{"title":"Correction to: Galectin-3 does not interact with RNA directly.","authors":"","doi":"10.1093/glycob/cwae027","DOIUrl":"10.1093/glycob/cwae027","url":null,"abstract":"","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte Rossdam, Smilla Brand, Julia Beimdiek, Astrid Oberbeck, Marco Darius Albers, Ortwin Naujok, Falk F R Buettner
Cell surface biomarkers are fundamental for specific characterization of human pluripotent stem cells (hPSCs). Importantly, they can be applied for hPSC enrichment and/or purification but also to remove potentially teratoma-forming hPSCs from differentiated populations before clinical application. Several specific markers for hPSCs are glycoconjugates comprising the glycosphingolipid (GSL)-based glycans SSEA-3 and SSEA-4. We applied an analytical approach based on multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection to quantitatively assess the GSL glycome of human embryonic stem cells and human induced pluripotent stem cells as well as during early stages of differentiation into mesoderm, endoderm, and ectoderm. Thereby, we identified the GSL lacto-N-tetraosylceramide (Lc4-Cer, Galβ1-3GlcNAcβ1-3Galβ1-4Glc-Cer), which comprises a terminal type 1 LacNAc (T1LN) structure (Galβ1-3GlcNAc), to be rapidly decreased upon onset of differentiation. Using a specific antibody, we could confirm a decline of T1LN-terminating glycans during the first four days of differentiation by live-cell staining and subsequent flow cytometry. We could further separate T1LN-positive and T1LN-negative cells out of a mixed population of pluripotent and differentiated cells by magnetic activated cell sorting. Notably, not only the T1LN-positive but also the T1LN-negative population was positive for SSEA-3, SSEA-4, and SSEA-5 while expression of nuclear pluripotency markers OCT4 and NANOG was highly reduced in the T1LN-negative population, exclusively. Our findings suggest T1LN as a pluripotent stem cell-specific glycan epitope that is more rapidly down-regulated upon differentiation than SSEA-3, SSEA-4, and SSEA-5.
{"title":"Targeting the glycan epitope type I N-acetyllactosamine enables immunodepletion of human pluripotent stem cells from early differentiated cells.","authors":"Charlotte Rossdam, Smilla Brand, Julia Beimdiek, Astrid Oberbeck, Marco Darius Albers, Ortwin Naujok, Falk F R Buettner","doi":"10.1093/glycob/cwae012","DOIUrl":"10.1093/glycob/cwae012","url":null,"abstract":"<p><p>Cell surface biomarkers are fundamental for specific characterization of human pluripotent stem cells (hPSCs). Importantly, they can be applied for hPSC enrichment and/or purification but also to remove potentially teratoma-forming hPSCs from differentiated populations before clinical application. Several specific markers for hPSCs are glycoconjugates comprising the glycosphingolipid (GSL)-based glycans SSEA-3 and SSEA-4. We applied an analytical approach based on multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection to quantitatively assess the GSL glycome of human embryonic stem cells and human induced pluripotent stem cells as well as during early stages of differentiation into mesoderm, endoderm, and ectoderm. Thereby, we identified the GSL lacto-N-tetraosylceramide (Lc4-Cer, Galβ1-3GlcNAcβ1-3Galβ1-4Glc-Cer), which comprises a terminal type 1 LacNAc (T1LN) structure (Galβ1-3GlcNAc), to be rapidly decreased upon onset of differentiation. Using a specific antibody, we could confirm a decline of T1LN-terminating glycans during the first four days of differentiation by live-cell staining and subsequent flow cytometry. We could further separate T1LN-positive and T1LN-negative cells out of a mixed population of pluripotent and differentiated cells by magnetic activated cell sorting. Notably, not only the T1LN-positive but also the T1LN-negative population was positive for SSEA-3, SSEA-4, and SSEA-5 while expression of nuclear pluripotency markers OCT4 and NANOG was highly reduced in the T1LN-negative population, exclusively. Our findings suggest T1LN as a pluripotent stem cell-specific glycan epitope that is more rapidly down-regulated upon differentiation than SSEA-3, SSEA-4, and SSEA-5.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leila Allahgholi, Maik G N Derks, Justyna M Dobruchowska, Andrius Jasilionis, Antoine Moenaert, Léonie Jouy, Kazi Zubaida Gulshan Ara, Javier A Linares-Pastén, Ólafur H Friðjónsson, Guðmundur Óli Hreggviðsson, Eva Nordberg Karlsson
The marine environment, contains plentiful renewable resources, e.g. macroalgae with unique polysaccharides, motivating search for enzymes from marine microorganisms to explore conversion possibilities of the polysaccharides. In this study, the first GH17 glucanosyltransglycosylase, MlGH17B, from a marine bacterium (Muricauda lutaonensis), was characterized. The enzyme was moderately thermostable with Tm at 64.4 °C and 73.2 °C, but an activity optimum at 20 °C, indicating temperature sensitive active site interactions. MlGH17B uses β-1,3 laminari-oligosaccharides with a degree of polymerization (DP) of 4 or higher as donors. Two glucose moieties (bound in the aglycone +1 and +2 subsites) are cleaved off from the reducing end of the donor while the remaining part (bound in the glycone subsites) is transferred to an incoming β-1,3 glucan acceptor, making a β-1,6-linkage, thereby synthesizing branched or kinked oligosaccharides. Synthesized oligosaccharides up to DP26 were detected by mass spectrometry analysis, showing that repeated transfer reactions occurred, resulting in several β-1,6-linked branches. The modeled structure revealed an active site comprising five subsites: three glycone (-3, -2 and -1) and two aglycone (+1 and +2) subsites, with significant conservation of substrate interactions compared to the only crystallized 1,3-β-glucanosyltransferase from GH17 (RmBgt17A from the compost thriving fungus Rhizomucor miehei), suggesting a common catalytic mechanism, despite different phylogenetic origin, growth environment, and natural substrate. Both enzymes lacked the subdomain extending the aglycone subsites, found in GH17 endo-β-glucanases from plants, but this extension was also missing in bacterial endoglucanases (modeled here), showing that this feature does not distinguish transglycosylation from hydrolysis, but may rather relate to phylogeny.
{"title":"Exploring a novel β-1,3-glucanosyltransglycosylase, MlGH17B, from a marine Muricauda lutaonensis strain for modification of laminari-oligosaccharides.","authors":"Leila Allahgholi, Maik G N Derks, Justyna M Dobruchowska, Andrius Jasilionis, Antoine Moenaert, Léonie Jouy, Kazi Zubaida Gulshan Ara, Javier A Linares-Pastén, Ólafur H Friðjónsson, Guðmundur Óli Hreggviðsson, Eva Nordberg Karlsson","doi":"10.1093/glycob/cwae007","DOIUrl":"10.1093/glycob/cwae007","url":null,"abstract":"<p><p>The marine environment, contains plentiful renewable resources, e.g. macroalgae with unique polysaccharides, motivating search for enzymes from marine microorganisms to explore conversion possibilities of the polysaccharides. In this study, the first GH17 glucanosyltransglycosylase, MlGH17B, from a marine bacterium (Muricauda lutaonensis), was characterized. The enzyme was moderately thermostable with Tm at 64.4 °C and 73.2 °C, but an activity optimum at 20 °C, indicating temperature sensitive active site interactions. MlGH17B uses β-1,3 laminari-oligosaccharides with a degree of polymerization (DP) of 4 or higher as donors. Two glucose moieties (bound in the aglycone +1 and +2 subsites) are cleaved off from the reducing end of the donor while the remaining part (bound in the glycone subsites) is transferred to an incoming β-1,3 glucan acceptor, making a β-1,6-linkage, thereby synthesizing branched or kinked oligosaccharides. Synthesized oligosaccharides up to DP26 were detected by mass spectrometry analysis, showing that repeated transfer reactions occurred, resulting in several β-1,6-linked branches. The modeled structure revealed an active site comprising five subsites: three glycone (-3, -2 and -1) and two aglycone (+1 and +2) subsites, with significant conservation of substrate interactions compared to the only crystallized 1,3-β-glucanosyltransferase from GH17 (RmBgt17A from the compost thriving fungus Rhizomucor miehei), suggesting a common catalytic mechanism, despite different phylogenetic origin, growth environment, and natural substrate. Both enzymes lacked the subdomain extending the aglycone subsites, found in GH17 endo-β-glucanases from plants, but this extension was also missing in bacterial endoglucanases (modeled here), showing that this feature does not distinguish transglycosylation from hydrolysis, but may rather relate to phylogeny.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139564020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N R Siva Shanmugam, A Kulandaisamy, K Veluraja, M Michael Gromiha
Protein-carbohydrate interactions are involved in several cellular and biological functions. Integrating structure and function of carbohydrate-binding proteins with disease-causing mutations help to understand the molecular basis of diseases. Although databases are available for protein-carbohydrate complexes based on structure, binding affinity and function, no specific database for mutations in human carbohydrate-binding proteins is reported in the literature. We have developed a novel database, CarbDisMut, a comprehensive integrated resource for disease-causing mutations with sequence and structural features. It has 1.17 million disease-associated mutations and 38,636 neutral mutations from 7,187 human carbohydrate-binding proteins. The database is freely available at https://web.iitm.ac.in/bioinfo2/carbdismut. The web-site is implemented using HTML, PHP and JavaScript and supports recent versions of all major browsers, such as Firefox, Chrome and Opera.
{"title":"CarbDisMut: database on neutral and disease-causing mutations in human carbohydrate-binding proteins.","authors":"N R Siva Shanmugam, A Kulandaisamy, K Veluraja, M Michael Gromiha","doi":"10.1093/glycob/cwae011","DOIUrl":"10.1093/glycob/cwae011","url":null,"abstract":"<p><p>Protein-carbohydrate interactions are involved in several cellular and biological functions. Integrating structure and function of carbohydrate-binding proteins with disease-causing mutations help to understand the molecular basis of diseases. Although databases are available for protein-carbohydrate complexes based on structure, binding affinity and function, no specific database for mutations in human carbohydrate-binding proteins is reported in the literature. We have developed a novel database, CarbDisMut, a comprehensive integrated resource for disease-causing mutations with sequence and structural features. It has 1.17 million disease-associated mutations and 38,636 neutral mutations from 7,187 human carbohydrate-binding proteins. The database is freely available at https://web.iitm.ac.in/bioinfo2/carbdismut. The web-site is implemented using HTML, PHP and JavaScript and supports recent versions of all major browsers, such as Firefox, Chrome and Opera.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O-GlcNAcylation is a dynamic modulator of signaling pathways, equal in magnitude to the widely studied phosphorylation. With the rapid development of tools for its detection at the single protein level, the O-GlcNAc modification rapidly emerged as a novel diagnostic and therapeutic target in human diseases. Yet, mapping the human O-GlcNAcome in various tissues is essential for generating relevant biomarkers. In this study, we used human banked tissue as a sample source to identify O-GlcNAcylated protein targets relevant to human diseases. Using human term placentas, we propose (1) a method to clean frozen banked tissue of blood proteins; (2) an optimized protocol for the enrichment of O-GlcNAcylated proteins using immunoaffinity purification; and (3) a bioinformatic workflow to identify the most promising O-GlcNAc targets. As a proof-of-concept, we used 45 mg of banked placental samples from two pregnancies to generate intracellular protein extracts depleted of blood protein. Then, antibody-based O-GlcNAc enrichment on denatured samples yielded over 2000 unique HexNAc PSMs and 900 unique sites using 300 μg of protein lysate. Due to efficient sample cleanup, we also captured 82 HexNAc proteins with high placental expression. Finally, we provide a bioinformatic tool (CytOVS) to sort the HexNAc proteins based on their cellular localization and extract the most promising O-GlcNAc targets to explore further. To conclude, we provide a simple 3-step workflow to generate a manageable list of O-GlcNAc proteins from human tissue and improve our understanding of O-GlcNAcylation's role in health and diseases.
{"title":"Studying the O-GlcNAcome of human placentas using banked tissue samples.","authors":"Sarai Luna, Florian Malard, Michaela Pereckas, Mayumi Aoki, Kazuhiro Aoki, Stephanie Olivier-Van Stichelen","doi":"10.1093/glycob/cwae005","DOIUrl":"10.1093/glycob/cwae005","url":null,"abstract":"<p><p>O-GlcNAcylation is a dynamic modulator of signaling pathways, equal in magnitude to the widely studied phosphorylation. With the rapid development of tools for its detection at the single protein level, the O-GlcNAc modification rapidly emerged as a novel diagnostic and therapeutic target in human diseases. Yet, mapping the human O-GlcNAcome in various tissues is essential for generating relevant biomarkers. In this study, we used human banked tissue as a sample source to identify O-GlcNAcylated protein targets relevant to human diseases. Using human term placentas, we propose (1) a method to clean frozen banked tissue of blood proteins; (2) an optimized protocol for the enrichment of O-GlcNAcylated proteins using immunoaffinity purification; and (3) a bioinformatic workflow to identify the most promising O-GlcNAc targets. As a proof-of-concept, we used 45 mg of banked placental samples from two pregnancies to generate intracellular protein extracts depleted of blood protein. Then, antibody-based O-GlcNAc enrichment on denatured samples yielded over 2000 unique HexNAc PSMs and 900 unique sites using 300 μg of protein lysate. Due to efficient sample cleanup, we also captured 82 HexNAc proteins with high placental expression. Finally, we provide a bioinformatic tool (CytOVS) to sort the HexNAc proteins based on their cellular localization and extract the most promising O-GlcNAc targets to explore further. To conclude, we provide a simple 3-step workflow to generate a manageable list of O-GlcNAc proteins from human tissue and improve our understanding of O-GlcNAcylation's role in health and diseases.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Obituary John Stephen Schutzbach.","authors":"Inka Brockhausen","doi":"10.1093/glycob/cwae008","DOIUrl":"10.1093/glycob/cwae008","url":null,"abstract":"","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modern glycoproteomics experiments require the use of search engines due to the generation of countless spectra. While these tools are valuable, manual validation of search engine results is often required for detailed analysis of glycopeptides as false-discovery rates are often not reliable for glycopeptide data. Near-isobaric mismatches are a common source of misidentifications for the popular glycopeptide-focused search engine pGlyco3.0, and in this technical note we share a strategy and script that improves the accuracy of the search utilizing two manually validated datasets of the glycoproteins CD16a and HIV-1 Env as proof-of-principle.
{"title":"ppmFixer: a mass error adjustment for pGlyco3.0 to correct near-isobaric mismatches.","authors":"Trevor M Adams, Peng Zhao, Rui Kong, Lance Wells","doi":"10.1093/glycob/cwae006","DOIUrl":"10.1093/glycob/cwae006","url":null,"abstract":"<p><p>Modern glycoproteomics experiments require the use of search engines due to the generation of countless spectra. While these tools are valuable, manual validation of search engine results is often required for detailed analysis of glycopeptides as false-discovery rates are often not reliable for glycopeptide data. Near-isobaric mismatches are a common source of misidentifications for the popular glycopeptide-focused search engine pGlyco3.0, and in this technical note we share a strategy and script that improves the accuracy of the search utilizing two manually validated datasets of the glycoproteins CD16a and HIV-1 Env as proof-of-principle.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marilica Zemkollari, Chris Oostenbrink, Reingard Grabherr, Erika Staudacher
The glycoprotein-N-acetylgalactosamine β1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 β1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.
糖蛋白-N-乙酰半乳糖胺 β1,3-半乳糖基转移酶,又称 T 合成酶(EC 2.4.1.122),在合成 T 抗原(即核心 1 O-聚糖结构)的过程中发挥着至关重要的作用。这种酶将半乳糖从 UDP-Gal 转化为 GalNAc-Ser/Thr。T 抗原在动物发育、免疫反应和识别过程中具有重要功能。软体动物是一个成功的动物群体,栖息在淡水、海洋和陆地等不同环境中。它们在生态系统中扮演着滤食者和分解者的重要角色,但也可能成为农业害虫以及人和牛寄生虫的中间宿主。鉴定和描述新型碳水化合物活性酶(如 T 合成酶)有助于了解软体动物的糖基化能力及其适应和生存能力。在此,我们对来自蜗牛Pomacea canaliculata和牡蛎Crassostrea gigas的T-合成酶进行了鉴定、克隆、表达和表征,重点是结构阐释。合成的酶以 pNP-α-GalNAc 为底物,显示出核心 1 β1,3-半乳糖基转移酶活性,其生化参数与之前鉴定的其他物种的 T 合成酶相似。千足巨藻类的酶与迄今表征的其他酶具有相同的结构参数,而管状裸藻的 T 合成酶则缺乏共识序列 CCSD,而 CCSD 以前被认为是不可或缺的。
{"title":"Molecular cloning, characterisation and molecular modelling of two novel T-synthases from mollusc origin.","authors":"Marilica Zemkollari, Chris Oostenbrink, Reingard Grabherr, Erika Staudacher","doi":"10.1093/glycob/cwae013","DOIUrl":"10.1093/glycob/cwae013","url":null,"abstract":"<p><p>The glycoprotein-N-acetylgalactosamine β1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 β1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne-Sophie Wegscheider, Irina Wojahn, Pablo Gottheil, Michael Spohn, Joseph Alfons Käs, Olga Rosin, Bernhard Ulm, Peter Nollau, Christoph Wagener, Axel Niendorf, Gerrit Wolters-Eisfeld
Glycosylation is a prominent posttranslational modification, and alterations in glycosylation are a hallmark of cancer. Glycan-binding receptors, primarily expressed on immune cells, play a central role in glycan recognition and immune response. Here, we used the recombinant C-type glycan-binding receptors CD301, Langerin, SRCL, LSECtin, and DC-SIGNR to recognize their ligands on tissue microarrays (TMA) of a large cohort (n = 1859) of invasive breast cancer of different histopathological types to systematically determine the relevance of altered glycosylation in breast cancer. Staining frequencies of cancer cells were quantified in an unbiased manner by a computer-based algorithm. CD301 showed the highest overall staining frequency (40%), followed by LSECtin (16%), Langerin (4%) and DC-SIGNR (0.5%). By Kaplan-Meier analyses, we identified LSECtin and CD301 as prognostic markers in different breast cancer subtypes. Positivity for LSECtin was associated with inferior disease-free survival in all cases, particularly in estrogen receptor positive (ER+) breast cancer of higher histological grade. In triple negative breast cancer, positivity for CD301 correlated with a worse prognosis. Based on public RNA single-cell sequencing data of human breast cancer infiltrating immune cells, we found CLEC10A (CD301) and CLEC4G (LSECtin) exclusively expressed in distinct subpopulations, particularly in dendritic cells and macrophages, indicating that specific changes in glycosylation may play a significant role in breast cancer immune response and progression.
{"title":"CD301 and LSECtin glycan-binding receptors of innate immune cells serve as prognostic markers and potential predictors of immune response in breast cancer subtypes.","authors":"Anne-Sophie Wegscheider, Irina Wojahn, Pablo Gottheil, Michael Spohn, Joseph Alfons Käs, Olga Rosin, Bernhard Ulm, Peter Nollau, Christoph Wagener, Axel Niendorf, Gerrit Wolters-Eisfeld","doi":"10.1093/glycob/cwae003","DOIUrl":"10.1093/glycob/cwae003","url":null,"abstract":"<p><p>Glycosylation is a prominent posttranslational modification, and alterations in glycosylation are a hallmark of cancer. Glycan-binding receptors, primarily expressed on immune cells, play a central role in glycan recognition and immune response. Here, we used the recombinant C-type glycan-binding receptors CD301, Langerin, SRCL, LSECtin, and DC-SIGNR to recognize their ligands on tissue microarrays (TMA) of a large cohort (n = 1859) of invasive breast cancer of different histopathological types to systematically determine the relevance of altered glycosylation in breast cancer. Staining frequencies of cancer cells were quantified in an unbiased manner by a computer-based algorithm. CD301 showed the highest overall staining frequency (40%), followed by LSECtin (16%), Langerin (4%) and DC-SIGNR (0.5%). By Kaplan-Meier analyses, we identified LSECtin and CD301 as prognostic markers in different breast cancer subtypes. Positivity for LSECtin was associated with inferior disease-free survival in all cases, particularly in estrogen receptor positive (ER+) breast cancer of higher histological grade. In triple negative breast cancer, positivity for CD301 correlated with a worse prognosis. Based on public RNA single-cell sequencing data of human breast cancer infiltrating immune cells, we found CLEC10A (CD301) and CLEC4G (LSECtin) exclusively expressed in distinct subpopulations, particularly in dendritic cells and macrophages, indicating that specific changes in glycosylation may play a significant role in breast cancer immune response and progression.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}