":"Riddhi Pratim Ghosh,&nbsp;Arnab K. Maity,&nbsp;Mohsen Pourahmadi,&nbsp;Bani K. Mallick","doi":"10.1002/gepi.22507","DOIUrl":"10.1002/gepi.22507","url":null,"abstract":"<p>The clustering of proteins is of interest in cancer cell biology. This article proposes a hierarchical Bayesian model for protein (variable) clustering hinging on correlation structure. Starting from a multivariate normal likelihood, we enforce the clustering through prior modeling using angle-based unconstrained reparameterization of correlations and assume a truncated Poisson distribution (to penalize a large number of clusters) as prior on the number of clusters. The posterior distributions of the parameters are not in explicit form and we use a reversible jump Markov chain Monte Carlo based technique is used to simulate the parameters from the posteriors. The end products of the proposed method are estimated cluster configuration of the proteins (variables) along with the number of clusters. The Bayesian method is flexible enough to cluster the proteins as well as estimate the number of clusters. The performance of the proposed method has been substantiated with extensive simulation studies and one protein expression data with a hereditary disposition in breast cancer where the proteins are coming from different pathways.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 1","pages":"95-104"},"PeriodicalIF":2.1,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10718634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate analysis of a missense variant in CREBRF reveals associations with measures of adiposity in people of Polynesian ancestries 对CREBRF错义变体的多变量分析揭示了与波利尼西亚祖先人群肥胖测量的关联
IF 2.1 4区 医学 Q3 GENETICS & HEREDITY Pub Date : 2022-11-09 DOI: 10.1002/gepi.22508
Jerry Z. Zhang, Lacey W. Heinsberg, Mohanraj Krishnan, Nicola L. Hawley, Tanya J. Major, Jenna C. Carlson, Jennie Harré Hindmarsh, Huti Watson, Muhammad Qasim, Lisa K. Stamp, Nicola Dalbeth, Rinki Murphy, Guangyun Sun, Hong Cheng, Take Naseri, Muagututi'a S. Reupena, Erin E. Kershaw, Ranjan Deka, Stephen T. McGarvey, Ryan L. Minster, Tony R. Merriman, Daniel E. Weeks

The minor allele of rs373863828, a missense variant in CREB3 Regulatory Factor, is associated with several cardiometabolic phenotypes in Polynesian peoples. To better understand the variant, we tested the association of rs373863828 with a panel of correlated phenotypes (body mass index [BMI], weight, height, HDL cholesterol, triglycerides, and total cholesterol) using multivariate Bayesian association and network analyses in a Samoa cohort (n = 1632), Aotearoa New Zealand cohort (n = 1419), and combined cohort (n = 2976). An expanded set of phenotypes (adding estimated fat and fat-free mass, abdominal circumference, hip circumference, and abdominal-hip ratio) was tested in the Samoa cohort (n = 1496). In the Samoa cohort, we observed significant associations (log10 Bayes Factor [BF] ≥ 5.0) between rs373863828 and the overall phenotype panel (8.81), weight (8.30), and BMI (6.42). In the Aotearoa New Zealand cohort, we observed suggestive associations (1.5 < log10BF < 5) between rs373863828 and the overall phenotype panel (4.60), weight (3.27), and BMI (1.80). In the combined cohort, we observed concordant signals with larger log10BFs. In the Samoa-specific expanded phenotype analyses, we also observed significant associations between rs373863828 and fat mass (5.65), abdominal circumference (5.34), and hip circumference (5.09). Bayesian networks provided evidence for a direct association of rs373863828 with weight and indirect associations with height and BMI.

CREB3调节因子错义变体rs373863828的次要等位基因与波利尼西亚人的几种心脏代谢表型相关。为了更好地了解该变异,我们在萨摩亚队列(n = 1632)、新西兰Aotearoa队列(n = 1419)和联合队列(n = 2976)中使用多变量贝叶斯关联和网络分析测试了rs373863828与一组相关表型(体重指数[BMI]、体重、身高、高密度脂蛋白胆固醇、甘油三酯和总胆固醇)的相关性。在萨摩亚队列(n = 1496)中测试了一组扩展的表型(增加了估计的脂肪和无脂肪质量、腹围、臀围和腹臀比)。在萨摩亚队列中,我们观察到rs373863828与总体表型面板(8.81)、体重(8.30)和BMI(6.42)之间存在显著相关性(log10贝叶斯因子[BF]≥5.0)。在Aotearoa新西兰队列中,我们观察到rs373863828与整体表型面板(4.60)、体重(3.27)和BMI(1.80)之间存在提示关联(1.5 < log10BF < 5)。在联合队列中,我们观察到具有较大log10BFs的一致信号。在萨摩亚特异性扩展表型分析中,我们还观察到rs373863828与脂肪量(5.65)、腹围(5.34)和臀围(5.09)之间存在显著关联。贝叶斯网络提供了rs373863828与体重直接相关,与身高和BMI间接相关的证据。
{"title":"Multivariate analysis of a missense variant in CREBRF reveals associations with measures of adiposity in people of Polynesian ancestries","authors":"Jerry Z. Zhang,&nbsp;Lacey W. Heinsberg,&nbsp;Mohanraj Krishnan,&nbsp;Nicola L. Hawley,&nbsp;Tanya J. Major,&nbsp;Jenna C. Carlson,&nbsp;Jennie Harré Hindmarsh,&nbsp;Huti Watson,&nbsp;Muhammad Qasim,&nbsp;Lisa K. Stamp,&nbsp;Nicola Dalbeth,&nbsp;Rinki Murphy,&nbsp;Guangyun Sun,&nbsp;Hong Cheng,&nbsp;Take Naseri,&nbsp;Muagututi'a S. Reupena,&nbsp;Erin E. Kershaw,&nbsp;Ranjan Deka,&nbsp;Stephen T. McGarvey,&nbsp;Ryan L. Minster,&nbsp;Tony R. Merriman,&nbsp;Daniel E. Weeks","doi":"10.1002/gepi.22508","DOIUrl":"10.1002/gepi.22508","url":null,"abstract":"<p>The minor allele of rs373863828, a missense variant in CREB3 Regulatory Factor, is associated with several cardiometabolic phenotypes in Polynesian peoples. To better understand the variant, we tested the association of rs373863828 with a panel of correlated phenotypes (body mass index [BMI], weight, height, HDL cholesterol, triglycerides, and total cholesterol) using multivariate Bayesian association and network analyses in a Samoa cohort (<i>n</i> = 1632), Aotearoa New Zealand cohort (<i>n</i> = 1419), and combined cohort (<i>n</i> = 2976). An expanded set of phenotypes (adding estimated fat and fat-free mass, abdominal circumference, hip circumference, and abdominal-hip ratio) was tested in the Samoa cohort (<i>n</i> = 1496). In the Samoa cohort, we observed significant associations (log<sub>10</sub> Bayes Factor [BF] ≥ 5.0) between rs373863828 and the overall phenotype panel (8.81), weight (8.30), and BMI (6.42). In the Aotearoa New Zealand cohort, we observed suggestive associations (1.5 &lt; log<sub>10</sub>BF &lt; 5) between rs373863828 and the overall phenotype panel (4.60), weight (3.27), and BMI (1.80). In the combined cohort, we observed concordant signals with larger log<sub>10</sub>BFs. In the Samoa-specific expanded phenotype analyses, we also observed significant associations between rs373863828 and fat mass (5.65), abdominal circumference (5.34), and hip circumference (5.09). Bayesian networks provided evidence for a direct association of rs373863828 with weight and indirect associations with height and BMI.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 1","pages":"105-118"},"PeriodicalIF":2.1,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9162994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genetic Epidemiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1