Yucheng Wei, Mingming Wang, R. A. Viscarra Rossel, Hong Chen, Zhongkui Luo
Soil organic carbon (SOC) stock exhibits substantial variability across spatial scales and depths. Drivers of such variability may be scale- and depth-dependent, but have been rarely systematically investigated. Assessing SOC measurements of 113,013 soil profiles worldwide, we show that climate, encompassing mean modern- and paleo-climate and climate extremes, is the predominant determinant across scales (from 50 km to the globe) and depths, explaining 34%–62% of the spatial variability of SOC stocks depending on the spatial scale and soil depth layer assessed. On finer scales (50–100 km), soil properties and mean modern- and paleo-climate are dominant in all soil depth layers. At broader scales (>100 km), the significance of climate extremes intensifies, alone explaining 27%–32% of the spatial variability of SOC stocks. Furthermore, we find nonlinear relationships of SOC stocks with most factors, while the relationship with the same factor is distinct across scales and depths. These results reinforce climate, particularly extremes, as the primary driving force of whole-soil carbon distribution across the globe, emphasizing the need to factor extremes into carbon management strategies.
{"title":"Extreme Climate as the Primary Control of Global Soil Organic Carbon Across Spatial Scales","authors":"Yucheng Wei, Mingming Wang, R. A. Viscarra Rossel, Hong Chen, Zhongkui Luo","doi":"10.1029/2024GB008200","DOIUrl":"https://doi.org/10.1029/2024GB008200","url":null,"abstract":"<p>Soil organic carbon (SOC) stock exhibits substantial variability across spatial scales and depths. Drivers of such variability may be scale- and depth-dependent, but have been rarely systematically investigated. Assessing SOC measurements of 113,013 soil profiles worldwide, we show that climate, encompassing mean modern- and paleo-climate and climate extremes, is the predominant determinant across scales (from 50 km to the globe) and depths, explaining 34%–62% of the spatial variability of SOC stocks depending on the spatial scale and soil depth layer assessed. On finer scales (50–100 km), soil properties and mean modern- and paleo-climate are dominant in all soil depth layers. At broader scales (>100 km), the significance of climate extremes intensifies, alone explaining 27%–32% of the spatial variability of SOC stocks. Furthermore, we find nonlinear relationships of SOC stocks with most factors, while the relationship with the same factor is distinct across scales and depths. These results reinforce climate, particularly extremes, as the primary driving force of whole-soil carbon distribution across the globe, emphasizing the need to factor extremes into carbon management strategies.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel J. Ford, Josh Blannin, Jennifer Watts, Andrew J. Watson, Peter Landschützer, Annika Jersild, Jamie D. Shutler
Increasing anthropogenic CO2 emissions to the atmosphere are partially sequestered into the global oceans through the air-sea exchange of CO2 and its subsequent movement to depth, commonly referred to as the global ocean carbon sink. Quantifying this ocean carbon sink provides a key component for closing the global carbon budget, which is used to inform and guide policy decisions. These estimates are typically accompanied by an uncertainty budget built by selecting what are perceived as critical uncertainty components based on selective experimentation. However, there is a growing realization that these budgets are incomplete and may be underestimated, which limits their power as a constraint within global budgets. In this study, we present a methodology for quantifying spatially and temporally varying uncertainties in the air-sea CO2 flux calculations for the fCO2-product based assessments that allows an exhaustive assessment of all known sources of uncertainties, including decorrelation length scales between gridded measurements, and the approach follows standard uncertainty propagation methodologies. The resulting standard uncertainties are higher than previously suggested budgets, but the component contributions are largely consistent with previous work. The uncertainties presented in this study identify how the significance and importance of key components change in space and time. For an exemplar method (the UExP-FNN-U method), the work identifies that we can currently estimate the annual ocean carbon sink to a precision of ±0.70 Pg C yr−1 (1σ uncertainty). Because this method has been built on established uncertainty propagation and approaches, it appears that applicable to all fCO2-product assessments of the ocean carbon sink.
大气中不断增加的人为二氧化碳排放量通过二氧化碳的海气交换及其随后向深海的移动被部分封存到全球海洋中,这就是通常所说的全球海洋碳汇。对海洋碳汇进行量化是关闭全球碳预算的一个关键组成部分,用于为政策决策提供信息和指导。这些估算通常伴随着不确定性预算,不确定性预算是在选择性实验的基础上选择被认为是关键的不确定性成分而建立的。然而,越来越多的人意识到这些预算是不完整的,可能被低估了,这限制了它们在全球预算中的约束作用。在本研究中,我们提出了一种方法,用于量化基于 fCO2 产品评估的空气-海洋 CO2 通量计算中空间和时间变化的不确定性,该方法允许对所有已知的不确定性来源进行详尽评估,包括网格测量之间的相关长度尺度,并且该方法遵循标准的不确定性传播方法。由此得出的标准不确定性高于之前建议的预算,但各组成部分的贡献与之前的工作基本一致。本研究提出的不确定性确定了关键要素的重要性在空间和时间上的变化。对于一种示例方法(UExP-FNN-U 方法),研究发现我们目前可以估算出每年海洋碳汇的精度为 ±0.70 Pg C yr-1(不确定性为 1σ)。由于该方法建立在既定的不确定性传播和方法之上,因此似乎适用于对海洋碳汇的所有 fCO2 产物评估。
{"title":"A Comprehensive Analysis of Air-Sea CO2 Flux Uncertainties Constructed From Surface Ocean Data Products","authors":"Daniel J. Ford, Josh Blannin, Jennifer Watts, Andrew J. Watson, Peter Landschützer, Annika Jersild, Jamie D. Shutler","doi":"10.1029/2024GB008188","DOIUrl":"https://doi.org/10.1029/2024GB008188","url":null,"abstract":"<p>Increasing anthropogenic CO<sub>2</sub> emissions to the atmosphere are partially sequestered into the global oceans through the air-sea exchange of CO<sub>2</sub> and its subsequent movement to depth, commonly referred to as the global ocean carbon sink. Quantifying this ocean carbon sink provides a key component for closing the global carbon budget, which is used to inform and guide policy decisions. These estimates are typically accompanied by an uncertainty budget built by selecting what are perceived as critical uncertainty components based on selective experimentation. However, there is a growing realization that these budgets are incomplete and may be underestimated, which limits their power as a constraint within global budgets. In this study, we present a methodology for quantifying spatially and temporally varying uncertainties in the air-sea CO<sub>2</sub> flux calculations for the <i>f</i>CO<sub>2</sub>-product based assessments that allows an exhaustive assessment of all known sources of uncertainties, including decorrelation length scales between gridded measurements, and the approach follows standard uncertainty propagation methodologies. The resulting standard uncertainties are higher than previously suggested budgets, but the component contributions are largely consistent with previous work. The uncertainties presented in this study identify how the significance and importance of key components change in space and time. For an exemplar method (the UExP-FNN-U method), the work identifies that we can currently estimate the annual ocean carbon sink to a precision of ±0.70 Pg C yr<sup>−1</sup> (1σ uncertainty). Because this method has been built on established uncertainty propagation and approaches, it appears that applicable to all <i>f</i>CO<sub>2</sub>-product assessments of the ocean carbon sink.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fida Mohammad Sahil, Mukund Narayanan, Idhayachandhiran Ilampooranan
Rice cultivation produces methane (CH4) due to anaerobic conditions induced by flood irrigation, significantly contributing to global warming. While most studies use national emission factors (EFs), our study synthesized 726 published measurements across India (the second largest methane emitter after China) to develop district-level water regime-specific EFs for estimating district-scale emissions and warming potential. CH4 emissions from Indian rice fields increased from 3.7 (3.4–4.1) Tg to 4.8 (4.4–5.3) Tg during 1966–2017, driven by rice area and water-regime variations. Meanwhile, district-level emissions increased by ∼930%, influenced by management practices such as animal manure, fertilizer application, and water input, accurately reflecting regional variations compared to previous estimates. Employing a novel muti-output random forest mitigation model (R2 ∼ 0.9), we found that a 25% warming reduction at the district-level requires curtailing animal manure, nitrogen fertilizer, and water input by 8.5%, 12.9%, and 10.9%, respectively. These curtailments nearly double for a 50% mitigation scenario. Comparing our emissions with previous bottom-up studies (used as inputs in global climate models) revealed discrepancies in prior national figures. With top-down estimates, our emissions correlated positively, suggesting higher reliability. Including our new regionally validated data in global climate models may provide more accurate climate projections at the Indian and global scales.
{"title":"Setting Up Methane Mitigation Measures for Indian Rice Fields: Representative Emissions and New Interpretations","authors":"Fida Mohammad Sahil, Mukund Narayanan, Idhayachandhiran Ilampooranan","doi":"10.1029/2024GB008107","DOIUrl":"https://doi.org/10.1029/2024GB008107","url":null,"abstract":"<p>Rice cultivation produces methane (CH<sub>4</sub>) due to anaerobic conditions induced by flood irrigation, significantly contributing to global warming. While most studies use national emission factors (EFs), our study synthesized 726 published measurements across India (the second largest methane emitter after China) to develop district-level water regime-specific EFs for estimating district-scale emissions and warming potential. CH<sub>4</sub> emissions from Indian rice fields increased from 3.7 (3.4–4.1) Tg to 4.8 (4.4–5.3) Tg during 1966–2017, driven by rice area and water-regime variations. Meanwhile, district-level emissions increased by ∼930%, influenced by management practices such as animal manure, fertilizer application, and water input, accurately reflecting regional variations compared to previous estimates. Employing a novel muti-output random forest mitigation model (<i>R</i><sup>2</sup> ∼ 0.9), we found that a 25% warming reduction at the district-level requires curtailing animal manure, nitrogen fertilizer, and water input by 8.5%, 12.9%, and 10.9%, respectively. These curtailments nearly double for a 50% mitigation scenario. Comparing our emissions with previous bottom-up studies (used as inputs in global climate models) revealed discrepancies in prior national figures. With top-down estimates, our emissions correlated positively, suggesting higher reliability. Including our new regionally validated data in global climate models may provide more accurate climate projections at the Indian and global scales.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Hugelius, J. Ramage, E. Burke, A. Chatterjee, T. L. Smallman, T. Aalto, A. Bastos, C. Biasi, J. G. Canadell, N. Chandra, F. Chevallier, P. Ciais, J. Chang, L. Feng, M. W. Jones, T. Kleinen, M. Kuhn, R. Lauerwald, J. Liu, E. López-Blanco, I. T. Luijkx, M. E. Marushchak, S. M. Natali, Y. Niwa, D. Olefeldt, P. I. Palmer, P. K. Patra, W. Peters, S. Potter, B. Poulter, B. M. Rogers, W. J. Riley, M. Saunois, E. A. G. Schuur, R. L. Thompson, C. Treat, A. Tsuruta, M. R. Turetsky, A.-M. Virkkala, C. Voigt, J. Watts, Q. Zhu, B. Zheng
Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present-day greenhouse gas (GHG) budgets. We compare bottom-up (data-driven upscaling and process-based models) and top-down (atmospheric inversion models) budgets of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom-up approaches estimate higher land-to-atmosphere fluxes for all GHGs. Both bottom-up and top-down approaches show a sink of CO2 in natural ecosystems (bottom-up: −29 (−709, 455), top-down: −587 (−862, −312) Tg CO2-C yr−1) and sources of CH4 (bottom-up: 38 (22, 53), top-down: 15 (11, 18) Tg CH4-C yr−1) and N2O (bottom-up: 0.7 (0.1, 1.3), top-down: 0.09 (−0.19, 0.37) Tg N2O-N yr−1). The combined global warming potential of all three gases (GWP-100) cannot be distinguished from neutral. Over shorter timescales (GWP-20), the region is a net GHG source because CH4 dominates the total forcing. The net CO2 sink in Boreal forests and wetlands is largely offset by fires and inland water CO2 emissions as well as CH4 emissions from wetlands and inland waters, with a smaller contribution from N2O emissions. Priorities for future research include the representation of inland waters in process-based models and the compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well-distributed in situ GHG measurements and improved resolution in upscaling techniques.
{"title":"Permafrost Region Greenhouse Gas Budgets Suggest a Weak CO2 Sink and CH4 and N2O Sources, But Magnitudes Differ Between Top-Down and Bottom-Up Methods","authors":"G. Hugelius, J. Ramage, E. Burke, A. Chatterjee, T. L. Smallman, T. Aalto, A. Bastos, C. Biasi, J. G. Canadell, N. Chandra, F. Chevallier, P. Ciais, J. Chang, L. Feng, M. W. Jones, T. Kleinen, M. Kuhn, R. Lauerwald, J. Liu, E. López-Blanco, I. T. Luijkx, M. E. Marushchak, S. M. Natali, Y. Niwa, D. Olefeldt, P. I. Palmer, P. K. Patra, W. Peters, S. Potter, B. Poulter, B. M. Rogers, W. J. Riley, M. Saunois, E. A. G. Schuur, R. L. Thompson, C. Treat, A. Tsuruta, M. R. Turetsky, A.-M. Virkkala, C. Voigt, J. Watts, Q. Zhu, B. Zheng","doi":"10.1029/2023GB007969","DOIUrl":"https://doi.org/10.1029/2023GB007969","url":null,"abstract":"<p>Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present-day greenhouse gas (GHG) budgets. We compare bottom-up (data-driven upscaling and process-based models) and top-down (atmospheric inversion models) budgets of carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom-up approaches estimate higher land-to-atmosphere fluxes for all GHGs. Both bottom-up and top-down approaches show a sink of CO<sub>2</sub> in natural ecosystems (bottom-up: −29 (−709, 455), top-down: −587 (−862, −312) Tg CO<sub>2</sub>-C yr<sup>−1</sup>) and sources of CH<sub>4</sub> (bottom-up: 38 (22, 53), top-down: 15 (11, 18) Tg CH<sub>4</sub>-C yr<sup>−1</sup>) and N<sub>2</sub>O (bottom-up: 0.7 (0.1, 1.3), top-down: 0.09 (−0.19, 0.37) Tg N<sub>2</sub>O-N yr<sup>−1</sup>). The combined global warming potential of all three gases (GWP-100) cannot be distinguished from neutral. Over shorter timescales (GWP-20), the region is a net GHG source because CH<sub>4</sub> dominates the total forcing. The net CO<sub>2</sub> sink in Boreal forests and wetlands is largely offset by fires and inland water CO<sub>2</sub> emissions as well as CH<sub>4</sub> emissions from wetlands and inland waters, with a smaller contribution from N<sub>2</sub>O emissions. Priorities for future research include the representation of inland waters in process-based models and the compilation of process-model ensembles for CH<sub>4</sub> and N<sub>2</sub>O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well-distributed in situ GHG measurements and improved resolution in upscaling techniques.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 10","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007969","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}