This study investigates the potential role of Glycosyltransferases (GTs) in the glycosylation process and their association with malignant tumors. Specifically, the study focuses on PARP14, a member of GTs, and its potential as a target for tumors in the diagnosis and treatment of cervical cancer. To gather data, the study used somatic mutation data, gene expression data and clinical information from TCGA-CESE dataset as well as tissue samples from cervical cancer patients. Further verification was conducted through RT-qPCR and immunohistochemistry staining on cervical cancer tissues to confirm the expression of PARP14. The study utilized Kaplan-Meier for survival analysis of cervical cancer patient and found significant mutational abnormalities in GTs. The high frequency mutated gene was identified as PARP14. RT-qPCR revealed significantly higher mRNA expression of PARP14 compared to precancerous tissue. Using IHC combined with Kaplan-Meier,patients in the PARP14 high expression group had a better prognosis than the low expression group. The study identified PARP14 as a frequently mutated gene in cervical cancer and proposed its potential role in diagnosis and treatment.
{"title":"Exploration of glycosyltransferases mutation status in cervical cancer reveals PARP14 as a potential prognostic marker.","authors":"Hui Wang, Shen Luo, Xin Wu, Yuanyuan Ruan, Ling Qiu, Hao Feng, Shurong Zhu, Yanan You, Ming Li, Wenting Yang, Yanding Zhao, Xiang Tao, Hua Jiang","doi":"10.1007/s10719-023-10134-7","DOIUrl":"10.1007/s10719-023-10134-7","url":null,"abstract":"<p><p>This study investigates the potential role of Glycosyltransferases (GTs) in the glycosylation process and their association with malignant tumors. Specifically, the study focuses on PARP14, a member of GTs, and its potential as a target for tumors in the diagnosis and treatment of cervical cancer. To gather data, the study used somatic mutation data, gene expression data and clinical information from TCGA-CESE dataset as well as tissue samples from cervical cancer patients. Further verification was conducted through RT-qPCR and immunohistochemistry staining on cervical cancer tissues to confirm the expression of PARP14. The study utilized Kaplan-Meier for survival analysis of cervical cancer patient and found significant mutational abnormalities in GTs. The high frequency mutated gene was identified as PARP14. RT-qPCR revealed significantly higher mRNA expression of PARP14 compared to precancerous tissue. Using IHC combined with Kaplan-Meier,patients in the PARP14 high expression group had a better prognosis than the low expression group. The study identified PARP14 as a frequently mutated gene in cervical cancer and proposed its potential role in diagnosis and treatment.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"513-522"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10125073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-07-18DOI: 10.1007/s10719-023-10128-5
Jonas Nilsson, Andrea Persson, Egor Vorontsov, Mahnaz Nikpour, Fredrik Noborn, Göran Larson, Maria Blomqvist
In recent years, several rational designed therapies have been developed for treatment of mucopolysaccharidoses (MPS), a group of inherited metabolic disorders in which glycosaminoglycans (GAGs) are accumulated in various tissues and organs. Thus, improved disease-specific biomarkers for diagnosis and monitoring treatment efficacy are of paramount importance. Specific non-reducing end GAG structures (GAG-NREs) have become promising biomarkers for MPS, as the compositions of the GAG-NREs depend on the nature of the lysosomal enzyme deficiency, thereby creating a specific pattern for each subgroup. However, there is yet no straightforward clinical laboratory platform which can assay all MPS-related GAG-NREs in one single analysis. Here, we developed and applied a GAG domain mapping approach for analyses of urine samples of ten MPS patients with various MPS diagnoses and corresponding aged-matched controls. We describe a nano-LC-MS/MS method of GAG-NRE profiling, utilizing 2-aminobenzamide reductive amination labeling to improve the sensitivity and the chromatographic resolution. Diagnostic urinary GAG-NREs were identified for MPS types IH/IS, II, IIIc, IVa and VI, corroborating GAG-NRE as biomarkers for these known enzyme deficiencies. Furthermore, a significant reduction of diagnostic urinary GAG-NREs in MPS IH (n = 2) and MPS VI (n = 1) patients under treatment was demonstrated. We argue that this straightforward glycomic workflow, designed for the clinical analysis of MPS-related GAG-NREs in one single analysis, will be of value for expanding the use of GAG-NREs as biomarkers for MPS diagnosis and treatment monitoring.
粘多糖病(MPS)是一组由糖胺聚糖(GAGs)在各种组织和器官中积累引起的遗传性代谢疾病,近年来,人们开发了一些合理设计的治疗方法来治疗MPS。因此,改善疾病特异性生物标志物的诊断和监测治疗效果是至关重要的。特异性非还原端GAG结构(GAG- nres)已成为MPS的有希望的生物标志物,因为GAG- nres的组成取决于溶酶体酶缺乏症的性质,从而为每个亚群创建特定的模式。然而,目前还没有直接的临床实验室平台可以在一次分析中检测所有与mps相关的GAG-NREs。在这里,我们开发并应用了GAG结构域映射方法来分析10例不同MPS诊断和相应年龄匹配对照的MPS患者的尿液样本。利用2-氨基苯甲酰胺还原胺化标记,建立了一种纳米lc -MS/MS分析GAG-NRE的方法,以提高灵敏度和色谱分辨率。诊断性尿GAG-NRE被鉴定为MPS型IH/IS、II、IIIc、IVa和VI,证实了GAG-NRE是这些已知酶缺乏症的生物标志物。此外,在接受治疗的MPS IH (n = 2)和MPS VI (n = 1)患者中,诊断性尿GAG-NREs显著降低。我们认为,这种简单的糖糖合成工作流程是为MPS相关的GAG-NREs的临床分析而设计的,对于扩大GAG-NREs作为MPS诊断和治疗监测的生物标志物的使用具有价值。
{"title":"A glycomic workflow for LC-MS/MS analysis of urine glycosaminoglycan biomarkers in mucopolysaccharidoses.","authors":"Jonas Nilsson, Andrea Persson, Egor Vorontsov, Mahnaz Nikpour, Fredrik Noborn, Göran Larson, Maria Blomqvist","doi":"10.1007/s10719-023-10128-5","DOIUrl":"10.1007/s10719-023-10128-5","url":null,"abstract":"<p><p>In recent years, several rational designed therapies have been developed for treatment of mucopolysaccharidoses (MPS), a group of inherited metabolic disorders in which glycosaminoglycans (GAGs) are accumulated in various tissues and organs. Thus, improved disease-specific biomarkers for diagnosis and monitoring treatment efficacy are of paramount importance. Specific non-reducing end GAG structures (GAG-NREs) have become promising biomarkers for MPS, as the compositions of the GAG-NREs depend on the nature of the lysosomal enzyme deficiency, thereby creating a specific pattern for each subgroup. However, there is yet no straightforward clinical laboratory platform which can assay all MPS-related GAG-NREs in one single analysis. Here, we developed and applied a GAG domain mapping approach for analyses of urine samples of ten MPS patients with various MPS diagnoses and corresponding aged-matched controls. We describe a nano-LC-MS/MS method of GAG-NRE profiling, utilizing 2-aminobenzamide reductive amination labeling to improve the sensitivity and the chromatographic resolution. Diagnostic urinary GAG-NREs were identified for MPS types IH/IS, II, IIIc, IVa and VI, corroborating GAG-NRE as biomarkers for these known enzyme deficiencies. Furthermore, a significant reduction of diagnostic urinary GAG-NREs in MPS IH (n = 2) and MPS VI (n = 1) patients under treatment was demonstrated. We argue that this straightforward glycomic workflow, designed for the clinical analysis of MPS-related GAG-NREs in one single analysis, will be of value for expanding the use of GAG-NREs as biomarkers for MPS diagnosis and treatment monitoring.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"523-540"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9818303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-03DOI: 10.1007/s10719-023-10131-w
Jian Hong, Yun Shi, Jing Chen, Ma Mi, Qingjia Ren, Yanzhou Zhang, Min Shen, Jing Bu, Yijun Kang
Konjac glucomannan (KGM) has been reported to prevent high-fat diet-induced obesity, and we study investigated whether dietary supplementation with KGM can prevent obesity by increasing energy expenditure in inguinal white adipose tissue (iWAT) of high-fat diet (HF) -fed mice. Weaned mice fed the control diet (Con), HF, or HF plus KGM (8%, w/w, HFK) were divided into three groups. The results showed that 10-week supplementation with KGM significantly reduced partial adipose tissue weight and body weight, and improved glucose tolerance. Compared to the HF group, plasma lipid concentrations in the HFK group were greatly decreased to the control level. Moreover, transcriptomic research has shown that genes that are mainly associated with energy and lipid metabolism are significantly altered in iWAT. Mechanistically, KGM stimulated thermogenesis by promoting the expression of uncoupling protein-1 (UCP1) and the β3-adrenergic receptor (ADR3β). Taken together, our results suggest that dietary supplementation with konjac glucomannan can effectively alleviate obesity induced by a high-fat diet by activating ADR3β-mediated iWAT thermogenesis. Dietary supplementation with KGM can effectively alleviate high fat diet- induced obesity mice by via activating ADR3β-mediated thermogenesis of iWAT.
{"title":"Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice.","authors":"Jian Hong, Yun Shi, Jing Chen, Ma Mi, Qingjia Ren, Yanzhou Zhang, Min Shen, Jing Bu, Yijun Kang","doi":"10.1007/s10719-023-10131-w","DOIUrl":"10.1007/s10719-023-10131-w","url":null,"abstract":"<p><p>Konjac glucomannan (KGM) has been reported to prevent high-fat diet-induced obesity, and we study investigated whether dietary supplementation with KGM can prevent obesity by increasing energy expenditure in inguinal white adipose tissue (iWAT) of high-fat diet (HF) -fed mice. Weaned mice fed the control diet (Con), HF, or HF plus KGM (8%, w/w, HFK) were divided into three groups. The results showed that 10-week supplementation with KGM significantly reduced partial adipose tissue weight and body weight, and improved glucose tolerance. Compared to the HF group, plasma lipid concentrations in the HFK group were greatly decreased to the control level. Moreover, transcriptomic research has shown that genes that are mainly associated with energy and lipid metabolism are significantly altered in iWAT. Mechanistically, KGM stimulated thermogenesis by promoting the expression of uncoupling protein-1 (UCP1) and the β3-adrenergic receptor (ADR3β). Taken together, our results suggest that dietary supplementation with konjac glucomannan can effectively alleviate obesity induced by a high-fat diet by activating ADR3β-mediated iWAT thermogenesis. Dietary supplementation with KGM can effectively alleviate high fat diet- induced obesity mice by via activating ADR3β-mediated thermogenesis of iWAT.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"575-586"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9918676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/s10719-023-10132-9
Albert M Wu, Anna Dudek, Yung Liang Chen
{"title":"Correction to: Recognition factors of Dolichos biflorus agglutinin (DBA) and their accommodation sites.","authors":"Albert M Wu, Anna Dudek, Yung Liang Chen","doi":"10.1007/s10719-023-10132-9","DOIUrl":"10.1007/s10719-023-10132-9","url":null,"abstract":"","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"609"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10274642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alpha-1,6 fucosylation of N-glycans (core fucosylation, CF) represents a unique form of N-glycans and is widely involved in disease progression. In order to accurately identify CF glycoproteins, several approaches have been developed based on sequential cleavage with different glycosidases to truncate the N-glycans. Since multi-step sample treatments may introduce quantitation bias and affect the practicality of these approaches in large-scale applications. Here, we systematically evaluated the performance of the single-step treatment of intact glycopeptides by endoglycosidase F3 for CF glycoproteome. The single-step truncation (SST) strategy demonstrated higher quantitative stability and higher efficiency compared with previous approaches. The strategy was further practiced on both cell lines and serum samples. The dysregulation of CF glycopeptides between preoperative and postoperative serum from patients with pancreatic ductal adenocarcinoma was revealed, and the CF modifications of BCHE_N369, CDH5_N112 and SERPIND1_N49 were found to be potential prognostic markers. This study thus provides an efficient solution for large-scale quantitative analysis of the CF glycoproteome.
n -聚糖的α -1,6聚焦化(核心聚焦化,CF)是n -聚糖的一种独特形式,广泛参与疾病进展。为了准确鉴定CF糖蛋白,已经开发了几种基于不同糖苷酶的序列切割截断n -聚糖的方法。由于多步骤样本处理可能会引入定量偏差,并影响这些方法在大规模应用中的实用性。在这里,我们系统地评估了内糖苷酶F3对CF糖蛋白组的完整糖肽的单步处理的性能。与以往的方法相比,单步截断(SST)策略具有更高的定量稳定性和效率。该策略在细胞系和血清样本上进一步实践。我们发现胰腺导管腺癌患者术前和术后血清中CF糖肽的失调,并发现BCHE_N369、CDH5_N112和serind1_n49的CF修饰是潜在的预后指标。因此,本研究为CF糖蛋白组的大规模定量分析提供了一种有效的解决方案。
{"title":"Differential analysis of core-fucosylated glycoproteomics enabled by single-step truncation of N-glycans.","authors":"Yao Min, Jianhui Wu, Wenhao Hou, Xiaoyu Li, Xinyuan Zhao, Xiaoya Guan, Xiaohong Qian, Chunyi Hao, Wantao Ying","doi":"10.1007/s10719-023-10130-x","DOIUrl":"10.1007/s10719-023-10130-x","url":null,"abstract":"<p><p>Alpha-1,6 fucosylation of N-glycans (core fucosylation, CF) represents a unique form of N-glycans and is widely involved in disease progression. In order to accurately identify CF glycoproteins, several approaches have been developed based on sequential cleavage with different glycosidases to truncate the N-glycans. Since multi-step sample treatments may introduce quantitation bias and affect the practicality of these approaches in large-scale applications. Here, we systematically evaluated the performance of the single-step treatment of intact glycopeptides by endoglycosidase F3 for CF glycoproteome. The single-step truncation (SST) strategy demonstrated higher quantitative stability and higher efficiency compared with previous approaches. The strategy was further practiced on both cell lines and serum samples. The dysregulation of CF glycopeptides between preoperative and postoperative serum from patients with pancreatic ductal adenocarcinoma was revealed, and the CF modifications of BCHE_N369, CDH5_N112 and SERPIND1_N49 were found to be potential prognostic markers. This study thus provides an efficient solution for large-scale quantitative analysis of the CF glycoproteome.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"541-549"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10316343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-07-04DOI: 10.1007/s10719-023-10125-8
James Z Deng, Xiujuan Jia, Chengli Zong, Jian He, Sha Ha, Ping Zhuang
Streptococcus pneumoniae is a highly invasive bacterial pathogen that can cause a range of illnesses. Pneumococcal capsular polysaccharides (CPS) are the main virulence factors that causes invasive pneumococcal disease (IPD). Pneumococcal CPS serotype 7F along with a few other serotypes is more invasive and likely to cause IPD. Therefore, 7F is a target for pneumococcal vaccine development, and is included in the two recently approved multi-valent pneumococcal conjugated vaccines, i.e. VAXNEUVANCE and PREVNAR 20.To support process and development of our 15-valent pneumococcal conjugated vaccine (PCV15), chromatographic methods have been developed for 7F polysaccharide and conjugate characterization. A size-exclusion chromatography (SEC) method with UV, light scattering and refractive index detections was employed for concentration, size and conformation analysis. A reversed-phase ultra-performance liquid chromatography (RP-UPLC) method was used for analysis of conjugate monosaccharide composition and degree of conjugation. The collective information obtained by these chromatographic analysis provided insights into the pneumococcal conjugate and conjugation process.
{"title":"Characterization of pneumococcal serotype 7F in vaccine conjugation.","authors":"James Z Deng, Xiujuan Jia, Chengli Zong, Jian He, Sha Ha, Ping Zhuang","doi":"10.1007/s10719-023-10125-8","DOIUrl":"10.1007/s10719-023-10125-8","url":null,"abstract":"<p><p>Streptococcus pneumoniae is a highly invasive bacterial pathogen that can cause a range of illnesses. Pneumococcal capsular polysaccharides (CPS) are the main virulence factors that causes invasive pneumococcal disease (IPD). Pneumococcal CPS serotype 7F along with a few other serotypes is more invasive and likely to cause IPD. Therefore, 7F is a target for pneumococcal vaccine development, and is included in the two recently approved multi-valent pneumococcal conjugated vaccines, i.e. VAXNEUVANCE and PREVNAR 20.To support process and development of our 15-valent pneumococcal conjugated vaccine (PCV15), chromatographic methods have been developed for 7F polysaccharide and conjugate characterization. A size-exclusion chromatography (SEC) method with UV, light scattering and refractive index detections was employed for concentration, size and conformation analysis. A reversed-phase ultra-performance liquid chromatography (RP-UPLC) method was used for analysis of conjugate monosaccharide composition and degree of conjugation. The collective information obtained by these chromatographic analysis provided insights into the pneumococcal conjugate and conjugation process.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"565-573"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10106604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-22DOI: 10.1007/s10719-023-10133-8
Yu-Ching Chiang, Chun-Yen Wu, Pei-Yun Chiang, Avijit K Adak, Chun-Cheng Lin
Globo A is a neutral Globo-series glycosphingolipid (GSL) that shows natural properties of a cytotoxicity receptor NKp44 binding ligand. The highly complex heptasaccharide glycan structure of Globo A combined with its biological profile provides a unique target for the development of a synthetic method to facilitate its bioactivity studies. Here, a concise chemoenzymatic route to the synthesis of Globo A and its α1,3-galactose-linked congener Globo B is reported. The key to success was the use of a synthetic azido β-Globo H sphingosine (Globo H-βSph) as an acceptor substrate and two glycosyl transferases, an α1,3-N-acetylgalactosaminyltransferase from Helicobacter mustelae (BgtA) and a human blood group B α1,3-galactosyltransferase (h1,3GTB), for stereoselective construction of the terminal α1,3-GalNAc and α1,3-Gal linkages, respectively. The azido-Sph lipid sidechain is further elaborated by reduction and a chemoselective N-acylation to complete the total synthesis of the neutral Globo-series GSLs. In addition, the synthesis of Forssman and para-Forssman antigens were prepared. The strategy may be suitable for accessing other complex GSLs and related lipid-modified GSL derivatives.
{"title":"A concise chemoenzymatic total synthesis of neutral Globo-series glycosphingolipids Globo A and Globo B, and Forssman and para-Forssman antigens.","authors":"Yu-Ching Chiang, Chun-Yen Wu, Pei-Yun Chiang, Avijit K Adak, Chun-Cheng Lin","doi":"10.1007/s10719-023-10133-8","DOIUrl":"10.1007/s10719-023-10133-8","url":null,"abstract":"<p><p>Globo A is a neutral Globo-series glycosphingolipid (GSL) that shows natural properties of a cytotoxicity receptor NKp44 binding ligand. The highly complex heptasaccharide glycan structure of Globo A combined with its biological profile provides a unique target for the development of a synthetic method to facilitate its bioactivity studies. Here, a concise chemoenzymatic route to the synthesis of Globo A and its α1,3-galactose-linked congener Globo B is reported. The key to success was the use of a synthetic azido β-Globo H sphingosine (Globo H-βSph) as an acceptor substrate and two glycosyl transferases, an α1,3-N-acetylgalactosaminyltransferase from Helicobacter mustelae (BgtA) and a human blood group B α1,3-galactosyltransferase (h1,3GTB), for stereoselective construction of the terminal α1,3-GalNAc and α1,3-Gal linkages, respectively. The azido-Sph lipid sidechain is further elaborated by reduction and a chemoselective N-acylation to complete the total synthesis of the neutral Globo-series GSLs. In addition, the synthesis of Forssman and para-Forssman antigens were prepared. The strategy may be suitable for accessing other complex GSLs and related lipid-modified GSL derivatives.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"551-563"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10042620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-11DOI: 10.1007/s10719-023-10129-4
Albert M Wu
The binding property of Con A has been studied intensively and applied widely to glycoconjugates / glycobiology for over 80 years. However, its role and functional relationship of Con A with these mammalian structural units, glycotopes, N-glycan chains, as well as their polyvalent forms in N-glycoproteins involved in the Con A-glycan interactions have not been well defined and organized. In this study, the recognition factors involved in these interactions were analyzed by our well developed method- the enzyme linked lectinosorbent (ELLSA) and inhibition assay. Based on all the data obtained, it is concluded that Con A, as previously reported, has a relatively broad and wide recognition ability of the Manα1 → and Glcα1 → related glycans. It reacted not only strongly with yeast mannan and glycogens, but also bound well with a large number of mammalian N-glycans, including the N-glycans of rat sublingual gp (RSL), human Tamm-Horsfall glycoprotein (THGP), thyroglobulin and lactoferrin. The recognition specificity of Con A towards ligands, expressed by Molar Relative Potency (Molar R.P.), in a decreasing order is as follows: α1 → 3, α1 → 6 Mannopentaose (M5) and Biantennary N-linked core pentasaccharide (MDi) ≥ α1 → 3, α1 → 6 Mannotriose (M3) > Manα1 → 3Man (α1 → 3Mannobiose), Manα1 → 2Man (α1 → 2Mannobiose), Manα1 → 6Man (α1 → 6Mannobiose), Manα1 → 4Man (α1 → 4Mannobiose) > GlcNAcβ1 → 2Man (β1 → 2 N-Acetyl glucosamine-mannose) > Manα1 → /Glcα1 → > Man > Glc, while Gal / GalNAc were inactive. Furthermore, the Man related code system, in this study, is proposed to express by both numbers of Man and GlcNAcβ1 → branches (M3 to M9 / MMono to Penta etc.) and a table of three Manα1 → and Glcα1 → related biomasses of six recognition factors involved in the Con A-glycan interactions has also been demonstrated. These themes should be one of the most valuable advances since 1980s.
{"title":"Roles of the structural units, glycotopes / mammalian N-glycans for Con A-glycan interactions, their codes, and their recognition factors.","authors":"Albert M Wu","doi":"10.1007/s10719-023-10129-4","DOIUrl":"10.1007/s10719-023-10129-4","url":null,"abstract":"<p><p>The binding property of Con A has been studied intensively and applied widely to glycoconjugates / glycobiology for over 80 years. However, its role and functional relationship of Con A with these mammalian structural units, glycotopes, N-glycan chains, as well as their polyvalent forms in N-glycoproteins involved in the Con A-glycan interactions have not been well defined and organized. In this study, the recognition factors involved in these interactions were analyzed by our well developed method- the enzyme linked lectinosorbent (ELLSA) and inhibition assay. Based on all the data obtained, it is concluded that Con A, as previously reported, has a relatively broad and wide recognition ability of the Manα1 → and Glcα1 → related glycans. It reacted not only strongly with yeast mannan and glycogens, but also bound well with a large number of mammalian N-glycans, including the N-glycans of rat sublingual gp (RSL), human Tamm-Horsfall glycoprotein (THGP), thyroglobulin and lactoferrin. The recognition specificity of Con A towards ligands, expressed by Molar Relative Potency (Molar R.P.), in a decreasing order is as follows: α1 → 3, α1 → 6 Mannopentaose (M<sub>5</sub>) and Biantennary N-linked core pentasaccharide (M<sub>Di</sub>) ≥ α1 → 3, α1 → 6 Mannotriose (M<sub>3</sub>) > Manα1 → 3Man (α1 → 3Mannobiose), Manα1 → 2Man (α1 → 2Mannobiose), Manα1 → 6Man (α1 → 6Mannobiose), Manα1 → 4Man (α1 → 4Mannobiose) > GlcNAcβ1 → 2Man (β1 → 2 N-Acetyl glucosamine-mannose) > Manα1 → /Glcα1 → > Man > Glc, while Gal / GalNAc were inactive. Furthermore, the Man related code system, in this study, is proposed to express by both numbers of Man and GlcNAcβ1 → branches (M<sub>3</sub> to M<sub>9</sub> / M<sub>Mono to Penta etc.</sub>) and a table of three Manα1 → and Glcα1 → related biomasses of six recognition factors involved in the Con A-glycan interactions has also been demonstrated. These themes should be one of the most valuable advances since 1980s.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"587-608"},"PeriodicalIF":3.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10194443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s10719-023-10122-x
Abhijit Rana, Pradip Shit, Anup Kumar Misra
A straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Salmonella arizonae O62 was achieved in very good yield applying sequential glycosylation strategy. Successful regioselective glycosylation of the di-hydroxylated L-rhamnose moiety allowed achieving the desired compound in minimum number of synthetic steps. TEMPO catalyzed and [bis(acetoxy)iodo]benzene (BAIB) mediated late stage regioselective oxidation of a primary hydroxyl group into carboxylic acid was achieved in the hexasaccharide derivative. The glycosylation steps were high yielding with high stereochemical outcome. The desired hexasaccharide was obtained in 7% over all yield in fourteen steps starting from suitably functionalized monosaccharide intermediates.
{"title":"Straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Salmonella arizonae O62.","authors":"Abhijit Rana, Pradip Shit, Anup Kumar Misra","doi":"10.1007/s10719-023-10122-x","DOIUrl":"https://doi.org/10.1007/s10719-023-10122-x","url":null,"abstract":"<p><p>A straightforward synthesis of the hexasaccharide repeating unit of the O-specific polysaccharide of Salmonella arizonae O62 was achieved in very good yield applying sequential glycosylation strategy. Successful regioselective glycosylation of the di-hydroxylated L-rhamnose moiety allowed achieving the desired compound in minimum number of synthetic steps. TEMPO catalyzed and [bis(acetoxy)iodo]benzene (BAIB) mediated late stage regioselective oxidation of a primary hydroxyl group into carboxylic acid was achieved in the hexasaccharide derivative. The glycosylation steps were high yielding with high stereochemical outcome. The desired hexasaccharide was obtained in 7% over all yield in fourteen steps starting from suitably functionalized monosaccharide intermediates.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 4","pages":"449-459"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1007/s10719-023-10124-9
Masanori Yamaguchi, Kenji Yamamoto
The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed "the gut microbiota". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.
{"title":"Mucin glycans and their degradation by gut microbiota.","authors":"Masanori Yamaguchi, Kenji Yamamoto","doi":"10.1007/s10719-023-10124-9","DOIUrl":"https://doi.org/10.1007/s10719-023-10124-9","url":null,"abstract":"<p><p>The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed \"the gut microbiota\". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 4","pages":"493-512"},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10234835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}