首页 > 最新文献

Glycoconjugate Journal最新文献

英文 中文
Exploration of glycosyltransferases mutation status in cervical cancer reveals PARP14 as a potential prognostic marker. 宫颈癌中糖基转移酶突变状态的研究表明PARP14是一个潜在的预后标志物。
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-08-31 DOI: 10.1007/s10719-023-10134-7
Hui Wang, Shen Luo, Xin Wu, Yuanyuan Ruan, Ling Qiu, Hao Feng, Shurong Zhu, Yanan You, Ming Li, Wenting Yang, Yanding Zhao, Xiang Tao, Hua Jiang

This study investigates the potential role of Glycosyltransferases (GTs) in the glycosylation process and their association with malignant tumors. Specifically, the study focuses on PARP14, a member of GTs, and its potential as a target for tumors in the diagnosis and treatment of cervical cancer. To gather data, the study used somatic mutation data, gene expression data and clinical information from TCGA-CESE dataset as well as tissue samples from cervical cancer patients. Further verification was conducted through RT-qPCR and immunohistochemistry staining on cervical cancer tissues to confirm the expression of PARP14. The study utilized Kaplan-Meier for survival analysis of cervical cancer patient and found significant mutational abnormalities in GTs. The high frequency mutated gene was identified as PARP14. RT-qPCR revealed significantly higher mRNA expression of PARP14 compared to precancerous tissue. Using IHC combined with Kaplan-Meier,patients in the PARP14 high expression group had a better prognosis than the low expression group. The study identified PARP14 as a frequently mutated gene in cervical cancer and proposed its potential role in diagnosis and treatment.

本研究探讨糖基转移酶(GTs)在糖基化过程中的潜在作用及其与恶性肿瘤的关系。具体而言,本研究重点关注GTs成员PARP14及其在宫颈癌诊断和治疗中作为肿瘤靶点的潜力。为了收集数据,本研究使用了来自TCGA-CESE数据集的体细胞突变数据、基因表达数据和临床信息以及宫颈癌患者的组织样本。通过RT-qPCR和宫颈癌组织免疫组化染色进一步验证PARP14的表达。本研究利用Kaplan-Meier法对宫颈癌患者进行生存分析,发现GTs存在明显的突变异常。高频突变基因被鉴定为PARP14。RT-qPCR结果显示,与癌前组织相比,PARP14 mRNA的表达明显升高。采用免疫组化联合Kaplan-Meier法,PARP14高表达组患者预后优于低表达组。本研究发现PARP14是宫颈癌中常见的突变基因,并提出了其在诊断和治疗中的潜在作用。
{"title":"Exploration of glycosyltransferases mutation status in cervical cancer reveals PARP14 as a potential prognostic marker.","authors":"Hui Wang, Shen Luo, Xin Wu, Yuanyuan Ruan, Ling Qiu, Hao Feng, Shurong Zhu, Yanan You, Ming Li, Wenting Yang, Yanding Zhao, Xiang Tao, Hua Jiang","doi":"10.1007/s10719-023-10134-7","DOIUrl":"10.1007/s10719-023-10134-7","url":null,"abstract":"<p><p>This study investigates the potential role of Glycosyltransferases (GTs) in the glycosylation process and their association with malignant tumors. Specifically, the study focuses on PARP14, a member of GTs, and its potential as a target for tumors in the diagnosis and treatment of cervical cancer. To gather data, the study used somatic mutation data, gene expression data and clinical information from TCGA-CESE dataset as well as tissue samples from cervical cancer patients. Further verification was conducted through RT-qPCR and immunohistochemistry staining on cervical cancer tissues to confirm the expression of PARP14. The study utilized Kaplan-Meier for survival analysis of cervical cancer patient and found significant mutational abnormalities in GTs. The high frequency mutated gene was identified as PARP14. RT-qPCR revealed significantly higher mRNA expression of PARP14 compared to precancerous tissue. Using IHC combined with Kaplan-Meier,patients in the PARP14 high expression group had a better prognosis than the low expression group. The study identified PARP14 as a frequently mutated gene in cervical cancer and proposed its potential role in diagnosis and treatment.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"513-522"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10125073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A glycomic workflow for LC-MS/MS analysis of urine glycosaminoglycan biomarkers in mucopolysaccharidoses. 尿粘多糖中糖胺聚糖生物标志物的LC-MS/MS分析流程
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-07-18 DOI: 10.1007/s10719-023-10128-5
Jonas Nilsson, Andrea Persson, Egor Vorontsov, Mahnaz Nikpour, Fredrik Noborn, Göran Larson, Maria Blomqvist

In recent years, several rational designed therapies have been developed for treatment of mucopolysaccharidoses (MPS), a group of inherited metabolic disorders in which glycosaminoglycans (GAGs) are accumulated in various tissues and organs. Thus, improved disease-specific biomarkers for diagnosis and monitoring treatment efficacy are of paramount importance. Specific non-reducing end GAG structures (GAG-NREs) have become promising biomarkers for MPS, as the compositions of the GAG-NREs depend on the nature of the lysosomal enzyme deficiency, thereby creating a specific pattern for each subgroup. However, there is yet no straightforward clinical laboratory platform which can assay all MPS-related GAG-NREs in one single analysis. Here, we developed and applied a GAG domain mapping approach for analyses of urine samples of ten MPS patients with various MPS diagnoses and corresponding aged-matched controls. We describe a nano-LC-MS/MS method of GAG-NRE profiling, utilizing 2-aminobenzamide reductive amination labeling to improve the sensitivity and the chromatographic resolution. Diagnostic urinary GAG-NREs were identified for MPS types IH/IS, II, IIIc, IVa and VI, corroborating GAG-NRE as biomarkers for these known enzyme deficiencies. Furthermore, a significant reduction of diagnostic urinary GAG-NREs in MPS IH (n = 2) and MPS VI (n = 1) patients under treatment was demonstrated. We argue that this straightforward glycomic workflow, designed for the clinical analysis of MPS-related GAG-NREs in one single analysis, will be of value for expanding the use of GAG-NREs as biomarkers for MPS diagnosis and treatment monitoring.

粘多糖病(MPS)是一组由糖胺聚糖(GAGs)在各种组织和器官中积累引起的遗传性代谢疾病,近年来,人们开发了一些合理设计的治疗方法来治疗MPS。因此,改善疾病特异性生物标志物的诊断和监测治疗效果是至关重要的。特异性非还原端GAG结构(GAG- nres)已成为MPS的有希望的生物标志物,因为GAG- nres的组成取决于溶酶体酶缺乏症的性质,从而为每个亚群创建特定的模式。然而,目前还没有直接的临床实验室平台可以在一次分析中检测所有与mps相关的GAG-NREs。在这里,我们开发并应用了GAG结构域映射方法来分析10例不同MPS诊断和相应年龄匹配对照的MPS患者的尿液样本。利用2-氨基苯甲酰胺还原胺化标记,建立了一种纳米lc -MS/MS分析GAG-NRE的方法,以提高灵敏度和色谱分辨率。诊断性尿GAG-NRE被鉴定为MPS型IH/IS、II、IIIc、IVa和VI,证实了GAG-NRE是这些已知酶缺乏症的生物标志物。此外,在接受治疗的MPS IH (n = 2)和MPS VI (n = 1)患者中,诊断性尿GAG-NREs显著降低。我们认为,这种简单的糖糖合成工作流程是为MPS相关的GAG-NREs的临床分析而设计的,对于扩大GAG-NREs作为MPS诊断和治疗监测的生物标志物的使用具有价值。
{"title":"A glycomic workflow for LC-MS/MS analysis of urine glycosaminoglycan biomarkers in mucopolysaccharidoses.","authors":"Jonas Nilsson, Andrea Persson, Egor Vorontsov, Mahnaz Nikpour, Fredrik Noborn, Göran Larson, Maria Blomqvist","doi":"10.1007/s10719-023-10128-5","DOIUrl":"10.1007/s10719-023-10128-5","url":null,"abstract":"<p><p>In recent years, several rational designed therapies have been developed for treatment of mucopolysaccharidoses (MPS), a group of inherited metabolic disorders in which glycosaminoglycans (GAGs) are accumulated in various tissues and organs. Thus, improved disease-specific biomarkers for diagnosis and monitoring treatment efficacy are of paramount importance. Specific non-reducing end GAG structures (GAG-NREs) have become promising biomarkers for MPS, as the compositions of the GAG-NREs depend on the nature of the lysosomal enzyme deficiency, thereby creating a specific pattern for each subgroup. However, there is yet no straightforward clinical laboratory platform which can assay all MPS-related GAG-NREs in one single analysis. Here, we developed and applied a GAG domain mapping approach for analyses of urine samples of ten MPS patients with various MPS diagnoses and corresponding aged-matched controls. We describe a nano-LC-MS/MS method of GAG-NRE profiling, utilizing 2-aminobenzamide reductive amination labeling to improve the sensitivity and the chromatographic resolution. Diagnostic urinary GAG-NREs were identified for MPS types IH/IS, II, IIIc, IVa and VI, corroborating GAG-NRE as biomarkers for these known enzyme deficiencies. Furthermore, a significant reduction of diagnostic urinary GAG-NREs in MPS IH (n = 2) and MPS VI (n = 1) patients under treatment was demonstrated. We argue that this straightforward glycomic workflow, designed for the clinical analysis of MPS-related GAG-NREs in one single analysis, will be of value for expanding the use of GAG-NREs as biomarkers for MPS diagnosis and treatment monitoring.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"523-540"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9818303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice. 魔芋葡甘露聚糖通过增强小鼠腹股沟白色脂肪组织β-肾上腺素能介导的产热作用来减轻高脂肪饮食性肥胖。
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-08-03 DOI: 10.1007/s10719-023-10131-w
Jian Hong, Yun Shi, Jing Chen, Ma Mi, Qingjia Ren, Yanzhou Zhang, Min Shen, Jing Bu, Yijun Kang

Konjac glucomannan (KGM) has been reported to prevent high-fat diet-induced obesity, and we study investigated whether dietary supplementation with KGM can prevent obesity by increasing energy expenditure in inguinal white adipose tissue (iWAT) of high-fat diet (HF) -fed mice. Weaned mice fed the control diet (Con), HF, or HF plus KGM (8%, w/w, HFK) were divided into three groups. The results showed that 10-week supplementation with KGM significantly reduced partial adipose tissue weight and body weight, and improved glucose tolerance. Compared to the HF group, plasma lipid concentrations in the HFK group were greatly decreased to the control level. Moreover, transcriptomic research has shown that genes that are mainly associated with energy and lipid metabolism are significantly altered in iWAT. Mechanistically, KGM stimulated thermogenesis by promoting the expression of uncoupling protein-1 (UCP1) and the β3-adrenergic receptor (ADR3β). Taken together, our results suggest that dietary supplementation with konjac glucomannan can effectively alleviate obesity induced by a high-fat diet by activating ADR3β-mediated iWAT thermogenesis. Dietary supplementation with KGM can effectively alleviate high fat diet- induced obesity mice by via activating ADR3β-mediated thermogenesis of iWAT.

据报道,魔芋葡甘露聚糖(KGM)可以预防高脂肪饮食引起的肥胖,我们研究了在高脂肪饮食(HF)喂养的小鼠中添加KGM是否可以通过增加腹股沟白色脂肪组织(iWAT)的能量消耗来预防肥胖。将饲喂对照组(Con)、HF、HF + KGM (8%, w/w, HFK)的断奶小鼠分为3组。结果表明,添加KGM 10周可显著降低部分脂肪组织重量和体重,提高糖耐量。与HF组相比,HFK组血浆脂质浓度显著降低至对照水平。此外,转录组学研究表明,主要与能量和脂质代谢相关的基因在iWAT中发生了显著改变。在机制上,KGM通过促进解偶联蛋白1 (UCP1)和β3-肾上腺素能受体(ADR3β)的表达来刺激产热。综上所述,我们的研究结果表明,膳食中添加魔芋葡甘露聚糖可以通过激活adr3 β介导的iWAT生热作用,有效缓解高脂肪饮食引起的肥胖。饲粮中添加KGM可通过激活adr3 β介导的iWAT生热作用,有效缓解高脂饮食诱导的肥胖小鼠。
{"title":"Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice.","authors":"Jian Hong, Yun Shi, Jing Chen, Ma Mi, Qingjia Ren, Yanzhou Zhang, Min Shen, Jing Bu, Yijun Kang","doi":"10.1007/s10719-023-10131-w","DOIUrl":"10.1007/s10719-023-10131-w","url":null,"abstract":"<p><p>Konjac glucomannan (KGM) has been reported to prevent high-fat diet-induced obesity, and we study investigated whether dietary supplementation with KGM can prevent obesity by increasing energy expenditure in inguinal white adipose tissue (iWAT) of high-fat diet (HF) -fed mice. Weaned mice fed the control diet (Con), HF, or HF plus KGM (8%, w/w, HFK) were divided into three groups. The results showed that 10-week supplementation with KGM significantly reduced partial adipose tissue weight and body weight, and improved glucose tolerance. Compared to the HF group, plasma lipid concentrations in the HFK group were greatly decreased to the control level. Moreover, transcriptomic research has shown that genes that are mainly associated with energy and lipid metabolism are significantly altered in iWAT. Mechanistically, KGM stimulated thermogenesis by promoting the expression of uncoupling protein-1 (UCP1) and the β3-adrenergic receptor (ADR3β). Taken together, our results suggest that dietary supplementation with konjac glucomannan can effectively alleviate obesity induced by a high-fat diet by activating ADR3β-mediated iWAT thermogenesis. Dietary supplementation with KGM can effectively alleviate high fat diet- induced obesity mice by via activating ADR3β-mediated thermogenesis of iWAT.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"575-586"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9918676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Recognition factors of Dolichos biflorus agglutinin (DBA) and their accommodation sites. 修正:芍药凝集素(DBA)的识别因子及其调节位点。
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-01 DOI: 10.1007/s10719-023-10132-9
Albert M Wu, Anna Dudek, Yung Liang Chen
{"title":"Correction to: Recognition factors of Dolichos biflorus agglutinin (DBA) and their accommodation sites.","authors":"Albert M Wu, Anna Dudek, Yung Liang Chen","doi":"10.1007/s10719-023-10132-9","DOIUrl":"10.1007/s10719-023-10132-9","url":null,"abstract":"","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"609"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10274642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential analysis of core-fucosylated glycoproteomics enabled by single-step truncation of N-glycans. 通过一步截断n -聚糖实现核心聚焦糖蛋白组学的差异分析。
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-08-05 DOI: 10.1007/s10719-023-10130-x
Yao Min, Jianhui Wu, Wenhao Hou, Xiaoyu Li, Xinyuan Zhao, Xiaoya Guan, Xiaohong Qian, Chunyi Hao, Wantao Ying

Alpha-1,6 fucosylation of N-glycans (core fucosylation, CF) represents a unique form of N-glycans and is widely involved in disease progression. In order to accurately identify CF glycoproteins, several approaches have been developed based on sequential cleavage with different glycosidases to truncate the N-glycans. Since multi-step sample treatments may introduce quantitation bias and affect the practicality of these approaches in large-scale applications. Here, we systematically evaluated the performance of the single-step treatment of intact glycopeptides by endoglycosidase F3 for CF glycoproteome. The single-step truncation (SST) strategy demonstrated higher quantitative stability and higher efficiency compared with previous approaches. The strategy was further practiced on both cell lines and serum samples. The dysregulation of CF glycopeptides between preoperative and postoperative serum from patients with pancreatic ductal adenocarcinoma was revealed, and the CF modifications of BCHE_N369, CDH5_N112 and SERPIND1_N49 were found to be potential prognostic markers. This study thus provides an efficient solution for large-scale quantitative analysis of the CF glycoproteome.

n -聚糖的α -1,6聚焦化(核心聚焦化,CF)是n -聚糖的一种独特形式,广泛参与疾病进展。为了准确鉴定CF糖蛋白,已经开发了几种基于不同糖苷酶的序列切割截断n -聚糖的方法。由于多步骤样本处理可能会引入定量偏差,并影响这些方法在大规模应用中的实用性。在这里,我们系统地评估了内糖苷酶F3对CF糖蛋白组的完整糖肽的单步处理的性能。与以往的方法相比,单步截断(SST)策略具有更高的定量稳定性和效率。该策略在细胞系和血清样本上进一步实践。我们发现胰腺导管腺癌患者术前和术后血清中CF糖肽的失调,并发现BCHE_N369、CDH5_N112和serind1_n49的CF修饰是潜在的预后指标。因此,本研究为CF糖蛋白组的大规模定量分析提供了一种有效的解决方案。
{"title":"Differential analysis of core-fucosylated glycoproteomics enabled by single-step truncation of N-glycans.","authors":"Yao Min, Jianhui Wu, Wenhao Hou, Xiaoyu Li, Xinyuan Zhao, Xiaoya Guan, Xiaohong Qian, Chunyi Hao, Wantao Ying","doi":"10.1007/s10719-023-10130-x","DOIUrl":"10.1007/s10719-023-10130-x","url":null,"abstract":"<p><p>Alpha-1,6 fucosylation of N-glycans (core fucosylation, CF) represents a unique form of N-glycans and is widely involved in disease progression. In order to accurately identify CF glycoproteins, several approaches have been developed based on sequential cleavage with different glycosidases to truncate the N-glycans. Since multi-step sample treatments may introduce quantitation bias and affect the practicality of these approaches in large-scale applications. Here, we systematically evaluated the performance of the single-step treatment of intact glycopeptides by endoglycosidase F3 for CF glycoproteome. The single-step truncation (SST) strategy demonstrated higher quantitative stability and higher efficiency compared with previous approaches. The strategy was further practiced on both cell lines and serum samples. The dysregulation of CF glycopeptides between preoperative and postoperative serum from patients with pancreatic ductal adenocarcinoma was revealed, and the CF modifications of BCHE_N369, CDH5_N112 and SERPIND1_N49 were found to be potential prognostic markers. This study thus provides an efficient solution for large-scale quantitative analysis of the CF glycoproteome.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"541-549"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10316343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of pneumococcal serotype 7F in vaccine conjugation. 肺炎球菌血清型7F在疫苗结合中的特征。
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-07-04 DOI: 10.1007/s10719-023-10125-8
James Z Deng, Xiujuan Jia, Chengli Zong, Jian He, Sha Ha, Ping Zhuang

Streptococcus pneumoniae is a highly invasive bacterial pathogen that can cause a range of illnesses. Pneumococcal capsular polysaccharides (CPS) are the main virulence factors that causes invasive pneumococcal disease (IPD). Pneumococcal CPS serotype 7F along with a few other serotypes is more invasive and likely to cause IPD. Therefore, 7F is a target for pneumococcal vaccine development, and is included in the two recently approved multi-valent pneumococcal conjugated vaccines, i.e. VAXNEUVANCE and PREVNAR 20.To support process and development of our 15-valent pneumococcal conjugated vaccine (PCV15), chromatographic methods have been developed for 7F polysaccharide and conjugate characterization. A size-exclusion chromatography (SEC) method with UV, light scattering and refractive index detections was employed for concentration, size and conformation analysis. A reversed-phase ultra-performance liquid chromatography (RP-UPLC) method was used for analysis of conjugate monosaccharide composition and degree of conjugation. The collective information obtained by these chromatographic analysis provided insights into the pneumococcal conjugate and conjugation process.

肺炎链球菌是一种高度侵袭性的细菌病原体,可引起一系列疾病。肺炎球菌荚膜多糖(CPS)是侵袭性肺炎球菌病(IPD)的主要毒力因子。肺炎球菌CPS血清型7F以及其他几种血清型更具侵袭性,并可能引起IPD。因此,7F是肺炎球菌疫苗开发的靶点,并被包括在最近批准的两种多价肺炎球菌结合疫苗中,即VAXNEUVANCE和PREVNAR 20。为了支持我们的15价肺炎球菌结合疫苗(PCV15)的工艺和开发,我们开发了7F多糖和偶联物表征的色谱方法。采用紫外、光散射和折射率检测的排粒径色谱法(SEC)对其浓度、粒径和构象进行分析。采用反相超高效液相色谱法(RP-UPLC)分析了偶联单糖的组成和偶联度。通过这些色谱分析获得的集体信息提供了对肺炎球菌偶联物和偶联过程的见解。
{"title":"Characterization of pneumococcal serotype 7F in vaccine conjugation.","authors":"James Z Deng, Xiujuan Jia, Chengli Zong, Jian He, Sha Ha, Ping Zhuang","doi":"10.1007/s10719-023-10125-8","DOIUrl":"10.1007/s10719-023-10125-8","url":null,"abstract":"<p><p>Streptococcus pneumoniae is a highly invasive bacterial pathogen that can cause a range of illnesses. Pneumococcal capsular polysaccharides (CPS) are the main virulence factors that causes invasive pneumococcal disease (IPD). Pneumococcal CPS serotype 7F along with a few other serotypes is more invasive and likely to cause IPD. Therefore, 7F is a target for pneumococcal vaccine development, and is included in the two recently approved multi-valent pneumococcal conjugated vaccines, i.e. VAXNEUVANCE and PREVNAR 20.To support process and development of our 15-valent pneumococcal conjugated vaccine (PCV15), chromatographic methods have been developed for 7F polysaccharide and conjugate characterization. A size-exclusion chromatography (SEC) method with UV, light scattering and refractive index detections was employed for concentration, size and conformation analysis. A reversed-phase ultra-performance liquid chromatography (RP-UPLC) method was used for analysis of conjugate monosaccharide composition and degree of conjugation. The collective information obtained by these chromatographic analysis provided insights into the pneumococcal conjugate and conjugation process.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"565-573"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10106604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A concise chemoenzymatic total synthesis of neutral Globo-series glycosphingolipids Globo A and Globo B, and Forssman and para-Forssman antigens. 中性Globo系列鞘糖脂Globo A和Globo B以及Forssman和para-Forssman抗原的简明化学酶全合成。
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-08-22 DOI: 10.1007/s10719-023-10133-8
Yu-Ching Chiang, Chun-Yen Wu, Pei-Yun Chiang, Avijit K Adak, Chun-Cheng Lin

Globo A is a neutral Globo-series glycosphingolipid (GSL) that shows natural properties of a cytotoxicity receptor NKp44 binding ligand. The highly complex heptasaccharide glycan structure of Globo A combined with its biological profile provides a unique target for the development of a synthetic method to facilitate its bioactivity studies. Here, a concise chemoenzymatic route to the synthesis of Globo A and its α1,3-galactose-linked congener Globo B is reported. The key to success was the use of a synthetic azido β-Globo H sphingosine (Globo H-βSph) as an acceptor substrate and two glycosyl transferases, an α1,3-N-acetylgalactosaminyltransferase from Helicobacter mustelae (BgtA) and a human blood group B α1,3-galactosyltransferase (h1,3GTB), for stereoselective construction of the terminal α1,3-GalNAc and α1,3-Gal linkages, respectively. The azido-Sph lipid sidechain is further elaborated by reduction and a chemoselective N-acylation to complete the total synthesis of the neutral Globo-series GSLs. In addition, the synthesis of Forssman and para-Forssman antigens were prepared. The strategy may be suitable for accessing other complex GSLs and related lipid-modified GSL derivatives.

Globo A是一种中性的Globo系列鞘糖脂(GSL),具有细胞毒性受体NKp44结合配体的天然特性。Globo A高度复杂的七糖聚糖结构及其生物学特性为开发合成方法提供了独特的靶点,以促进其生物活性的研究。本文报道了一种简明的化学酶法合成Globo a及其α1,3-半乳糖连接的同源物Globo B。成功的关键是利用合成的氮基β-Globo H鞘氨酸(Globo H-βSph)作为受体底物,以及两种糖基转移酶,分别是来自幽门螺杆菌(Helicobacter mustelae)的α1,3- n -乙酰半乳糖氨基转移酶(BgtA)和人血B型α1,3-半乳糖基转移酶(h1,3GTB),用于立体选择性构建α1,3- galnac和α1,3-gal末端键。通过还原和化学选择性n -酰化进一步细化叠氮多- sph脂质侧链,以完成中性globo系列GSLs的全合成。此外,制备了Forssman抗原和准Forssman抗原。该策略可能适用于获取其他复杂的GSL和相关的脂质修饰GSL衍生物。
{"title":"A concise chemoenzymatic total synthesis of neutral Globo-series glycosphingolipids Globo A and Globo B, and Forssman and para-Forssman antigens.","authors":"Yu-Ching Chiang, Chun-Yen Wu, Pei-Yun Chiang, Avijit K Adak, Chun-Cheng Lin","doi":"10.1007/s10719-023-10133-8","DOIUrl":"10.1007/s10719-023-10133-8","url":null,"abstract":"<p><p>Globo A is a neutral Globo-series glycosphingolipid (GSL) that shows natural properties of a cytotoxicity receptor NKp44 binding ligand. The highly complex heptasaccharide glycan structure of Globo A combined with its biological profile provides a unique target for the development of a synthetic method to facilitate its bioactivity studies. Here, a concise chemoenzymatic route to the synthesis of Globo A and its α1,3-galactose-linked congener Globo B is reported. The key to success was the use of a synthetic azido β-Globo H sphingosine (Globo H-βSph) as an acceptor substrate and two glycosyl transferases, an α1,3-N-acetylgalactosaminyltransferase from Helicobacter mustelae (BgtA) and a human blood group B α1,3-galactosyltransferase (h1,3GTB), for stereoselective construction of the terminal α1,3-GalNAc and α1,3-Gal linkages, respectively. The azido-Sph lipid sidechain is further elaborated by reduction and a chemoselective N-acylation to complete the total synthesis of the neutral Globo-series GSLs. In addition, the synthesis of Forssman and para-Forssman antigens were prepared. The strategy may be suitable for accessing other complex GSLs and related lipid-modified GSL derivatives.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"551-563"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10042620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of the structural units, glycotopes / mammalian N-glycans for Con A-glycan interactions, their codes, and their recognition factors. 结构单元、糖基/哺乳动物n -聚糖在Con - a -聚糖相互作用中的作用、它们的编码和它们的识别因子。
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-01 Epub Date: 2023-09-11 DOI: 10.1007/s10719-023-10129-4
Albert M Wu

The binding property of Con A has been studied intensively and applied widely to glycoconjugates / glycobiology for over 80 years. However, its role and functional relationship of Con A with these mammalian structural units, glycotopes, N-glycan chains, as well as their polyvalent forms in N-glycoproteins involved in the Con A-glycan interactions have not been well defined and organized. In this study, the recognition factors involved in these interactions were analyzed by our well developed method- the enzyme linked lectinosorbent (ELLSA) and inhibition assay. Based on all the data obtained, it is concluded that Con A, as previously reported, has a relatively broad and wide recognition ability of the Manα1 → and Glcα1 → related glycans. It reacted not only strongly with yeast mannan and glycogens, but also bound well with a large number of mammalian N-glycans, including the N-glycans of rat sublingual gp (RSL), human Tamm-Horsfall glycoprotein (THGP), thyroglobulin and lactoferrin. The recognition specificity of Con A towards ligands, expressed by Molar Relative Potency (Molar R.P.), in a decreasing order is as follows: α1 → 3, α1 → 6 Mannopentaose (M5) and Biantennary N-linked core pentasaccharide (MDi) ≥ α1 → 3, α1 → 6 Mannotriose (M3) > Manα1 → 3Man (α1 → 3Mannobiose), Manα1 → 2Man (α1 → 2Mannobiose), Manα1 → 6Man (α1 → 6Mannobiose), Manα1 → 4Man (α1 → 4Mannobiose) > GlcNAcβ1 → 2Man (β1 → 2 N-Acetyl glucosamine-mannose) > Manα1 → /Glcα1 → > Man > Glc, while Gal / GalNAc were inactive. Furthermore, the Man related code system, in this study, is proposed to express by both numbers of Man and GlcNAcβ1 → branches (M3 to M9 / MMono to Penta etc.) and a table of three Manα1 → and Glcα1 → related biomasses of six recognition factors involved in the Con A-glycan interactions has also been demonstrated. These themes should be one of the most valuable advances since 1980s.

80多年来,人们对Con A的结合特性进行了深入研究,并将其广泛应用于糖缀合物/糖生物学中。然而,Con A与这些哺乳动物结构单元、糖基、n -聚糖链以及它们在n -糖蛋白中参与Con A-聚糖相互作用的多价形式之间的作用和功能关系尚未得到很好的定义和组织。在本研究中,通过我们完善的方法-酶联凝集素吸附剂(ELLSA)和抑制法分析了这些相互作用中涉及的识别因子。综上所述,Con A如前所述,对Manα1→和Glcα1→相关聚糖具有相对广泛的识别能力。它不仅能与酵母甘露聚糖和糖原发生强烈反应,还能与大量哺乳动物n -聚糖结合良好,包括大鼠舌下糖蛋白(RSL)、人Tamm-Horsfall糖蛋白(THGP)、甲状腺球蛋白和乳铁蛋白的n -聚糖。Con A对配体的识别特异性由摩尔相对效价(Molar Relative Potency, Molar R.P.)表示,其识别特异性由高到低依次为:α1→3、α1→6甘露糖(M5)和双链n -链核心五糖(MDi)≥α1→3、α1→6甘露糖(M3) > Manα1→3Man (α1→3甘露糖)、Manα1→2Man (α1→2甘露糖)、Manα1→6Man (α1→6甘露糖)、Manα1→4Man (α1→4甘露糖)> GlcNAcβ1→2Man (β1→2 n -乙酰氨基葡萄糖-甘露糖)> Manα1→/Glcα1→> Man > Glc,而Gal / GalNAc无活性。此外,本研究还提出了由Man和GlcNAcβ1→分支(M3到M9 / MMono到Penta等)数量表达的Man相关编码系统,并展示了6个参与Con - a -聚糖相互作用的识别因子的3个Manα1→和Glcα1→相关生物量表。这些主题应该是20世纪80年代以来最有价值的进展之一。
{"title":"Roles of the structural units, glycotopes / mammalian N-glycans for Con A-glycan interactions, their codes, and their recognition factors.","authors":"Albert M Wu","doi":"10.1007/s10719-023-10129-4","DOIUrl":"10.1007/s10719-023-10129-4","url":null,"abstract":"<p><p>The binding property of Con A has been studied intensively and applied widely to glycoconjugates / glycobiology for over 80 years. However, its role and functional relationship of Con A with these mammalian structural units, glycotopes, N-glycan chains, as well as their polyvalent forms in N-glycoproteins involved in the Con A-glycan interactions have not been well defined and organized. In this study, the recognition factors involved in these interactions were analyzed by our well developed method- the enzyme linked lectinosorbent (ELLSA) and inhibition assay. Based on all the data obtained, it is concluded that Con A, as previously reported, has a relatively broad and wide recognition ability of the Manα1 → and Glcα1 → related glycans. It reacted not only strongly with yeast mannan and glycogens, but also bound well with a large number of mammalian N-glycans, including the N-glycans of rat sublingual gp (RSL), human Tamm-Horsfall glycoprotein (THGP), thyroglobulin and lactoferrin. The recognition specificity of Con A towards ligands, expressed by Molar Relative Potency (Molar R.P.), in a decreasing order is as follows: α1 → 3, α1 → 6 Mannopentaose (M<sub>5</sub>) and Biantennary N-linked core pentasaccharide (M<sub>Di</sub>) ≥ α1 → 3, α1 → 6 Mannotriose (M<sub>3</sub>) > Manα1 → 3Man (α1 → 3Mannobiose), Manα1 → 2Man (α1 → 2Mannobiose), Manα1 → 6Man (α1 → 6Mannobiose), Manα1 → 4Man (α1 → 4Mannobiose) > GlcNAcβ1 → 2Man (β1 → 2 N-Acetyl glucosamine-mannose) > Manα1 → /Glcα1 → > Man > Glc, while Gal / GalNAc were inactive. Furthermore, the Man related code system, in this study, is proposed to express by both numbers of Man and GlcNAcβ1 → branches (M<sub>3</sub> to M<sub>9</sub> / M<sub>Mono to Penta etc.</sub>) and a table of three Manα1 → and Glcα1 → related biomasses of six recognition factors involved in the Con A-glycan interactions has also been demonstrated. These themes should be one of the most valuable advances since 1980s.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"587-608"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10194443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Salmonella arizonae O62. 直接合成亚利桑那沙门氏菌O62的o特异性多糖的六糖重复单元。
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-08-01 DOI: 10.1007/s10719-023-10122-x
Abhijit Rana, Pradip Shit, Anup Kumar Misra

A straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Salmonella arizonae O62 was achieved in very good yield applying sequential glycosylation strategy. Successful regioselective glycosylation of the di-hydroxylated L-rhamnose moiety allowed achieving the desired compound in minimum number of synthetic steps. TEMPO catalyzed and [bis(acetoxy)iodo]benzene (BAIB) mediated late stage regioselective oxidation of a primary hydroxyl group into carboxylic acid was achieved in the hexasaccharide derivative. The glycosylation steps were high yielding with high stereochemical outcome. The desired hexasaccharide was obtained in 7% over all yield in fourteen steps starting from suitably functionalized monosaccharide intermediates.

采用顺序糖基化策略,直接合成了亚利桑那沙门氏菌O62的o特异性多糖的六糖重复单元,并获得了很好的产量。二羟基化l -鼠李糖部分的成功区域选择性糖基化可以在最少的合成步骤中获得所需的化合物。在六糖衍生物中实现了TEMPO催化和[双(乙酰氧基)碘]苯(BAIB)介导的伯羟基晚期区域选择性氧化成羧酸。糖基化步骤产率高,立体化学效果好。从合适的单糖中间体开始,经过14步,以7%的产率得到了所需的六糖。
{"title":"Straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Salmonella arizonae O62.","authors":"Abhijit Rana,&nbsp;Pradip Shit,&nbsp;Anup Kumar Misra","doi":"10.1007/s10719-023-10122-x","DOIUrl":"https://doi.org/10.1007/s10719-023-10122-x","url":null,"abstract":"<p><p>A straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Salmonella arizonae O62 was achieved in very good yield applying sequential glycosylation strategy. Successful regioselective glycosylation of the di-hydroxylated L-rhamnose moiety allowed achieving the desired compound in minimum number of synthetic steps. TEMPO catalyzed and [bis(acetoxy)iodo]benzene (BAIB) mediated late stage regioselective oxidation of a primary hydroxyl group into carboxylic acid was achieved in the hexasaccharide derivative. The glycosylation steps were high yielding with high stereochemical outcome. The desired hexasaccharide was obtained in 7% over all yield in fourteen steps starting from suitably functionalized monosaccharide intermediates.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 4","pages":"449-459"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mucin glycans and their degradation by gut microbiota. 粘蛋白聚糖及其在肠道微生物群中的降解。
IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-08-01 DOI: 10.1007/s10719-023-10124-9
Masanori Yamaguchi, Kenji Yamamoto

The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed "the gut microbiota". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.

人体肠道中生活着大量的微生物,这些微生物统称为“肠道菌群”。肠道上皮覆盖着一层致密的粘液,阻止肠道微生物群渗透到宿主的底层组织中。最近的研究表明,黏液层的成熟和功能受到肠道菌群的强烈影响,肠道菌群结构和功能的改变与多种疾病有关。因为肠道黏液层是微生物和宿主之间的关键界面,它的破坏会导致肠道细菌入侵,最终导致炎症和感染。黏液由黏液蛋白组成,黏液蛋白富含聚糖,黏液蛋白复合碳水化合物的各种结构可以选择不同的粘膜相关细菌,这些细菌能够结合黏液蛋白聚糖,有时还会将其降解为营养源。粘蛋白聚糖是多种多样的分子,因此粘蛋白聚糖的降解是一个复杂的过程,需要广泛的聚糖降解酶。由于人们对黏液相关微生物在人类健康中的作用的认识不断提高,共生细菌如何降解和利用宿主黏液聚糖已成为人们越来越感兴趣的问题。本文综述了宿主黏液蛋白聚糖与肠道共生菌之间的关系,重点介绍了黏液蛋白的降解。
{"title":"Mucin glycans and their degradation by gut microbiota.","authors":"Masanori Yamaguchi,&nbsp;Kenji Yamamoto","doi":"10.1007/s10719-023-10124-9","DOIUrl":"https://doi.org/10.1007/s10719-023-10124-9","url":null,"abstract":"<p><p>The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed \"the gut microbiota\". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 4","pages":"493-512"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10234835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Glycoconjugate Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1