Hirak Saxena, Rucha Patel, John Kelly, Warren Wakarchuk
Protein-O-mannosylation (POM) is a form of O-glycosylation that is ubiquitous and has been studied extensively throughout in fungi and animals. The key glycosyltransferase, protein O-mannosyltransferase (PMT), a member of family GT-39, is also found in over 3,800 bacterial genomes but has only been minimally examined from prokaryotes. In prokaryotes POM has only been investigated in terms of pathogenicity (in Mycobacterium tuberculosis) even though there are far more non-pathogenic bacteria that appear to carry out POM. To date, there is no consensus on what benefit POM imparts to the non-pathogenic bacteria that can perform it. Through the generation of a POM deficient mutant of Corynebacterium glutamicum - a widely utilized and known protein O-mannosylating actinobacteria - this work shows that even closely related actinobacterial GT-39 s (the enzymes responsible for the initiation of POM) can have different substrate specificities for targets of POM. Moreover, presented here is evidence that POM does not only occur in a SEC-dependent manner; POM also occurs with TAT and non-SEC secreted substrates in a specific and likely tightly regulated manner. Together these results highlight the need for further biochemical characterization of POM in these and other bacterial species to help elucidate the true nature of its biological functions.
蛋白质- o -甘露糖基化(POM)是一种普遍存在的o -糖基化形式,在真菌和动物中得到了广泛的研究。关键的糖基转移酶,蛋白o -甘露糖基转移酶(PMT),是GT-39家族的一员,也在3800多种细菌基因组中发现,但仅在原核生物中进行了最低限度的检查。在原核生物中,POM只在致病性方面进行了研究(在结核分枝杆菌中),尽管似乎有更多的非致病性细菌进行POM。到目前为止,对于聚甲醛对非致病性细菌有什么好处还没有达成共识。通过对谷氨棒状杆菌(一种广泛使用且已知的蛋白质o -甘露糖基化放线菌)的POM缺陷突变体的产生,这项工作表明,即使是与POM密切相关的放线菌GT-39 s(负责POM起始的酶)也可以对POM靶点具有不同的底物特异性。此外,本文提供的证据表明,POM不仅以依赖于sec的方式发生;POM也与TAT和非sec分泌的底物以特定且可能受到严格调控的方式发生。总之,这些结果强调需要进一步的生化表征POM在这些和其他细菌物种,以帮助阐明其生物学功能的真正本质。
{"title":"Differential substrate preferences IN ACTINOBACTERIAL protein O-MANNOSYLTRANSFERASES and alteration of protein-O-MANNOSYLATION by choice of secretion pathway.","authors":"Hirak Saxena, Rucha Patel, John Kelly, Warren Wakarchuk","doi":"10.1093/glycob/cwae095","DOIUrl":"10.1093/glycob/cwae095","url":null,"abstract":"<p><p>Protein-O-mannosylation (POM) is a form of O-glycosylation that is ubiquitous and has been studied extensively throughout in fungi and animals. The key glycosyltransferase, protein O-mannosyltransferase (PMT), a member of family GT-39, is also found in over 3,800 bacterial genomes but has only been minimally examined from prokaryotes. In prokaryotes POM has only been investigated in terms of pathogenicity (in Mycobacterium tuberculosis) even though there are far more non-pathogenic bacteria that appear to carry out POM. To date, there is no consensus on what benefit POM imparts to the non-pathogenic bacteria that can perform it. Through the generation of a POM deficient mutant of Corynebacterium glutamicum - a widely utilized and known protein O-mannosylating actinobacteria - this work shows that even closely related actinobacterial GT-39 s (the enzymes responsible for the initiation of POM) can have different substrate specificities for targets of POM. Moreover, presented here is evidence that POM does not only occur in a SEC-dependent manner; POM also occurs with TAT and non-SEC secreted substrates in a specific and likely tightly regulated manner. Together these results highlight the need for further biochemical characterization of POM in these and other bacterial species to help elucidate the true nature of its biological functions.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephanie Walcher, Fiona F Hager-Mair, Johannes Stadlmann, Hanspeter Kählig, Christina Schäffer
Tannerella serpentiformis is a health-associated Gram-negative oral anaerobe, while its closest phylogenetic relative is the periodontal pathogen Tannerella forsythia. The pathogen employs glycan mimicry through protein O-glycosylation, displaying a terminal nonulosonic acid aiding in evasion of host immune recognition. Like T. forsythia, T. serpentiformis cells are covered with a 2D-crystalline S-layer composed of two abundant S-layer glycoproteins-TssA and TssB. In this study, we elucidated the structure of the O-linked glycans of T. serpentiformis using 1D and 2D NMR spectroscopy analyzing S-layer glycopeptides and β-eliminated glycans. We found that T. serpentiformis produces two highly fucosylated, branched glycoforms carrying non-carbohydrate modifications, with the structure [2-OMe-Fuc-(α1,2)]-4-OMe-Glc-(β1,3)-[Fuc-(α1,4)]-2-NAc-GlcA-(β1,4)-[3-NH2, 2,4-OMe-Fuc-(α1,3)]-Fuc-(α1,4)-Xyl-(β1,4)-[3-OMe-Fuc-(α1,3)]-GlcA-(α1,2)-[Rha-(α1,4]-Gal, where the 3OMe-Fuc is variable; each glycoform contains a rare 2,4-methoxy, 3-amino-modified fucose. These glycoforms support the hypothesis that nonulosonic acid is a hallmark of pathogenic Tannerella species. A combined glycoproteomics and bioinformatics approach identified multiple sites within TssA (14 sites) and TssB (21 sites) to be O-glycosylated. LC-MS/MS confirmed the presence of the Bacteroidetes O-glycosylation motif (D)(S/T) (L/V/T/A/I) in Tannerella species, including the newly identified candidate "N" for the third position. Alphfold2 models of the S-layer glycoproteins were created revealing an almost uniform spatial distribution of the two glycoforms at the N-terminal two thirds of the proteins supported by glycoproteomics, with glycans facing outward. Glycoproteomics identified 921 unique glycopeptide sequences corresponding to 303 unique UniProt IDs. GO-term enrichment analysis versus the entire T. serpentiformis proteome classified these proteins as mainly membrane and cell periphery-associated glycoproteins, supporting a general protein O-glycosylation system in T. serpentiformis.
蛇形坦奈氏菌是一种与健康有关的革兰氏阴性口腔厌氧菌,其系统发育上的近亲是牙周病原体连翘坦奈氏菌。该病原体通过蛋白质 O-糖基化进行糖模拟,显示出末端的壬磺酸,有助于逃避宿主的免疫识别。与连翘菌一样,蛇形酵母菌细胞也覆盖着由两种丰富的 S 层糖蛋白--TssA 和 TssB 组成的二维晶体 S 层。在这项研究中,我们利用一维和二维核磁共振光谱分析了蛇形蓟马的 S 层糖肽和β-消除糖,从而阐明了蛇形蓟马的 O 链糖蛋白结构。我们发现 T.serpentiformis 产生两种高度岩藻糖基化的支链糖型,其结构为[2-OMe-Fuc-(α1,2)]-4-OMe-Glc-(β1、3)-[Fuc-(α1,4)]-2-NAc-GlcA-(β1,4)-[3-NH2,2,4-OMe-Fuc-(α1,3)]-Fuc-(α1,4)-Xyl-(β1,4)-[3-OMe-Fuc-(α1,3)]-GlcA-(α1,2)-[Rha-(α1,4)]-Gal,其中 3OMe-Fuc 是可变的;每种糖型都含有一种罕见的 2,4-甲氧基 3-氨基修饰岩藻糖。这些糖型支持了壬磺酸是致病丹那丝菌特征的假设。糖蛋白组学和生物信息学相结合的方法确定了 TssA(14 个位点)和 TssB(21 个位点)中多个位点的 O-糖基化。液相色谱-质谱/质谱(LC-MS/MS)证实,在丹那菌中存在类杆菌O-糖基化基团(D)(S/T) (L/V/T/A/I),包括新发现的第三个位置的候选 "N"。建立的 S 层糖蛋白 Alphfold2 模型显示,在糖蛋白组学支持的蛋白质 N 端三分之二处,两种糖基形式的空间分布几乎一致,糖基朝外。糖蛋白组学确定了 921 个独特的糖肽序列,对应于 303 个独特的 UniProt ID。对整个蛇尾藻蛋白质组进行的GO项富集分析将这些蛋白质主要归类为膜和细胞外围相关糖蛋白,从而支持了蛇尾藻的一般蛋白质O-糖基化系统。
{"title":"Deciphering fucosylated protein-linked O-glycans in oral Tannerella serpentiformis: Insights from NMR spectroscopy and glycoproteomics.","authors":"Stephanie Walcher, Fiona F Hager-Mair, Johannes Stadlmann, Hanspeter Kählig, Christina Schäffer","doi":"10.1093/glycob/cwae072","DOIUrl":"10.1093/glycob/cwae072","url":null,"abstract":"<p><p>Tannerella serpentiformis is a health-associated Gram-negative oral anaerobe, while its closest phylogenetic relative is the periodontal pathogen Tannerella forsythia. The pathogen employs glycan mimicry through protein O-glycosylation, displaying a terminal nonulosonic acid aiding in evasion of host immune recognition. Like T. forsythia, T. serpentiformis cells are covered with a 2D-crystalline S-layer composed of two abundant S-layer glycoproteins-TssA and TssB. In this study, we elucidated the structure of the O-linked glycans of T. serpentiformis using 1D and 2D NMR spectroscopy analyzing S-layer glycopeptides and β-eliminated glycans. We found that T. serpentiformis produces two highly fucosylated, branched glycoforms carrying non-carbohydrate modifications, with the structure [2-OMe-Fuc-(α1,2)]-4-OMe-Glc-(β1,3)-[Fuc-(α1,4)]-2-NAc-GlcA-(β1,4)-[3-NH2, 2,4-OMe-Fuc-(α1,3)]-Fuc-(α1,4)-Xyl-(β1,4)-[3-OMe-Fuc-(α1,3)]-GlcA-(α1,2)-[Rha-(α1,4]-Gal, where the 3OMe-Fuc is variable; each glycoform contains a rare 2,4-methoxy, 3-amino-modified fucose. These glycoforms support the hypothesis that nonulosonic acid is a hallmark of pathogenic Tannerella species. A combined glycoproteomics and bioinformatics approach identified multiple sites within TssA (14 sites) and TssB (21 sites) to be O-glycosylated. LC-MS/MS confirmed the presence of the Bacteroidetes O-glycosylation motif (D)(S/T) (L/V/T/A/I) in Tannerella species, including the newly identified candidate \"N\" for the third position. Alphfold2 models of the S-layer glycoproteins were created revealing an almost uniform spatial distribution of the two glycoforms at the N-terminal two thirds of the proteins supported by glycoproteomics, with glycans facing outward. Glycoproteomics identified 921 unique glycopeptide sequences corresponding to 303 unique UniProt IDs. GO-term enrichment analysis versus the entire T. serpentiformis proteome classified these proteins as mainly membrane and cell periphery-associated glycoproteins, supporting a general protein O-glycosylation system in T. serpentiformis.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maryse D Berkhout, Athanasia Ioannou, Carol de Ram, Sjef Boeren, Caroline M Plugge, Clara Belzer
Specific human gut microbes inhabit the outer mucus layer of the gastrointestinal tract. Certain residents of this niche can degrade the large and complex mucin glycoproteins that constitute this layer and utilise the degradation products for their metabolism. In turn, this microbial mucin degradation drives specific microbiological ecological interactions in the human gut mucus layer. However, the exact nature of these interactions remains unknown. In this study, we designed and studied an in vitro mucin-degrading synthetic community that included mucin O-glycan degraders and cross-feeding microorganisms by monitoring community composition and dynamics through a combination of 16S rRNA gene amplicon sequencing and qPCR, mucin glycan degradation with PGC-LC-MS/MS, production of mucin-degrading enzymes and other proteins through metaproteomics, and metabolite production with HPLC. We demonstrated that specialist and generalist mucin O-glycan degraders stably co-exist and found evidence for cross-feeding relationships. Cross-feeding on the products of mucin degradation by other gut microbes resulted in butyrate production, hydrogenotrophic acetogenesis, sulfate reduction and methanogenesis. Metaproteomics analysis revealed that mucin glycan degraders Akkermansia muciniphila, Bacteroides spp. and Ruminococcus torques together contributed 92% of the total mucin O-glycan degrading enzyme pool of this community. Furthermore, comparative proteomics showed that in response to cultivation in a community compared to monoculture, mucin glycan degraders increased carbohydrate-active enzymes whereas we also found indications for niche differentiation. These results confirm the complexity of mucin-driven microbiological ecological interactions and the intricate role of carbohydrate-active enzymes in the human gut mucus layer.
{"title":"Mucin-driven ecological interactions in an in vitro synthetic community of human gut microbes.","authors":"Maryse D Berkhout, Athanasia Ioannou, Carol de Ram, Sjef Boeren, Caroline M Plugge, Clara Belzer","doi":"10.1093/glycob/cwae085","DOIUrl":"10.1093/glycob/cwae085","url":null,"abstract":"<p><p>Specific human gut microbes inhabit the outer mucus layer of the gastrointestinal tract. Certain residents of this niche can degrade the large and complex mucin glycoproteins that constitute this layer and utilise the degradation products for their metabolism. In turn, this microbial mucin degradation drives specific microbiological ecological interactions in the human gut mucus layer. However, the exact nature of these interactions remains unknown. In this study, we designed and studied an in vitro mucin-degrading synthetic community that included mucin O-glycan degraders and cross-feeding microorganisms by monitoring community composition and dynamics through a combination of 16S rRNA gene amplicon sequencing and qPCR, mucin glycan degradation with PGC-LC-MS/MS, production of mucin-degrading enzymes and other proteins through metaproteomics, and metabolite production with HPLC. We demonstrated that specialist and generalist mucin O-glycan degraders stably co-exist and found evidence for cross-feeding relationships. Cross-feeding on the products of mucin degradation by other gut microbes resulted in butyrate production, hydrogenotrophic acetogenesis, sulfate reduction and methanogenesis. Metaproteomics analysis revealed that mucin glycan degraders Akkermansia muciniphila, Bacteroides spp. and Ruminococcus torques together contributed 92% of the total mucin O-glycan degrading enzyme pool of this community. Furthermore, comparative proteomics showed that in response to cultivation in a community compared to monoculture, mucin glycan degraders increased carbohydrate-active enzymes whereas we also found indications for niche differentiation. These results confirm the complexity of mucin-driven microbiological ecological interactions and the intricate role of carbohydrate-active enzymes in the human gut mucus layer.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte B Spliid, Sanjay Mehta, Mark M Fuster, Cameron Martino, Claire L Morris, Nharae Lee, Ivan Florentino, Khang Tong, Lin Liu, Gail Ackermann, Rob Knight, Jeffrey D Esko, Tatiana Hurtado de Mendoza
The human oral cavity and upper airway serves as an early barrier and reservoir in the transmission of SARS-CoV-2. Saliva in this microenvironment may serve as a key host factor that can modulate susceptibility to infection and eventual infection of the lower respiratory tract. We sought to analyze the content and composition of heparan sulfate, a glycosaminoglycan identified as an important co-receptor for viral entry, and whether there is any correlation with SARS-CoV-2 infection. We enlisted 98 participants stratified by age, gender, race, and COVID-19 history. Notably, the concentration of heparan sulfate in saliva increased with age, and its composition showed a wide range of variability within each age group independently of age. Heparan sulfate concentration and composition did not differ significantly with gender, ethnicity or race. Compared to patients with no COVID-19 history, patients with previous infection had a similar salivary heparan sulfate concentration, but significant increases in overall sulfation were noted. Moreover, in a subset of participants, for which data was available pre- and post- infection, significant elevation in N-sulfoglucosamine in heparan sulfate was observed post- COVID-19. Examination of salivary bacterial 16S rRNA, showed a significant reduction in species predicted to possess heparan sulfate-modifying capacity among participants >60 years old, which correlates with the increase in heparan sulfate content in older individuals. These findings demonstrate a surprisingly wide variation in heparan sulfate content and composition in saliva across the sampled population and confirm other findings showing variation in content and composition of glycosaminoglycans in blood and urine.
{"title":"Diversity of human salivary heparan sulfate.","authors":"Charlotte B Spliid, Sanjay Mehta, Mark M Fuster, Cameron Martino, Claire L Morris, Nharae Lee, Ivan Florentino, Khang Tong, Lin Liu, Gail Ackermann, Rob Knight, Jeffrey D Esko, Tatiana Hurtado de Mendoza","doi":"10.1093/glycob/cwae084","DOIUrl":"10.1093/glycob/cwae084","url":null,"abstract":"<p><p>The human oral cavity and upper airway serves as an early barrier and reservoir in the transmission of SARS-CoV-2. Saliva in this microenvironment may serve as a key host factor that can modulate susceptibility to infection and eventual infection of the lower respiratory tract. We sought to analyze the content and composition of heparan sulfate, a glycosaminoglycan identified as an important co-receptor for viral entry, and whether there is any correlation with SARS-CoV-2 infection. We enlisted 98 participants stratified by age, gender, race, and COVID-19 history. Notably, the concentration of heparan sulfate in saliva increased with age, and its composition showed a wide range of variability within each age group independently of age. Heparan sulfate concentration and composition did not differ significantly with gender, ethnicity or race. Compared to patients with no COVID-19 history, patients with previous infection had a similar salivary heparan sulfate concentration, but significant increases in overall sulfation were noted. Moreover, in a subset of participants, for which data was available pre- and post- infection, significant elevation in N-sulfoglucosamine in heparan sulfate was observed post- COVID-19. Examination of salivary bacterial 16S rRNA, showed a significant reduction in species predicted to possess heparan sulfate-modifying capacity among participants >60 years old, which correlates with the increase in heparan sulfate content in older individuals. These findings demonstrate a surprisingly wide variation in heparan sulfate content and composition in saliva across the sampled population and confirm other findings showing variation in content and composition of glycosaminoglycans in blood and urine.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The 1st international symposium on GPI and its deficiency: bridging basic research to medical Frontiers in PNH and IGD.","authors":"Qi Zhang","doi":"10.1093/glycob/cwae091","DOIUrl":"10.1093/glycob/cwae091","url":null,"abstract":"","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Satu Pallasaho, Aishwarya Gondane, Julia Kutz, Jing Liang, Shivani Yalala, Damien Y Duveau, Helmut Pospiech, Craig J Thomas, Massimo Loda, Harri M Itkonen
O-GlcNAc transferase (OGT) coordinates with regulators of transcription, including cyclin-dependent kinase 12 (CDK12), the major transcription elongation kinase. Here, we use inhibitor- and knockdown-based strategies to show that co-targeting of OGT and CDK12 is toxic to prostate cancer cells. OGT catalyzes all nucleocytoplasmic O-GlcNAcylation and due to its essentiality in higher eukaryotes, it is not an ideal drug target. Our glycoproteomics-data revealed that short-term CDK12 inhibition induces hyper-O-GlcNAcylation of the spliceosome-machinery in different models of prostate cancer. By integrating our glycoproteomics-, gene essentiality- and clinical-data from CDK12 mutant prostate cancer patients, we identify the non-essential serine-arginine protein kinase 1 (SRPK1) as a synthetic lethal partner with CDK12-inactivation. Both normal and cancer cells become highly sensitive against inhibitors of OGT and SRPK1 if they have lowered activity of CDK12. Inactivating mutations in CDK12 are enriched in aggressive prostate cancer, and we propose that these patients would benefit from therapy targeting the spliceosome.
{"title":"Compromised CDK12 activity causes dependency on the high activity of O-GlcNAc transferase.","authors":"Satu Pallasaho, Aishwarya Gondane, Julia Kutz, Jing Liang, Shivani Yalala, Damien Y Duveau, Helmut Pospiech, Craig J Thomas, Massimo Loda, Harri M Itkonen","doi":"10.1093/glycob/cwae081","DOIUrl":"10.1093/glycob/cwae081","url":null,"abstract":"<p><p>O-GlcNAc transferase (OGT) coordinates with regulators of transcription, including cyclin-dependent kinase 12 (CDK12), the major transcription elongation kinase. Here, we use inhibitor- and knockdown-based strategies to show that co-targeting of OGT and CDK12 is toxic to prostate cancer cells. OGT catalyzes all nucleocytoplasmic O-GlcNAcylation and due to its essentiality in higher eukaryotes, it is not an ideal drug target. Our glycoproteomics-data revealed that short-term CDK12 inhibition induces hyper-O-GlcNAcylation of the spliceosome-machinery in different models of prostate cancer. By integrating our glycoproteomics-, gene essentiality- and clinical-data from CDK12 mutant prostate cancer patients, we identify the non-essential serine-arginine protein kinase 1 (SRPK1) as a synthetic lethal partner with CDK12-inactivation. Both normal and cancer cells become highly sensitive against inhibitors of OGT and SRPK1 if they have lowered activity of CDK12. Inactivating mutations in CDK12 are enriched in aggressive prostate cancer, and we propose that these patients would benefit from therapy targeting the spliceosome.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut microbes produce α-l-fucosidases critical for utilizing human milk oligosaccharides, mucosal and dietary glycans. Although gut Parabacteroides have garnered attention for their impact on host health and disease, their CAZymes remain poorly studied. CAZome analysis of eleven gut Parabacteroides type strains revealed their capacity to degrade mucin O-glycans. Their abundance of GH29 fucosidases caught our attention, and we predicted the functional profiles of 46 GH29 fucosidases using in silico approaches. Our findings showed diverse linkages specificities and species-specific distributions, with over half of GH29 enzymes functioning as α1,3/4 fucosidases, essential for acting on Lewis antigen epitopes of mucin O-glycans. We further enzymatically validated 4 novel GH29 sequences from poorly characterized groups. PgoldGH29A (cluster37GH29BERT, GH29:75.1CUPP) does not act on tested natural substrates. PgoldGH29B (cluster1GH29BERT, GH29:84.1CUPP) functions as a strict α1,3/4 fucosidase. PgoldGH29C (cluster14GH29BERT, GH29:29.1CUPP) displays unprecedented substrate specificity for α1,2/3/4 disaccharides. PgoldGH29D (cluster4GH29BERT, GH29:6.2CUPP) acts on α1,2/3/4/6 linkages similar to enzymes from GH29:6.1CUPP but prefers disaccharides over trisaccharides. These results suggest that PgoldGH29B and PgoldGH29D can contribute to mucin O-glycan degradation via their α1,3/4 and α1,2 fucosidase activity, respectively, while the natural substrates of PgoldGH29A and PgoldGH29C may be irrelevant to host-glycans. These insights enhance our understanding of the ecological niches inhabited by gut Parabacteroides and may guide similar exploration in other intriguing gut microbial species.
{"title":"Bioinformatics-aided function exploration of GH29 fucosidases from human gut Parabacteroides.","authors":"Haiyang Wu, Qingxin Li, Jin Chuan Wu","doi":"10.1093/glycob/cwae086","DOIUrl":"10.1093/glycob/cwae086","url":null,"abstract":"<p><p>Gut microbes produce α-l-fucosidases critical for utilizing human milk oligosaccharides, mucosal and dietary glycans. Although gut Parabacteroides have garnered attention for their impact on host health and disease, their CAZymes remain poorly studied. CAZome analysis of eleven gut Parabacteroides type strains revealed their capacity to degrade mucin O-glycans. Their abundance of GH29 fucosidases caught our attention, and we predicted the functional profiles of 46 GH29 fucosidases using in silico approaches. Our findings showed diverse linkages specificities and species-specific distributions, with over half of GH29 enzymes functioning as α1,3/4 fucosidases, essential for acting on Lewis antigen epitopes of mucin O-glycans. We further enzymatically validated 4 novel GH29 sequences from poorly characterized groups. PgoldGH29A (cluster37GH29BERT, GH29:75.1CUPP) does not act on tested natural substrates. PgoldGH29B (cluster1GH29BERT, GH29:84.1CUPP) functions as a strict α1,3/4 fucosidase. PgoldGH29C (cluster14GH29BERT, GH29:29.1CUPP) displays unprecedented substrate specificity for α1,2/3/4 disaccharides. PgoldGH29D (cluster4GH29BERT, GH29:6.2CUPP) acts on α1,2/3/4/6 linkages similar to enzymes from GH29:6.1CUPP but prefers disaccharides over trisaccharides. These results suggest that PgoldGH29B and PgoldGH29D can contribute to mucin O-glycan degradation via their α1,3/4 and α1,2 fucosidase activity, respectively, while the natural substrates of PgoldGH29A and PgoldGH29C may be irrelevant to host-glycans. These insights enhance our understanding of the ecological niches inhabited by gut Parabacteroides and may guide similar exploration in other intriguing gut microbial species.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Site-specific N-glycoproteomic analysis reveals up-regulated fucosylation in seminal plasma of asthenozoospermia.","authors":"","doi":"10.1093/glycob/cwae078","DOIUrl":"https://doi.org/10.1093/glycob/cwae078","url":null,"abstract":"","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":"34 12","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The sugar-binding receptor mincle stimulates macrophages when it encounters surface glycans on pathogens, such as trehalose dimycolate glycolipid in the outer membrane of mycobacteria. Binding of oligosaccharide ligands to the extracellular C-type carbohydrate-recognition domain (CRD) in mincle initiates intracellular signaling through the common Fc receptor γ (FcRγ) adapter molecule associated with mincle. One potential mechanism for initiation of signaling involves clustering of receptors, so it is important to understand the oligomeric state of mincle. Affinity purification of mincle from transfected mammalian cells has been used to show that mincle exists as a pre-formed, disulfide-linked dimer. Deletion of cysteine residues and chemical crosslinking further demonstrate that the dimers of mincle are stabilized by a disulfide bond between cysteine residues in the neck sequence that links the CRD to the membrane. In contrast, cysteine residues in the transmembrane region of mincle are not required for dimer formation or association with FcRγ. A protocol has been developed for efficient production of a disulfide-linked extracellular domain fragment of mincle in a bacterial expression system by appending synthetic dimerization domains to guide dimer formation in the absence of the membrane anchor.
{"title":"Preformed mincle dimers stabilized by an interchain disulfide bond in the neck region.","authors":"Yu Liu, Kurt Drickamer, Maureen E Taylor","doi":"10.1093/glycob/cwae083","DOIUrl":"10.1093/glycob/cwae083","url":null,"abstract":"<p><p>The sugar-binding receptor mincle stimulates macrophages when it encounters surface glycans on pathogens, such as trehalose dimycolate glycolipid in the outer membrane of mycobacteria. Binding of oligosaccharide ligands to the extracellular C-type carbohydrate-recognition domain (CRD) in mincle initiates intracellular signaling through the common Fc receptor γ (FcRγ) adapter molecule associated with mincle. One potential mechanism for initiation of signaling involves clustering of receptors, so it is important to understand the oligomeric state of mincle. Affinity purification of mincle from transfected mammalian cells has been used to show that mincle exists as a pre-formed, disulfide-linked dimer. Deletion of cysteine residues and chemical crosslinking further demonstrate that the dimers of mincle are stabilized by a disulfide bond between cysteine residues in the neck sequence that links the CRD to the membrane. In contrast, cysteine residues in the transmembrane region of mincle are not required for dimer formation or association with FcRγ. A protocol has been developed for efficient production of a disulfide-linked extracellular domain fragment of mincle in a bacterial expression system by appending synthetic dimerization domains to guide dimer formation in the absence of the membrane anchor.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632378/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}