Coley's Toxin comprised a mixture of cell-free, heat-treated culture media from Streptococcus pyogenes (originally Streptococus erysipelatos) and Serratia marcescens (originally Bacillus prodigiosus). A 250 kDa tumor hemorrhage-inducing polysaccharide "PS1" is reported here secreted into culture medium by S. marcescens. Four h after PS1 is injected at 32 μg/kg (10pM) into the tail vein of Balb/C mice bearing C26 subcutaneous colon-derived tumors, tumor-specific capillary hemorrhage is exhibited in 90% of tumors. As a positive control, CM101, a similar tumor hemorrhagic polysaccharide from Streptococcus agalactica caused tumor hemorrhage in 75% of tumors in the Balb/C-C26 model at 7.5 μg/kg(2.5pM). CM101 has previously been safety tested in a Phase I clinical trial. These two polysaccharides have merit to be identified as the active principal ingredients (API's) of Coley'sToxin. Additional approaches to cancer therapy are a global need. No matter the level of wealth of victims, some cancers are still incurable. Recall in recent years the tragic early cancer deaths of Steve Jobs and Paul Allen among other luminaries. Streptococcal and Serratia bacterial extracts have unique tumor specific capillary destructive activity, with observations originating with sarcomas cured by nosocomial erysipelas infections in the 1860's. The active pharmaceutical ingredients (API's) in these extracts and Coley's Toxins are proposed to be polysaccharides.
{"title":"Tumor Hemorrhage-inducing polysaccharides secreted by streptococci and Serratia proposed as the active principal ingredients (API's) of Coley's toxin: on PS1, the Serratia marcescens API.","authors":"Roger A Laine, Henry W Lopez, Hiromu Takematsu","doi":"10.1093/glycob/cwaf021","DOIUrl":"https://doi.org/10.1093/glycob/cwaf021","url":null,"abstract":"<p><p>Coley's Toxin comprised a mixture of cell-free, heat-treated culture media from Streptococcus pyogenes (originally Streptococus erysipelatos) and Serratia marcescens (originally Bacillus prodigiosus). A 250 kDa tumor hemorrhage-inducing polysaccharide \"PS1\" is reported here secreted into culture medium by S. marcescens. Four h after PS1 is injected at 32 μg/kg (10pM) into the tail vein of Balb/C mice bearing C26 subcutaneous colon-derived tumors, tumor-specific capillary hemorrhage is exhibited in 90% of tumors. As a positive control, CM101, a similar tumor hemorrhagic polysaccharide from Streptococcus agalactica caused tumor hemorrhage in 75% of tumors in the Balb/C-C26 model at 7.5 μg/kg(2.5pM). CM101 has previously been safety tested in a Phase I clinical trial. These two polysaccharides have merit to be identified as the active principal ingredients (API's) of Coley'sToxin. Additional approaches to cancer therapy are a global need. No matter the level of wealth of victims, some cancers are still incurable. Recall in recent years the tragic early cancer deaths of Steve Jobs and Paul Allen among other luminaries. Streptococcal and Serratia bacterial extracts have unique tumor specific capillary destructive activity, with observations originating with sarcomas cured by nosocomial erysipelas infections in the 1860's. The active pharmaceutical ingredients (API's) in these extracts and Coley's Toxins are proposed to be polysaccharides.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":"35 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143969573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine Navarre, Nicolas Bailly, Juliette Balieu, Olivier Perruchon, Xavier Herman, Antoine Mercier, Adeline Courtoy, Patrice Lerouge, Muriel Bardor, François Chaumont
N-glycosylation is a critical quality attribute to consider when expressing recombinant glycoproteins in eukaryotic cells including plant cells. N-acetylglucosaminyltransferase I (GnTI) initiates complex N-glycan maturation in the Golgi apparatus by transferring a single N-acetylglucosamine (GlcNAc) residue on the alpha1,3-arm of a Man5 N-glycan acceptor. This step is required for the processing of high mannose into hybrid and complex N-glycans. Therefore, Arabidopsis mutants lacking GnTI activity display accumulation of Man5 N-glycans instead of complex N-glycans and do not synthesise N-glycans containing core alpha1,3-fucose residue. In contrast, GnTI knockout cell line of Nicotiana tabacum BY-2 still displays a little core alpha1,3-fucose signal on western blotting. Here, we show that N. tabacum contains two alpha1,3-fucosyltransferase types, one of which is able to transfer a core alpha1,3-fucose on a Man5 substrate when no Man5Gn substrate is available such as in BY-2 GnTI knock-out cell lines.
{"title":"Nicotiana tabacum contains two alpha1,3-fucosyltransferase types, one of which is able to catalyze core fucosylation of high-mannose N-glycans.","authors":"Catherine Navarre, Nicolas Bailly, Juliette Balieu, Olivier Perruchon, Xavier Herman, Antoine Mercier, Adeline Courtoy, Patrice Lerouge, Muriel Bardor, François Chaumont","doi":"10.1093/glycob/cwaf024","DOIUrl":"https://doi.org/10.1093/glycob/cwaf024","url":null,"abstract":"<p><p>N-glycosylation is a critical quality attribute to consider when expressing recombinant glycoproteins in eukaryotic cells including plant cells. N-acetylglucosaminyltransferase I (GnTI) initiates complex N-glycan maturation in the Golgi apparatus by transferring a single N-acetylglucosamine (GlcNAc) residue on the alpha1,3-arm of a Man5 N-glycan acceptor. This step is required for the processing of high mannose into hybrid and complex N-glycans. Therefore, Arabidopsis mutants lacking GnTI activity display accumulation of Man5 N-glycans instead of complex N-glycans and do not synthesise N-glycans containing core alpha1,3-fucose residue. In contrast, GnTI knockout cell line of Nicotiana tabacum BY-2 still displays a little core alpha1,3-fucose signal on western blotting. Here, we show that N. tabacum contains two alpha1,3-fucosyltransferase types, one of which is able to transfer a core alpha1,3-fucose on a Man5 substrate when no Man5Gn substrate is available such as in BY-2 GnTI knock-out cell lines.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":"35 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143984023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glyco you should know.","authors":"Lilyanna Massman","doi":"10.1093/glycob/cwaf029","DOIUrl":"https://doi.org/10.1093/glycob/cwaf029","url":null,"abstract":"","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":"35 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144101718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristian Prydz, Roger Simm, Erna Davydova, Hans-Christian Aasheim
The ephrin family of membrane proteins mediate intracellular signalling as ligands of transmembrane Eph tyrosine kinase receptors during cell-cell interactions. Ephrin/Eph signalling regulates processes like cell migration and angiogenesis and is of particular importance during embryonic development. Ephrins-A3 and -B3 can also bind to cell surface-associated and soluble heparan sulfate proteoglycans (HSPGs) that also play important roles during early development. Here we show that ephrins-B1, -B2, and -B3 all can bind in cis to cell surface HSPGs, while only ephrin-B1 interacts with cell surface HSPGs in a way that retards HSPG endocytosis. Expressing ephrin-B1 in HEK293T cells, using polyethyleneimine (PEI) as transfection agent, increased cell surface levels of HSPGs which were detected by an anti-heparan sulfate (HS) antibody or by ephrin-B3-Fc binding. Ephrin-B1 in the plasma membrane seemed to retard PEI-induced HSPG internalisation and degradation. Binding of HSPGs by ephrin-B1 was observed for the human, mouse, xenopus, and zebrafish homologs, and did not require the cytoplasmic tail of ephrin-B1 that contains tyrosines shown to be involved in intracellular signalling. Furthermore, ephrin-B1 could bind the HSPG variant of CD44 (CD44V3-10), a complex that could further associate with fibroblast growth factor receptors (1 and 4) after co-expression with one of these receptors. In summary, our data indicate that ephrin-B1 can regulate cellular HSPG turnover and is able to form complexes of potential biological importance with CD44V3-10 and fibroblast growth factor receptors.
{"title":"Ephrin-B1 regulates cell surface residency of heparan sulfate proteoglycans (HSPGs) and complexes with the HSPG CD44V3-10 and fibroblast growth factor receptors.","authors":"Kristian Prydz, Roger Simm, Erna Davydova, Hans-Christian Aasheim","doi":"10.1093/glycob/cwaf020","DOIUrl":"10.1093/glycob/cwaf020","url":null,"abstract":"<p><p>The ephrin family of membrane proteins mediate intracellular signalling as ligands of transmembrane Eph tyrosine kinase receptors during cell-cell interactions. Ephrin/Eph signalling regulates processes like cell migration and angiogenesis and is of particular importance during embryonic development. Ephrins-A3 and -B3 can also bind to cell surface-associated and soluble heparan sulfate proteoglycans (HSPGs) that also play important roles during early development. Here we show that ephrins-B1, -B2, and -B3 all can bind in cis to cell surface HSPGs, while only ephrin-B1 interacts with cell surface HSPGs in a way that retards HSPG endocytosis. Expressing ephrin-B1 in HEK293T cells, using polyethyleneimine (PEI) as transfection agent, increased cell surface levels of HSPGs which were detected by an anti-heparan sulfate (HS) antibody or by ephrin-B3-Fc binding. Ephrin-B1 in the plasma membrane seemed to retard PEI-induced HSPG internalisation and degradation. Binding of HSPGs by ephrin-B1 was observed for the human, mouse, xenopus, and zebrafish homologs, and did not require the cytoplasmic tail of ephrin-B1 that contains tyrosines shown to be involved in intracellular signalling. Furthermore, ephrin-B1 could bind the HSPG variant of CD44 (CD44V3-10), a complex that could further associate with fibroblast growth factor receptors (1 and 4) after co-expression with one of these receptors. In summary, our data indicate that ephrin-B1 can regulate cellular HSPG turnover and is able to form complexes of potential biological importance with CD44V3-10 and fibroblast growth factor receptors.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":"35 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143988713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joanna Cull, Ryan C Pink, Priya Samuel, Susan A Brooks
Mucin-type O-linked glycosylation is initiated by the transfer of a single N-acetyl-D-galactosamine (GalNAc) to the hydroxyl group of either a serine (Ser) or threonine (Thr) residue. This process is catalysed by a portfolio of twenty isoenzymes, the UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts, GalNAc-Ts or GALNTs) to create the Thomsen nouvelle (Tn) antigen (GalNAcα1-O-Ser/Thr ). In healthy adult cells, Tn antigen is further elaborated by the action of specific glycosyltransferases to either form one of eight core structures, which themselves can be extended to form more complex glycans, or into sialyl Tn or sialyl core 1 (sialyl T), where sialylation terminates chain extension. These O-glycans, produced through mucin-type O-linked glycosylation, are a feature of many secreted and membrane-bound proteins, and are fundamental in a wide range of biological functions. Dysregulation of this process, often resulting in the exposure of usually cryptic truncated O-glycans including Tn antigen, is important in a wide range of pathologies and has been implicated in cancer metastasis. The regulation of mucin-type O-linked glycosylation, in health and disease, is highly complex and not fully understood. It is determined by a myriad of mechanisms, from transcriptional control, mutation, posttranslational control, stability of transferases, their relocation within the secretory pathway, and changes in the fundamental structure and environment of the Golgi apparatus. This review presents an overview of the evidence for these potential regulatory steps in the synthesis of truncated mucin-type O-linked glycans in cancer.
粘蛋白型o键糖基化是由单个n-乙酰- d -半乳糖胺(GalNAc)转移到丝氨酸(Ser)或苏氨酸(Thr)残基的羟基上引发的。这一过程由20种同工酶,即UDP-N-α- d -半乳糖胺:多肽n -乙酰半乳糖胺转移酶(ppGalNAc-Ts, GalNAc- ts或GALNTs)催化产生Thomsen nouvelle (Tn)抗原(GalNAc-α-Ser/Thr)。在健康的成年细胞中,通过特定糖基转移酶的作用,Tn抗原被进一步加工,形成八种核心结构之一,这些核心结构本身可以延伸形成更复杂的聚糖,或者形成唾液酰Tn或唾液酰核1(唾液酰T),其中唾液酰化终止链延伸。这些o -聚糖通过黏液型o -连接糖基化产生,是许多分泌蛋白和膜结合蛋白的特征,在广泛的生物学功能中起着重要作用。这一过程的失调通常会导致包括Tn抗原在内的隐型截断的o -聚糖暴露,这在广泛的病理中是重要的,并且与癌症转移有关。粘蛋白o型糖基化在健康和疾病中的调节是高度复杂的,尚未完全了解。这是由多种机制决定的,从转录控制、突变、翻译后控制、转移酶的稳定性、它们在分泌途径中的重新定位,以及高尔基体基本结构和环境的变化。本文综述了癌症中截断黏液型o链聚糖合成的这些潜在调控步骤的证据。
{"title":"Myriad mechanisms: factors regulating the synthesis of aberrant mucin-type O-glycosylation found on cancer cells.","authors":"Joanna Cull, Ryan C Pink, Priya Samuel, Susan A Brooks","doi":"10.1093/glycob/cwaf023","DOIUrl":"10.1093/glycob/cwaf023","url":null,"abstract":"<p><p>Mucin-type O-linked glycosylation is initiated by the transfer of a single N-acetyl-D-galactosamine (GalNAc) to the hydroxyl group of either a serine (Ser) or threonine (Thr) residue. This process is catalysed by a portfolio of twenty isoenzymes, the UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts, GalNAc-Ts or GALNTs) to create the Thomsen nouvelle (Tn) antigen (GalNAcα1-O-Ser/Thr ). In healthy adult cells, Tn antigen is further elaborated by the action of specific glycosyltransferases to either form one of eight core structures, which themselves can be extended to form more complex glycans, or into sialyl Tn or sialyl core 1 (sialyl T), where sialylation terminates chain extension. These O-glycans, produced through mucin-type O-linked glycosylation, are a feature of many secreted and membrane-bound proteins, and are fundamental in a wide range of biological functions. Dysregulation of this process, often resulting in the exposure of usually cryptic truncated O-glycans including Tn antigen, is important in a wide range of pathologies and has been implicated in cancer metastasis. The regulation of mucin-type O-linked glycosylation, in health and disease, is highly complex and not fully understood. It is determined by a myriad of mechanisms, from transcriptional control, mutation, posttranslational control, stability of transferases, their relocation within the secretory pathway, and changes in the fundamental structure and environment of the Golgi apparatus. This review presents an overview of the evidence for these potential regulatory steps in the synthesis of truncated mucin-type O-linked glycans in cancer.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143977272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marwa Farrag, Reem Aljuhani, Julius Benicky, Hoda Al Ahmed, Sandeep K Misra, Sushil K Mishra, Joshua S Sharp, Robert J Doerksen, Radoslav Goldman, Vitor H Pomin
Heparan-6-O-endosulfatase 2 (Sulf-2) is a proteoglycan enzyme that modifies sulfation of heparan sulfate proteoglycans. Dysregulation of Sulf-2 is associated with various pathological conditions, including cancer, which makes Sulf-2 a potential therapeutic target. Despite the key pathophysiological roles of Sulf-2, inhibitors remain insufficiently developed. In previous work, a fucosylated chondroitin sulfate from the sea cucumber Holothuria floridana (HfFucCS) exhibited potent Sulf-2 inhibition. This study investigates the structural basis of HfFucCS-mediated Sulf-2 inhibition, examines the binding profile of HfFucCS to Sulf-2, and explores the mode of inhibition. Additionally, a structurally diverse library of sulfated poly/oligosaccharides, including common glycosaminoglycans and unique marine sulfated glycans, was screened for Sulf-2 inhibition. Results from a high-throughput arylsulfatase assay and specific 6-O-desulfation assay have proved that HfFucCS is the most potent among the tested sulfated glycans, likely due to the presence of the unique 3,4-disulfated fucose structural motif. HfFucCS demonstrated non-competitive inhibition, and inhibitory analysis of its low-molecular-weight fragments suggests a minimum length of ~7.5 kDa for effective inhibition. Surface plasmon resonance analyses revealed that Sulf-2 binds to surface heparin with high affinity (KD of 0.817 nM). HfFucCS and its derivatives effectively disrupt this interaction. Results from mass spectrometry-hydroxyl radical protein footprinting and repulsive scaling replica exchange molecular dynamics indicate similarities in the binding of heparin and HfFucCS oligosaccharides to both the catalytic and hydrophilic domains of Sulf-2. These findings reveal the unique inhibitory properties of a structurally distinct marine glycosaminoglycan, supporting its further investigation as a selective and effective inhibitor for Sulf-2-associated cancer events.
肝素-6- o -巯基内酯酶2(硫-2)是一种蛋白聚糖酶,可修饰硫酸肝素蛋白聚糖的磺化。硫-2的失调与包括癌症在内的各种病理状况有关,这使得硫-2成为潜在的治疗靶点。尽管硫-2具有关键的病理生理作用,但抑制剂的开发仍然不足。在先前的研究中,从佛罗里达海参(Holothuria florida, HfFucCS)中提取的一种浓缩硫酸软骨素表现出有效的硫-2抑制作用。本研究探讨了HfFucCS介导的硫-2抑制的结构基础,研究了HfFucCS与硫-2的结合谱,并探索了抑制模式。此外,我们还筛选了一个结构多样的磺化聚/寡糖文库,包括常见的糖胺聚糖和独特的海洋磺化聚糖,以抑制硫-2。高通量芳基磺化酶实验和特异性6- o -脱硫实验的结果证明,HfFucCS是所测试的磺化聚糖中最有效的,可能是由于存在独特的3,4-二硫化聚焦结构基序。HfFucCS表现出非竞争性抑制作用,对其低分子量片段的抑制分析表明,有效抑制的最小长度为~7.5 kDa。表面等离子体共振分析表明,硫-2与表面肝素具有高亲和力(KD为0.817 nM)。HfFucCS及其衍生物有效地破坏了这种相互作用。质谱-羟基自由基蛋白足迹和排斥尺度复制交换分子动力学的结果表明,肝素和HfFucCS低聚糖与硫-2的催化和亲水性结构域的结合具有相似性。这些发现揭示了一种结构独特的海洋糖胺聚糖的独特抑制特性,支持其作为硫-2相关癌症事件的选择性和有效抑制剂的进一步研究。
{"title":"Heparan-6-O-endosulfatase 2, a cancer-related proteoglycan enzyme, is effectively inhibited by a specific sea cucumber fucosylated glycosaminoglycan.","authors":"Marwa Farrag, Reem Aljuhani, Julius Benicky, Hoda Al Ahmed, Sandeep K Misra, Sushil K Mishra, Joshua S Sharp, Robert J Doerksen, Radoslav Goldman, Vitor H Pomin","doi":"10.1093/glycob/cwaf025","DOIUrl":"10.1093/glycob/cwaf025","url":null,"abstract":"<p><p>Heparan-6-O-endosulfatase 2 (Sulf-2) is a proteoglycan enzyme that modifies sulfation of heparan sulfate proteoglycans. Dysregulation of Sulf-2 is associated with various pathological conditions, including cancer, which makes Sulf-2 a potential therapeutic target. Despite the key pathophysiological roles of Sulf-2, inhibitors remain insufficiently developed. In previous work, a fucosylated chondroitin sulfate from the sea cucumber Holothuria floridana (HfFucCS) exhibited potent Sulf-2 inhibition. This study investigates the structural basis of HfFucCS-mediated Sulf-2 inhibition, examines the binding profile of HfFucCS to Sulf-2, and explores the mode of inhibition. Additionally, a structurally diverse library of sulfated poly/oligosaccharides, including common glycosaminoglycans and unique marine sulfated glycans, was screened for Sulf-2 inhibition. Results from a high-throughput arylsulfatase assay and specific 6-O-desulfation assay have proved that HfFucCS is the most potent among the tested sulfated glycans, likely due to the presence of the unique 3,4-disulfated fucose structural motif. HfFucCS demonstrated non-competitive inhibition, and inhibitory analysis of its low-molecular-weight fragments suggests a minimum length of ~7.5 kDa for effective inhibition. Surface plasmon resonance analyses revealed that Sulf-2 binds to surface heparin with high affinity (KD of 0.817 nM). HfFucCS and its derivatives effectively disrupt this interaction. Results from mass spectrometry-hydroxyl radical protein footprinting and repulsive scaling replica exchange molecular dynamics indicate similarities in the binding of heparin and HfFucCS oligosaccharides to both the catalytic and hydrophilic domains of Sulf-2. These findings reveal the unique inhibitory properties of a structurally distinct marine glycosaminoglycan, supporting its further investigation as a selective and effective inhibitor for Sulf-2-associated cancer events.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":"35 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan L Schindler, Lee-Way Jin, Angela M Zivkovic, Yiyun Liu, Carlito B Lebrilla
Glycosphingolipids are a unique class of bioactive lipids responsible for lateral membrane organization and signaling found in high abundance in the central nervous system. Using nanoflow MEA Chip Q/ToF mass spectrometry, we profiled the intact glycosphingolipids of the elderly human brain in a region-specific manner. By chromatographic separation of glycan and ceramide isomers, we determined gangliosides to be the highest source of heterogeneity between regions with the expression of a- and b-series glycan structures. Investigation of these trends showed that specific glycan structures were, in part, determined by the structure of their lipid backbone. This study provides insight into the dynamic process of membrane remodeling in the brain during aging.
{"title":"Region-specific quantitation of glycosphingolipids in the elderly human brain with Nanoflow MEA Chip Q/ToF mass spectrometry.","authors":"Ryan L Schindler, Lee-Way Jin, Angela M Zivkovic, Yiyun Liu, Carlito B Lebrilla","doi":"10.1093/glycob/cwaf022","DOIUrl":"10.1093/glycob/cwaf022","url":null,"abstract":"<p><p>Glycosphingolipids are a unique class of bioactive lipids responsible for lateral membrane organization and signaling found in high abundance in the central nervous system. Using nanoflow MEA Chip Q/ToF mass spectrometry, we profiled the intact glycosphingolipids of the elderly human brain in a region-specific manner. By chromatographic separation of glycan and ceramide isomers, we determined gangliosides to be the highest source of heterogeneity between regions with the expression of a- and b-series glycan structures. Investigation of these trends showed that specific glycan structures were, in part, determined by the structure of their lipid backbone. This study provides insight into the dynamic process of membrane remodeling in the brain during aging.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":"35 6","pages":""},"PeriodicalIF":3.3,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143990189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Calreticulin (CRT), a chaperone that possesses both lectin and chaperone domains, is localized in the endoplasmic reticulum (ER). CRT has diverse functions and localizations; thus, CRT is a multifunctional protein. Particularly in the ER, CRT mainly aids in the proper folding of nascent glycoproteins as lectin chaperones. Approximately one-third of cellular proteins, including disease-related proteins, are synthesized in the ER. The lectin chaperones CRT and calnexin facilitate the correct folding of these glycoproteins; hence, these chaperones are essential for cells. Various CRT ligands have been reported, mainly composed of Glc1Man9GlcNAc2-type glycan. However, it remains problematic for the complicated synthesis and preparation, and it interacts with glycoprotein folding-related proteins in the ER other than CRT. This suggests that the development of CRT ligands still can be improved. In this study, we developed a hybrid binding concept, which encompasses concurrent binding of ligands to CRT lectin and chaperone domains. We synthesized a CRT-targeting glycan ligand with a glycan and hydrophobic aglycone for CRT lectin and chaperone domain binding, respectively. The thermal shift assay with the CRT-targeting glycan demonstrated that binding was enhanced by simultaneous glycan and hydrophobic aglycone binding. The affinity of the CRT-targeting ligand showed isothermal titration calorimetry approximately 50-fold stronger than that of the glycan alone, thereby supporting the hybrid binding concept. In addition, the CRT-targeting ligand inhibited chaperone function. Overall, these results indicate that the hybrid binding concept may be useful as a novel strategy for the development of CRT ligands and inhibitors.
{"title":"Development of a calreticulin-targeting glycan ligand based on a hybrid binding concept.","authors":"Taiki Kuribara, Taiga Kojima, Yuka Kobayashi, Mitsuaki Hirose, Keita Shibayama, Yoichi Takeda, Kiichiro Totani","doi":"10.1093/glycob/cwaf015","DOIUrl":"10.1093/glycob/cwaf015","url":null,"abstract":"<p><p>Calreticulin (CRT), a chaperone that possesses both lectin and chaperone domains, is localized in the endoplasmic reticulum (ER). CRT has diverse functions and localizations; thus, CRT is a multifunctional protein. Particularly in the ER, CRT mainly aids in the proper folding of nascent glycoproteins as lectin chaperones. Approximately one-third of cellular proteins, including disease-related proteins, are synthesized in the ER. The lectin chaperones CRT and calnexin facilitate the correct folding of these glycoproteins; hence, these chaperones are essential for cells. Various CRT ligands have been reported, mainly composed of Glc1Man9GlcNAc2-type glycan. However, it remains problematic for the complicated synthesis and preparation, and it interacts with glycoprotein folding-related proteins in the ER other than CRT. This suggests that the development of CRT ligands still can be improved. In this study, we developed a hybrid binding concept, which encompasses concurrent binding of ligands to CRT lectin and chaperone domains. We synthesized a CRT-targeting glycan ligand with a glycan and hydrophobic aglycone for CRT lectin and chaperone domain binding, respectively. The thermal shift assay with the CRT-targeting glycan demonstrated that binding was enhanced by simultaneous glycan and hydrophobic aglycone binding. The affinity of the CRT-targeting ligand showed isothermal titration calorimetry approximately 50-fold stronger than that of the glycan alone, thereby supporting the hybrid binding concept. In addition, the CRT-targeting ligand inhibited chaperone function. Overall, these results indicate that the hybrid binding concept may be useful as a novel strategy for the development of CRT ligands and inhibitors.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143614638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glyco you should know.","authors":"Yukie Akune-Taylor","doi":"10.1093/glycob/cwaf016","DOIUrl":"10.1093/glycob/cwaf016","url":null,"abstract":"","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143663331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}